Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

aic7xxx_osm.c

/*
 * Adaptec AIC7xxx device driver for Linux.
 *
 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $
 *
 * Copyright (c) 1994 John Aycock
 *   The University of Calgary Department of Computer Science.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
 * ANSI SCSI-2 specification (draft 10c), ...
 *
 * --------------------------------------------------------------------------
 *
 *  Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
 *
 *  Substantially modified to include support for wide and twin bus
 *  adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
 *  SCB paging, and other rework of the code.
 *
 * --------------------------------------------------------------------------
 * Copyright (c) 1994-2000 Justin T. Gibbs.
 * Copyright (c) 2000-2001 Adaptec Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
 *    substantially similar to the "NO WARRANTY" disclaimer below
 *    ("Disclaimer") and any redistribution must be conditioned upon
 *    including a substantially similar Disclaimer requirement for further
 *    binary redistribution.
 * 3. Neither the names of the above-listed copyright holders nor the names
 *    of any contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * Alternatively, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") version 2 as published by the Free
 * Software Foundation.
 *
 * NO WARRANTY
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 *---------------------------------------------------------------------------
 *
 *  Thanks also go to (in alphabetical order) the following:
 *
 *    Rory Bolt     - Sequencer bug fixes
 *    Jay Estabrook - Initial DEC Alpha support
 *    Doug Ledford  - Much needed abort/reset bug fixes
 *    Kai Makisara  - DMAing of SCBs
 *
 *  A Boot time option was also added for not resetting the scsi bus.
 *
 *    Form:  aic7xxx=extended
 *           aic7xxx=no_reset
 *           aic7xxx=verbose
 *
 *  Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
 *
 *  Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp
 */

/*
 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
 *
 * Copyright (c) 1997-1999 Doug Ledford
 *
 * These changes are released under the same licensing terms as the FreeBSD
 * driver written by Justin Gibbs.  Please see his Copyright notice above
 * for the exact terms and conditions covering my changes as well as the
 * warranty statement.
 *
 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
 * but are not limited to:
 *
 *  1: Import of the latest FreeBSD sequencer code for this driver
 *  2: Modification of kernel code to accommodate different sequencer semantics
 *  3: Extensive changes throughout kernel portion of driver to improve
 *     abort/reset processing and error hanndling
 *  4: Other work contributed by various people on the Internet
 *  5: Changes to printk information and verbosity selection code
 *  6: General reliability related changes, especially in IRQ management
 *  7: Modifications to the default probe/attach order for supported cards
 *  8: SMP friendliness has been improved
 *
 */

#include "aic7xxx_osm.h"
#include "aic7xxx_inline.h"
#include <scsi/scsicam.h>

static struct scsi_transport_template *ahc_linux_transport_template = NULL;

#include <linux/init.h>       /* __setup */
#include <linux/mm.h>         /* For fetching system memory size */
#include <linux/blkdev.h>           /* For block_size() */
#include <linux/delay.h>      /* For ssleep/msleep */


/*
 * Set this to the delay in seconds after SCSI bus reset.
 * Note, we honor this only for the initial bus reset.
 * The scsi error recovery code performs its own bus settle
 * delay handling for error recovery actions.
 */
#ifdef CONFIG_AIC7XXX_RESET_DELAY_MS
#define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS
#else
#define AIC7XXX_RESET_DELAY 5000
#endif

/*
 * Control collection of SCSI transfer statistics for the /proc filesystem.
 *
 * NOTE: Do NOT enable this when running on kernels version 1.2.x and below.
 * NOTE: This does affect performance since it has to maintain statistics.
 */
#ifdef CONFIG_AIC7XXX_PROC_STATS
#define AIC7XXX_PROC_STATS
#endif

/*
 * To change the default number of tagged transactions allowed per-device,
 * add a line to the lilo.conf file like:
 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
 * which will result in the first four devices on the first two
 * controllers being set to a tagged queue depth of 32.
 *
 * The tag_commands is an array of 16 to allow for wide and twin adapters.
 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
 * for channel 1.
 */
typedef struct {
      uint8_t tag_commands[16];     /* Allow for wide/twin adapters. */
} adapter_tag_info_t;

/*
 * Modify this as you see fit for your system.
 *
 * 0              tagged queuing disabled
 * 1 <= n <= 253  n == max tags ever dispatched.
 *
 * The driver will throttle the number of commands dispatched to a
 * device if it returns queue full.  For devices with a fixed maximum
 * queue depth, the driver will eventually determine this depth and
 * lock it in (a console message is printed to indicate that a lock
 * has occurred).  On some devices, queue full is returned for a temporary
 * resource shortage.  These devices will return queue full at varying
 * depths.  The driver will throttle back when the queue fulls occur and
 * attempt to slowly increase the depth over time as the device recovers
 * from the resource shortage.
 *
 * In this example, the first line will disable tagged queueing for all
 * the devices on the first probed aic7xxx adapter.
 *
 * The second line enables tagged queueing with 4 commands/LUN for IDs
 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
 * driver to attempt to use up to 64 tags for ID 1.
 *
 * The third line is the same as the first line.
 *
 * The fourth line disables tagged queueing for devices 0 and 3.  It
 * enables tagged queueing for the other IDs, with 16 commands/LUN
 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
 * IDs 2, 5-7, and 9-15.
 */

/*
 * NOTE: The below structure is for reference only, the actual structure
 *       to modify in order to change things is just below this comment block.
adapter_tag_info_t aic7xxx_tag_info[] =
{
      {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
      {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
      {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
      {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
};
*/

#ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE
#define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE
#else
#define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE
#endif

#define AIC7XXX_CONFIGED_TAG_COMMANDS {                           \
      AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,           \
      AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,           \
      AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,           \
      AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,           \
      AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,           \
      AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,           \
      AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,           \
      AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE            \
}

/*
 * By default, use the number of commands specified by
 * the users kernel configuration.
 */
static adapter_tag_info_t aic7xxx_tag_info[] =
{
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS},
      {AIC7XXX_CONFIGED_TAG_COMMANDS}
};

/*
 * There should be a specific return value for this in scsi.h, but
 * it seems that most drivers ignore it.
 */
#define DID_UNDERFLOW   DID_ERROR

void
ahc_print_path(struct ahc_softc *ahc, struct scb *scb)
{
      printk("(scsi%d:%c:%d:%d): ",
             ahc->platform_data->host->host_no,
             scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X',
             scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1,
             scb != NULL ? SCB_GET_LUN(scb) : -1);
}

/*
 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
 *       cards in the system.  This should be fixed.  Exceptions to this
 *       rule are noted in the comments.
 */

/*
 * Skip the scsi bus reset.  Non 0 make us skip the reset at startup.  This
 * has no effect on any later resets that might occur due to things like
 * SCSI bus timeouts.
 */
static uint32_t aic7xxx_no_reset;

/*
 * Should we force EXTENDED translation on a controller.
 *     0 == Use whatever is in the SEEPROM or default to off
 *     1 == Use whatever is in the SEEPROM or default to on
 */
static uint32_t aic7xxx_extended;

/*
 * PCI bus parity checking of the Adaptec controllers.  This is somewhat
 * dubious at best.  To my knowledge, this option has never actually
 * solved a PCI parity problem, but on certain machines with broken PCI
 * chipset configurations where stray PCI transactions with bad parity are
 * the norm rather than the exception, the error messages can be overwelming.
 * It's included in the driver for completeness.
 *   0         = Shut off PCI parity check
 *   non-0 = reverse polarity pci parity checking
 */
static uint32_t aic7xxx_pci_parity = ~0;

/*
 * There are lots of broken chipsets in the world.  Some of them will
 * violate the PCI spec when we issue byte sized memory writes to our
 * controller.  I/O mapped register access, if allowed by the given
 * platform, will work in almost all cases.
 */
uint32_t aic7xxx_allow_memio = ~0;

/*
 * So that we can set how long each device is given as a selection timeout.
 * The table of values goes like this:
 *   0 - 256ms
 *   1 - 128ms
 *   2 - 64ms
 *   3 - 32ms
 * We default to 256ms because some older devices need a longer time
 * to respond to initial selection.
 */
static uint32_t aic7xxx_seltime;

/*
 * Certain devices do not perform any aging on commands.  Should the
 * device be saturated by commands in one portion of the disk, it is
 * possible for transactions on far away sectors to never be serviced.
 * To handle these devices, we can periodically send an ordered tag to
 * force all outstanding transactions to be serviced prior to a new
 * transaction.
 */
static uint32_t aic7xxx_periodic_otag;

/*
 * Module information and settable options.
 */
static char *aic7xxx = NULL;

MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>");
MODULE_DESCRIPTION("Adaptec AIC77XX/78XX SCSI Host Bus Adapter driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(AIC7XXX_DRIVER_VERSION);
module_param(aic7xxx, charp, 0444);
MODULE_PARM_DESC(aic7xxx,
"period-delimited options string:\n"
"     verbose                 Enable verbose/diagnostic logging\n"
"     allow_memio       Allow device registers to be memory mapped\n"
"     debug             Bitmask of debug values to enable\n"
"     no_probe          Toggle EISA/VLB controller probing\n"
"     probe_eisa_vl           Toggle EISA/VLB controller probing\n"
"     no_reset          Suppress initial bus resets\n"
"     extended          Enable extended geometry on all controllers\n"
"     periodic_otag           Send an ordered tagged transaction\n"
"                       periodically to prevent tag starvation.\n"
"                       This may be required by some older disk\n"
"                       drives or RAID arrays.\n"
"     tag_info:<tag_str>      Set per-target tag depth\n"
"     global_tag_depth:<int>  Global tag depth for every target\n"
"                       on every bus\n"
"     seltime:<int>           Selection Timeout\n"
"                       (0/256ms,1/128ms,2/64ms,3/32ms)\n"
"\n"
"     Sample /etc/modprobe.conf line:\n"
"           Toggle EISA/VLB probing\n"
"           Set tag depth on Controller 1/Target 1 to 10 tags\n"
"           Shorten the selection timeout to 128ms\n"
"\n"
"     options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n"
);

static void ahc_linux_handle_scsi_status(struct ahc_softc *,
                               struct scsi_device *,
                               struct scb *);
static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc,
                               struct scsi_cmnd *cmd);
static void ahc_linux_freeze_simq(struct ahc_softc *ahc);
static void ahc_linux_release_simq(struct ahc_softc *ahc);
static int  ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag);
static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc);
static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc,
                             struct ahc_devinfo *devinfo);
static void ahc_linux_device_queue_depth(struct scsi_device *);
static int ahc_linux_run_command(struct ahc_softc*,
                         struct ahc_linux_device *,
                         struct scsi_cmnd *);
static void ahc_linux_setup_tag_info_global(char *p);
static int  aic7xxx_setup(char *s);

static int ahc_linux_unit;


/************************** OS Utility Wrappers *******************************/
void
ahc_delay(long usec)
{
      /*
       * udelay on Linux can have problems for
       * multi-millisecond waits.  Wait at most
       * 1024us per call.
       */
      while (usec > 0) {
            udelay(usec % 1024);
            usec -= 1024;
      }
}

/***************************** Low Level I/O **********************************/
uint8_t
ahc_inb(struct ahc_softc * ahc, long port)
{
      uint8_t x;

      if (ahc->tag == BUS_SPACE_MEMIO) {
            x = readb(ahc->bsh.maddr + port);
      } else {
            x = inb(ahc->bsh.ioport + port);
      }
      mb();
      return (x);
}

void
ahc_outb(struct ahc_softc * ahc, long port, uint8_t val)
{
      if (ahc->tag == BUS_SPACE_MEMIO) {
            writeb(val, ahc->bsh.maddr + port);
      } else {
            outb(val, ahc->bsh.ioport + port);
      }
      mb();
}

void
ahc_outsb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
{
      int i;

      /*
       * There is probably a more efficient way to do this on Linux
       * but we don't use this for anything speed critical and this
       * should work.
       */
      for (i = 0; i < count; i++)
            ahc_outb(ahc, port, *array++);
}

void
ahc_insb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
{
      int i;

      /*
       * There is probably a more efficient way to do this on Linux
       * but we don't use this for anything speed critical and this
       * should work.
       */
      for (i = 0; i < count; i++)
            *array++ = ahc_inb(ahc, port);
}

/********************************* Inlines ************************************/
static void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);

static int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
                              struct ahc_dma_seg *sg,
                              dma_addr_t addr, bus_size_t len);

static void
ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
{
      struct scsi_cmnd *cmd;

      cmd = scb->io_ctx;
      ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE);

      scsi_dma_unmap(cmd);
}

static int
ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
              struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len)
{
      int    consumed;

      if ((scb->sg_count + 1) > AHC_NSEG)
            panic("Too few segs for dma mapping.  "
                  "Increase AHC_NSEG\n");

      consumed = 1;
      sg->addr = ahc_htole32(addr & 0xFFFFFFFF);
      scb->platform_data->xfer_len += len;

      if (sizeof(dma_addr_t) > 4
       && (ahc->flags & AHC_39BIT_ADDRESSING) != 0)
            len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK;

      sg->len = ahc_htole32(len);
      return (consumed);
}

/*
 * Return a string describing the driver.
 */
static const char *
ahc_linux_info(struct Scsi_Host *host)
{
      static char buffer[512];
      char  ahc_info[256];
      char   *bp;
      struct ahc_softc *ahc;

      bp = &buffer[0];
      ahc = *(struct ahc_softc **)host->hostdata;
      memset(bp, 0, sizeof(buffer));
      strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev " AIC7XXX_DRIVER_VERSION "\n"
                  "        <");
      strcat(bp, ahc->description);
      strcat(bp, ">\n"
                  "        ");
      ahc_controller_info(ahc, ahc_info);
      strcat(bp, ahc_info);
      strcat(bp, "\n");

      return (bp);
}

/*
 * Queue an SCB to the controller.
 */
static int
ahc_linux_queue(struct scsi_cmnd * cmd, void (*scsi_done) (struct scsi_cmnd *))
{
      struct       ahc_softc *ahc;
      struct       ahc_linux_device *dev = scsi_transport_device_data(cmd->device);
      int rtn = SCSI_MLQUEUE_HOST_BUSY;
      unsigned long flags;

      ahc = *(struct ahc_softc **)cmd->device->host->hostdata;

      ahc_lock(ahc, &flags);
      if (ahc->platform_data->qfrozen == 0) {
            cmd->scsi_done = scsi_done;
            cmd->result = CAM_REQ_INPROG << 16;
            rtn = ahc_linux_run_command(ahc, dev, cmd);
      }
      ahc_unlock(ahc, &flags);

      return rtn;
}

static inline struct scsi_target **
ahc_linux_target_in_softc(struct scsi_target *starget)
{
      struct      ahc_softc *ahc =
            *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata);
      unsigned int target_offset;

      target_offset = starget->id;
      if (starget->channel != 0)
            target_offset += 8;

      return &ahc->platform_data->starget[target_offset];
}

static int
ahc_linux_target_alloc(struct scsi_target *starget)
{
      struct      ahc_softc *ahc =
            *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata);
      struct seeprom_config *sc = ahc->seep_config;
      unsigned long flags;
      struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget);
      unsigned short scsirate;
      struct ahc_devinfo devinfo;
      struct ahc_initiator_tinfo *tinfo;
      struct ahc_tmode_tstate *tstate;
      char channel = starget->channel + 'A';
      unsigned int our_id = ahc->our_id;
      unsigned int target_offset;

      target_offset = starget->id;
      if (starget->channel != 0)
            target_offset += 8;
        
      if (starget->channel)
            our_id = ahc->our_id_b;

      ahc_lock(ahc, &flags);

      BUG_ON(*ahc_targp != NULL);

      *ahc_targp = starget;

      if (sc) {
            int maxsync = AHC_SYNCRATE_DT;
            int ultra = 0;
            int flags = sc->device_flags[target_offset];

            if (ahc->flags & AHC_NEWEEPROM_FMT) {
                if (flags & CFSYNCHISULTRA)
                  ultra = 1;
            } else if (flags & CFULTRAEN)
                  ultra = 1;
            /* AIC nutcase; 10MHz appears as ultra = 1, CFXFER = 0x04
             * change it to ultra=0, CFXFER = 0 */
            if(ultra && (flags & CFXFER) == 0x04) {
                  ultra = 0;
                  flags &= ~CFXFER;
            }
          
            if ((ahc->features & AHC_ULTRA2) != 0) {
                  scsirate = (flags & CFXFER) | (ultra ? 0x8 : 0);
            } else {
                  scsirate = (flags & CFXFER) << 4;
                  maxsync = ultra ? AHC_SYNCRATE_ULTRA : 
                        AHC_SYNCRATE_FAST;
            }
            spi_max_width(starget) = (flags & CFWIDEB) ? 1 : 0;
            if (!(flags & CFSYNCH))
                  spi_max_offset(starget) = 0;
            spi_min_period(starget) = 
                  ahc_find_period(ahc, scsirate, maxsync);

            tinfo = ahc_fetch_transinfo(ahc, channel, ahc->our_id,
                                  starget->id, &tstate);
      }
      ahc_compile_devinfo(&devinfo, our_id, starget->id,
                      CAM_LUN_WILDCARD, channel,
                      ROLE_INITIATOR);
      ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
                   AHC_TRANS_GOAL, /*paused*/FALSE);
      ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
                  AHC_TRANS_GOAL, /*paused*/FALSE);
      ahc_unlock(ahc, &flags);

      return 0;
}

static void
ahc_linux_target_destroy(struct scsi_target *starget)
{
      struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget);

      *ahc_targp = NULL;
}

static int
ahc_linux_slave_alloc(struct scsi_device *sdev)
{
      struct      ahc_softc *ahc =
            *((struct ahc_softc **)sdev->host->hostdata);
      struct scsi_target *starget = sdev->sdev_target;
      struct ahc_linux_device *dev;

      if (bootverbose)
            printf("%s: Slave Alloc %d\n", ahc_name(ahc), sdev->id);

      dev = scsi_transport_device_data(sdev);
      memset(dev, 0, sizeof(*dev));

      /*
       * We start out life using untagged
       * transactions of which we allow one.
       */
      dev->openings = 1;

      /*
       * Set maxtags to 0.  This will be changed if we
       * later determine that we are dealing with
       * a tagged queuing capable device.
       */
      dev->maxtags = 0;
      
      spi_period(starget) = 0;

      return 0;
}

static int
ahc_linux_slave_configure(struct scsi_device *sdev)
{
      struct      ahc_softc *ahc;

      ahc = *((struct ahc_softc **)sdev->host->hostdata);

      if (bootverbose)
            sdev_printk(KERN_INFO, sdev, "Slave Configure\n");

      ahc_linux_device_queue_depth(sdev);

      /* Initial Domain Validation */
      if (!spi_initial_dv(sdev->sdev_target))
            spi_dv_device(sdev);

      return 0;
}

#if defined(__i386__)
/*
 * Return the disk geometry for the given SCSI device.
 */
static int
ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
                sector_t capacity, int geom[])
{
      uint8_t *bh;
      int    heads;
      int    sectors;
      int    cylinders;
      int    ret;
      int    extended;
      struct       ahc_softc *ahc;
      u_int  channel;

      ahc = *((struct ahc_softc **)sdev->host->hostdata);
      channel = sdev_channel(sdev);

      bh = scsi_bios_ptable(bdev);
      if (bh) {
            ret = scsi_partsize(bh, capacity,
                            &geom[2], &geom[0], &geom[1]);
            kfree(bh);
            if (ret != -1)
                  return (ret);
      }
      heads = 64;
      sectors = 32;
      cylinders = aic_sector_div(capacity, heads, sectors);

      if (aic7xxx_extended != 0)
            extended = 1;
      else if (channel == 0)
            extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0;
      else
            extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0;
      if (extended && cylinders >= 1024) {
            heads = 255;
            sectors = 63;
            cylinders = aic_sector_div(capacity, heads, sectors);
      }
      geom[0] = heads;
      geom[1] = sectors;
      geom[2] = cylinders;
      return (0);
}
#endif

/*
 * Abort the current SCSI command(s).
 */
static int
ahc_linux_abort(struct scsi_cmnd *cmd)
{
      int error;

      error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT);
      if (error != 0)
            printf("aic7xxx_abort returns 0x%x\n", error);
      return (error);
}

/*
 * Attempt to send a target reset message to the device that timed out.
 */
static int
ahc_linux_dev_reset(struct scsi_cmnd *cmd)
{
      int error;

      error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET);
      if (error != 0)
            printf("aic7xxx_dev_reset returns 0x%x\n", error);
      return (error);
}

/*
 * Reset the SCSI bus.
 */
static int
ahc_linux_bus_reset(struct scsi_cmnd *cmd)
{
      struct ahc_softc *ahc;
      int    found;
      unsigned long flags;

      ahc = *(struct ahc_softc **)cmd->device->host->hostdata;

      ahc_lock(ahc, &flags);
      found = ahc_reset_channel(ahc, scmd_channel(cmd) + 'A',
                          /*initiate reset*/TRUE);
      ahc_unlock(ahc, &flags);

      if (bootverbose)
            printf("%s: SCSI bus reset delivered. "
                   "%d SCBs aborted.\n", ahc_name(ahc), found);

      return SUCCESS;
}

struct scsi_host_template aic7xxx_driver_template = {
      .module                 = THIS_MODULE,
      .name             = "aic7xxx",
      .proc_name        = "aic7xxx",
      .proc_info        = ahc_linux_proc_info,
      .info             = ahc_linux_info,
      .queuecommand           = ahc_linux_queue,
      .eh_abort_handler = ahc_linux_abort,
      .eh_device_reset_handler = ahc_linux_dev_reset,
      .eh_bus_reset_handler   = ahc_linux_bus_reset,
#if defined(__i386__)
      .bios_param       = ahc_linux_biosparam,
#endif
      .can_queue        = AHC_MAX_QUEUE,
      .this_id          = -1,
      .max_sectors            = 8192,
      .cmd_per_lun            = 2,
      .use_clustering         = ENABLE_CLUSTERING,
      .slave_alloc            = ahc_linux_slave_alloc,
      .slave_configure  = ahc_linux_slave_configure,
      .target_alloc           = ahc_linux_target_alloc,
      .target_destroy         = ahc_linux_target_destroy,
};

/**************************** Tasklet Handler *********************************/

/******************************** Macros **************************************/
#define BUILD_SCSIID(ahc, cmd)                                        \
      ((((cmd)->device->id << TID_SHIFT) & TID)                 \
      | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \
      | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB))

/******************************** Bus DMA *************************************/
int
ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent,
               bus_size_t alignment, bus_size_t boundary,
               dma_addr_t lowaddr, dma_addr_t highaddr,
               bus_dma_filter_t *filter, void *filterarg,
               bus_size_t maxsize, int nsegments,
               bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
{
      bus_dma_tag_t dmat;

      dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT);
      if (dmat == NULL)
            return (ENOMEM);

      /*
       * Linux is very simplistic about DMA memory.  For now don't
       * maintain all specification information.  Once Linux supplies
       * better facilities for doing these operations, or the
       * needs of this particular driver change, we might need to do
       * more here.
       */
      dmat->alignment = alignment;
      dmat->boundary = boundary;
      dmat->maxsize = maxsize;
      *ret_tag = dmat;
      return (0);
}

void
ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat)
{
      free(dmat, M_DEVBUF);
}

int
ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr,
             int flags, bus_dmamap_t *mapp)
{
      *vaddr = pci_alloc_consistent(ahc->dev_softc,
                              dmat->maxsize, mapp);
      if (*vaddr == NULL)
            return ENOMEM;
      return 0;
}

void
ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat,
            void* vaddr, bus_dmamap_t map)
{
      pci_free_consistent(ahc->dev_softc, dmat->maxsize,
                      vaddr, map);
}

int
ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map,
            void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
            void *cb_arg, int flags)
{
      /*
       * Assume for now that this will only be used during
       * initialization and not for per-transaction buffer mapping.
       */
      bus_dma_segment_t stack_sg;

      stack_sg.ds_addr = map;
      stack_sg.ds_len = dmat->maxsize;
      cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
      return (0);
}

void
ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
{
}

int
ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
{
      /* Nothing to do */
      return (0);
}

static void
ahc_linux_setup_tag_info_global(char *p)
{
      int tags, i, j;

      tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
      printf("Setting Global Tags= %d\n", tags);

      for (i = 0; i < ARRAY_SIZE(aic7xxx_tag_info); i++) {
            for (j = 0; j < AHC_NUM_TARGETS; j++) {
                  aic7xxx_tag_info[i].tag_commands[j] = tags;
            }
      }
}

static void
ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
{

      if ((instance >= 0) && (targ >= 0)
       && (instance < ARRAY_SIZE(aic7xxx_tag_info))
       && (targ < AHC_NUM_TARGETS)) {
            aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff;
            if (bootverbose)
                  printf("tag_info[%d:%d] = %d\n", instance, targ, value);
      }
}

static char *
ahc_parse_brace_option(char *opt_name, char *opt_arg, char *end, int depth,
                   void (*callback)(u_long, int, int, int32_t),
                   u_long callback_arg)
{
      char  *tok_end;
      char  *tok_end2;
      int      i;
      int      instance;
      int    targ;
      int    done;
      char   tok_list[] = {'.', ',', '{', '}', '\0'};

      /* All options use a ':' name/arg separator */
      if (*opt_arg != ':')
            return (opt_arg);
      opt_arg++;
      instance = -1;
      targ = -1;
      done = FALSE;
      /*
       * Restore separator that may be in
       * the middle of our option argument.
       */
      tok_end = strchr(opt_arg, '\0');
      if (tok_end < end)
            *tok_end = ',';
      while (!done) {
            switch (*opt_arg) {
            case '{':
                  if (instance == -1) {
                        instance = 0;
                  } else {
                        if (depth > 1) {
                              if (targ == -1)
                                    targ = 0;
                        } else {
                              printf("Malformed Option %s\n",
                                     opt_name);
                              done = TRUE;
                        }
                  }
                  opt_arg++;
                  break;
            case '}':
                  if (targ != -1)
                        targ = -1;
                  else if (instance != -1)
                        instance = -1;
                  opt_arg++;
                  break;
            case ',':
            case '.':
                  if (instance == -1)
                        done = TRUE;
                  else if (targ >= 0)
                        targ++;
                  else if (instance >= 0)
                        instance++;
                  opt_arg++;
                  break;
            case '\0':
                  done = TRUE;
                  break;
            default:
                  tok_end = end;
                  for (i = 0; tok_list[i]; i++) {
                        tok_end2 = strchr(opt_arg, tok_list[i]);
                        if ((tok_end2) && (tok_end2 < tok_end))
                              tok_end = tok_end2;
                  }
                  callback(callback_arg, instance, targ,
                         simple_strtol(opt_arg, NULL, 0));
                  opt_arg = tok_end;
                  break;
            }
      }
      return (opt_arg);
}

/*
 * Handle Linux boot parameters. This routine allows for assigning a value
 * to a parameter with a ':' between the parameter and the value.
 * ie. aic7xxx=stpwlev:1,extended
 */
static int
aic7xxx_setup(char *s)
{
      int   i, n;
      char   *p;
      char   *end;

      static const struct {
            const char *name;
            uint32_t *flag;
      } options[] = {
            { "extended", &aic7xxx_extended },
            { "no_reset", &aic7xxx_no_reset },
            { "verbose", &aic7xxx_verbose },
            { "allow_memio", &aic7xxx_allow_memio},
#ifdef AHC_DEBUG
            { "debug", &ahc_debug },
#endif
            { "periodic_otag", &aic7xxx_periodic_otag },
            { "pci_parity", &aic7xxx_pci_parity },
            { "seltime", &aic7xxx_seltime },
            { "tag_info", NULL },
            { "global_tag_depth", NULL },
            { "dv", NULL }
      };

      end = strchr(s, '\0');

      /*
       * XXX ia64 gcc isn't smart enough to know that ARRAY_SIZE
       * will never be 0 in this case.
       */
      n = 0;

      while ((p = strsep(&s, ",.")) != NULL) {
            if (*p == '\0')
                  continue;
            for (i = 0; i < ARRAY_SIZE(options); i++) {

                  n = strlen(options[i].name);
                  if (strncmp(options[i].name, p, n) == 0)
                        break;
            }
            if (i == ARRAY_SIZE(options))
                  continue;

            if (strncmp(p, "global_tag_depth", n) == 0) {
                  ahc_linux_setup_tag_info_global(p + n);
            } else if (strncmp(p, "tag_info", n) == 0) {
                  s = ahc_parse_brace_option("tag_info", p + n, end,
                      2, ahc_linux_setup_tag_info, 0);
            } else if (p[n] == ':') {
                  *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
            } else if (strncmp(p, "verbose", n) == 0) {
                  *(options[i].flag) = 1;
            } else {
                  *(options[i].flag) ^= 0xFFFFFFFF;
            }
      }
      return 1;
}

__setup("aic7xxx=", aic7xxx_setup);

uint32_t aic7xxx_verbose;

int
ahc_linux_register_host(struct ahc_softc *ahc, struct scsi_host_template *template)
{
      char  buf[80];
      struct      Scsi_Host *host;
      char  *new_name;
      u_long      s;
      int   retval;

      template->name = ahc->description;
      host = scsi_host_alloc(template, sizeof(struct ahc_softc *));
      if (host == NULL)
            return (ENOMEM);

      *((struct ahc_softc **)host->hostdata) = ahc;
      ahc->platform_data->host = host;
      host->can_queue = AHC_MAX_QUEUE;
      host->cmd_per_lun = 2;
      /* XXX No way to communicate the ID for multiple channels */
      host->this_id = ahc->our_id;
      host->irq = ahc->platform_data->irq;
      host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
      host->max_lun = AHC_NUM_LUNS;
      host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0;
      host->sg_tablesize = AHC_NSEG;
      ahc_lock(ahc, &s);
      ahc_set_unit(ahc, ahc_linux_unit++);
      ahc_unlock(ahc, &s);
      sprintf(buf, "scsi%d", host->host_no);
      new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT);
      if (new_name != NULL) {
            strcpy(new_name, buf);
            ahc_set_name(ahc, new_name);
      }
      host->unique_id = ahc->unit;
      ahc_linux_initialize_scsi_bus(ahc);
      ahc_intr_enable(ahc, TRUE);

      host->transportt = ahc_linux_transport_template;

      retval = scsi_add_host(host,
                  (ahc->dev_softc ? &ahc->dev_softc->dev : NULL));
      if (retval) {
            printk(KERN_WARNING "aic7xxx: scsi_add_host failed\n");
            scsi_host_put(host);
            return retval;
      }

      scsi_scan_host(host);
      return 0;
}

/*
 * Place the SCSI bus into a known state by either resetting it,
 * or forcing transfer negotiations on the next command to any
 * target.
 */
void
ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc)
{
      int i;
      int numtarg;
      unsigned long s;

      i = 0;
      numtarg = 0;

      ahc_lock(ahc, &s);

      if (aic7xxx_no_reset != 0)
            ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B);

      if ((ahc->flags & AHC_RESET_BUS_A) != 0)
            ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE);
      else
            numtarg = (ahc->features & AHC_WIDE) ? 16 : 8;

      if ((ahc->features & AHC_TWIN) != 0) {

            if ((ahc->flags & AHC_RESET_BUS_B) != 0) {
                  ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE);
            } else {
                  if (numtarg == 0)
                        i = 8;
                  numtarg += 8;
            }
      }

      /*
       * Force negotiation to async for all targets that
       * will not see an initial bus reset.
       */
      for (; i < numtarg; i++) {
            struct ahc_devinfo devinfo;
            struct ahc_initiator_tinfo *tinfo;
            struct ahc_tmode_tstate *tstate;
            u_int our_id;
            u_int target_id;
            char channel;

            channel = 'A';
            our_id = ahc->our_id;
            target_id = i;
            if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
                  channel = 'B';
                  our_id = ahc->our_id_b;
                  target_id = i % 8;
            }
            tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
                                  target_id, &tstate);
            ahc_compile_devinfo(&devinfo, our_id, target_id,
                            CAM_LUN_WILDCARD, channel, ROLE_INITIATOR);
            ahc_update_neg_request(ahc, &devinfo, tstate,
                               tinfo, AHC_NEG_ALWAYS);
      }
      ahc_unlock(ahc, &s);
      /* Give the bus some time to recover */
      if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) {
            ahc_linux_freeze_simq(ahc);
            msleep(AIC7XXX_RESET_DELAY);
            ahc_linux_release_simq(ahc);
      }
}

int
ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg)
{

      ahc->platform_data =
          malloc(sizeof(struct ahc_platform_data), M_DEVBUF, M_NOWAIT);
      if (ahc->platform_data == NULL)
            return (ENOMEM);
      memset(ahc->platform_data, 0, sizeof(struct ahc_platform_data));
      ahc->platform_data->irq = AHC_LINUX_NOIRQ;
      ahc_lockinit(ahc);
      ahc->seltime = (aic7xxx_seltime & 0x3) << 4;
      ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4;
      if (aic7xxx_pci_parity == 0)
            ahc->flags |= AHC_DISABLE_PCI_PERR;

      return (0);
}

void
ahc_platform_free(struct ahc_softc *ahc)
{
      struct scsi_target *starget;
      int i;

      if (ahc->platform_data != NULL) {
            /* destroy all of the device and target objects */
            for (i = 0; i < AHC_NUM_TARGETS; i++) {
                  starget = ahc->platform_data->starget[i];
                  if (starget != NULL) {
                        ahc->platform_data->starget[i] = NULL;
                  }
            }

            if (ahc->platform_data->irq != AHC_LINUX_NOIRQ)
                  free_irq(ahc->platform_data->irq, ahc);
            if (ahc->tag == BUS_SPACE_PIO
             && ahc->bsh.ioport != 0)
                  release_region(ahc->bsh.ioport, 256);
            if (ahc->tag == BUS_SPACE_MEMIO
             && ahc->bsh.maddr != NULL) {
                  iounmap(ahc->bsh.maddr);
                  release_mem_region(ahc->platform_data->mem_busaddr,
                                 0x1000);
            }

            if (ahc->platform_data->host)
                  scsi_host_put(ahc->platform_data->host);

            free(ahc->platform_data, M_DEVBUF);
      }
}

void
ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
{
      ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb),
                        SCB_GET_CHANNEL(ahc, scb),
                        SCB_GET_LUN(scb), SCB_LIST_NULL,
                        ROLE_UNKNOWN, CAM_REQUEUE_REQ);
}

void
ahc_platform_set_tags(struct ahc_softc *ahc, struct scsi_device *sdev,
                  struct ahc_devinfo *devinfo, ahc_queue_alg alg)
{
      struct ahc_linux_device *dev;
      int was_queuing;
      int now_queuing;

      if (sdev == NULL)
            return;
      dev = scsi_transport_device_data(sdev);

      was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED);
      switch (alg) {
      default:
      case AHC_QUEUE_NONE:
            now_queuing = 0;
            break; 
      case AHC_QUEUE_BASIC:
            now_queuing = AHC_DEV_Q_BASIC;
            break;
      case AHC_QUEUE_TAGGED:
            now_queuing = AHC_DEV_Q_TAGGED;
            break;
      }
      if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0
       && (was_queuing != now_queuing)
       && (dev->active != 0)) {
            dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY;
            dev->qfrozen++;
      }

      dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG);
      if (now_queuing) {
            u_int usertags;

            usertags = ahc_linux_user_tagdepth(ahc, devinfo);
            if (!was_queuing) {
                  /*
                   * Start out agressively and allow our
                   * dynamic queue depth algorithm to take
                   * care of the rest.
                   */
                  dev->maxtags = usertags;
                  dev->openings = dev->maxtags - dev->active;
            }
            if (dev->maxtags == 0) {
                  /*
                   * Queueing is disabled by the user.
                   */
                  dev->openings = 1;
            } else if (alg == AHC_QUEUE_TAGGED) {
                  dev->flags |= AHC_DEV_Q_TAGGED;
                  if (aic7xxx_periodic_otag != 0)
                        dev->flags |= AHC_DEV_PERIODIC_OTAG;
            } else
                  dev->flags |= AHC_DEV_Q_BASIC;
      } else {
            /* We can only have one opening. */
            dev->maxtags = 0;
            dev->openings =  1 - dev->active;
      }
      switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) {
      case AHC_DEV_Q_BASIC:
            scsi_set_tag_type(sdev, MSG_SIMPLE_TAG);
            scsi_activate_tcq(sdev, dev->openings + dev->active);
            break;
      case AHC_DEV_Q_TAGGED:
            scsi_set_tag_type(sdev, MSG_ORDERED_TAG);
            scsi_activate_tcq(sdev, dev->openings + dev->active);
            break;
      default:
            /*
             * We allow the OS to queue 2 untagged transactions to
             * us at any time even though we can only execute them
             * serially on the controller/device.  This should
             * remove some latency.
             */
            scsi_deactivate_tcq(sdev, 2);
            break;
      }
}

int
ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel,
                  int lun, u_int tag, role_t role, uint32_t status)
{
      return 0;
}

static u_int
ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
      static int warned_user;
      u_int tags;

      tags = 0;
      if ((ahc->user_discenable & devinfo->target_mask) != 0) {
            if (ahc->unit >= ARRAY_SIZE(aic7xxx_tag_info)) {
                  if (warned_user == 0) {

                        printf(KERN_WARNING
"aic7xxx: WARNING: Insufficient tag_info instances\n"
"aic7xxx: for installed controllers. Using defaults\n"
"aic7xxx: Please update the aic7xxx_tag_info array in\n"
"aic7xxx: the aic7xxx_osm..c source file.\n");
                        warned_user++;
                  }
                  tags = AHC_MAX_QUEUE;
            } else {
                  adapter_tag_info_t *tag_info;

                  tag_info = &aic7xxx_tag_info[ahc->unit];
                  tags = tag_info->tag_commands[devinfo->target_offset];
                  if (tags > AHC_MAX_QUEUE)
                        tags = AHC_MAX_QUEUE;
            }
      }
      return (tags);
}

/*
 * Determines the queue depth for a given device.
 */
static void
ahc_linux_device_queue_depth(struct scsi_device *sdev)
{
      struct      ahc_devinfo devinfo;
      u_int tags;
      struct ahc_softc *ahc = *((struct ahc_softc **)sdev->host->hostdata);

      ahc_compile_devinfo(&devinfo,
                      sdev->sdev_target->channel == 0
                    ? ahc->our_id : ahc->our_id_b,
                      sdev->sdev_target->id, sdev->lun,
                      sdev->sdev_target->channel == 0 ? 'A' : 'B',
                      ROLE_INITIATOR);
      tags = ahc_linux_user_tagdepth(ahc, &devinfo);
      if (tags != 0 && sdev->tagged_supported != 0) {

            ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_TAGGED);
            ahc_send_async(ahc, devinfo.channel, devinfo.target,
                         devinfo.lun, AC_TRANSFER_NEG);
            ahc_print_devinfo(ahc, &devinfo);
            printf("Tagged Queuing enabled.  Depth %d\n", tags);
      } else {
            ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_NONE);
            ahc_send_async(ahc, devinfo.channel, devinfo.target,
                         devinfo.lun, AC_TRANSFER_NEG);
      }
}

static int
ahc_linux_run_command(struct ahc_softc *ahc, struct ahc_linux_device *dev,
                  struct scsi_cmnd *cmd)
{
      struct       scb *scb;
      struct       hardware_scb *hscb;
      struct       ahc_initiator_tinfo *tinfo;
      struct       ahc_tmode_tstate *tstate;
      uint16_t mask;
      struct scb_tailq *untagged_q = NULL;
      int nseg;

      /*
       * Schedule us to run later.  The only reason we are not
       * running is because the whole controller Q is frozen.
       */
      if (ahc->platform_data->qfrozen != 0)
            return SCSI_MLQUEUE_HOST_BUSY;

      /*
       * We only allow one untagged transaction
       * per target in the initiator role unless
       * we are storing a full busy target *lun*
       * table in SCB space.
       */
      if (!blk_rq_tagged(cmd->request)
          && (ahc->features & AHC_SCB_BTT) == 0) {
            int target_offset;

            target_offset = cmd->device->id + cmd->device->channel * 8;
            untagged_q = &(ahc->untagged_queues[target_offset]);
            if (!TAILQ_EMPTY(untagged_q))
                  /* if we're already executing an untagged command
                   * we're busy to another */
                  return SCSI_MLQUEUE_DEVICE_BUSY;
      }

      nseg = scsi_dma_map(cmd);
      if (nseg < 0)
            return SCSI_MLQUEUE_HOST_BUSY;

      /*
       * Get an scb to use.
       */
      scb = ahc_get_scb(ahc);
      if (!scb) {
            scsi_dma_unmap(cmd);
            return SCSI_MLQUEUE_HOST_BUSY;
      }

      scb->io_ctx = cmd;
      scb->platform_data->dev = dev;
      hscb = scb->hscb;
      cmd->host_scribble = (char *)scb;

      /*
       * Fill out basics of the HSCB.
       */
      hscb->control = 0;
      hscb->scsiid = BUILD_SCSIID(ahc, cmd);
      hscb->lun = cmd->device->lun;
      mask = SCB_GET_TARGET_MASK(ahc, scb);
      tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb),
                            SCB_GET_OUR_ID(scb),
                            SCB_GET_TARGET(ahc, scb), &tstate);
      hscb->scsirate = tinfo->scsirate;
      hscb->scsioffset = tinfo->curr.offset;
      if ((tstate->ultraenb & mask) != 0)
            hscb->control |= ULTRAENB;
      
      if ((ahc->user_discenable & mask) != 0)
            hscb->control |= DISCENB;
      
      if ((tstate->auto_negotiate & mask) != 0) {
            scb->flags |= SCB_AUTO_NEGOTIATE;
            scb->hscb->control |= MK_MESSAGE;
      }

      if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) {
            int   msg_bytes;
            uint8_t tag_msgs[2];
            
            msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs);
            if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) {
                  hscb->control |= tag_msgs[0];
                  if (tag_msgs[0] == MSG_ORDERED_TASK)
                        dev->commands_since_idle_or_otag = 0;
            } else if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH
                        && (dev->flags & AHC_DEV_Q_TAGGED) != 0) {
                  hscb->control |= MSG_ORDERED_TASK;
                  dev->commands_since_idle_or_otag = 0;
            } else {
                  hscb->control |= MSG_SIMPLE_TASK;
            }
      }

      hscb->cdb_len = cmd->cmd_len;
      if (hscb->cdb_len <= 12) {
            memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len);
      } else {
            memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len);
            scb->flags |= SCB_CDB32_PTR;
      }

      scb->platform_data->xfer_len = 0;
      ahc_set_residual(scb, 0);
      ahc_set_sense_residual(scb, 0);
      scb->sg_count = 0;

      if (nseg > 0) {
            struct      ahc_dma_seg *sg;
            struct      scatterlist *cur_seg;
            int i;

            /* Copy the segments into the SG list. */
            sg = scb->sg_list;
            /*
             * The sg_count may be larger than nseg if
             * a transfer crosses a 32bit page.
             */
            scsi_for_each_sg(cmd, cur_seg, nseg, i) {
                  dma_addr_t addr;
                  bus_size_t len;
                  int consumed;

                  addr = sg_dma_address(cur_seg);
                  len = sg_dma_len(cur_seg);
                  consumed = ahc_linux_map_seg(ahc, scb,
                                         sg, addr, len);
                  sg += consumed;
                  scb->sg_count += consumed;
            }
            sg--;
            sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);

            /*
             * Reset the sg list pointer.
             */
            scb->hscb->sgptr =
                  ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
            
            /*
             * Copy the first SG into the "current"
             * data pointer area.
             */
            scb->hscb->dataptr = scb->sg_list->addr;
            scb->hscb->datacnt = scb->sg_list->len;
      } else {
            scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL);
            scb->hscb->dataptr = 0;
            scb->hscb->datacnt = 0;
            scb->sg_count = 0;
      }

      LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links);
      dev->openings--;
      dev->active++;
      dev->commands_issued++;
      if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0)
            dev->commands_since_idle_or_otag++;
      
      scb->flags |= SCB_ACTIVE;
      if (untagged_q) {
            TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe);
            scb->flags |= SCB_UNTAGGEDQ;
      }
      ahc_queue_scb(ahc, scb);
      return 0;
}

/*
 * SCSI controller interrupt handler.
 */
irqreturn_t
ahc_linux_isr(int irq, void *dev_id)
{
      struct      ahc_softc *ahc;
      u_long      flags;
      int   ours;

      ahc = (struct ahc_softc *) dev_id;
      ahc_lock(ahc, &flags); 
      ours = ahc_intr(ahc);
      ahc_unlock(ahc, &flags);
      return IRQ_RETVAL(ours);
}

void
ahc_platform_flushwork(struct ahc_softc *ahc)
{

}

void
ahc_send_async(struct ahc_softc *ahc, char channel,
             u_int target, u_int lun, ac_code code)
{
      switch (code) {
      case AC_TRANSFER_NEG:
      {
            char  buf[80];
            struct      scsi_target *starget;
            struct      ahc_linux_target *targ;
            struct      info_str info;
            struct      ahc_initiator_tinfo *tinfo;
            struct      ahc_tmode_tstate *tstate;
            int   target_offset;
            unsigned int target_ppr_options;

            BUG_ON(target == CAM_TARGET_WILDCARD);

            info.buffer = buf;
            info.length = sizeof(buf);
            info.offset = 0;
            info.pos = 0;
            tinfo = ahc_fetch_transinfo(ahc, channel,
                                    channel == 'A' ? ahc->our_id
                                                 : ahc->our_id_b,
                                    target, &tstate);

            /*
             * Don't bother reporting results while
             * negotiations are still pending.
             */
            if (tinfo->curr.period != tinfo->goal.period
             || tinfo->curr.width != tinfo->goal.width
             || tinfo->curr.offset != tinfo->goal.offset
             || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
                  if (bootverbose == 0)
                        break;

            /*
             * Don't bother reporting results that
             * are identical to those last reported.
             */
            target_offset = target;
            if (channel == 'B')
                  target_offset += 8;
            starget = ahc->platform_data->starget[target_offset];
            if (starget == NULL)
                  break;
            targ = scsi_transport_target_data(starget);

            target_ppr_options =
                  (spi_dt(starget) ? MSG_EXT_PPR_DT_REQ : 0)
                  + (spi_qas(starget) ? MSG_EXT_PPR_QAS_REQ : 0)
                  + (spi_iu(starget) ?  MSG_EXT_PPR_IU_REQ : 0);

            if (tinfo->curr.period == spi_period(starget)
                && tinfo->curr.width == spi_width(starget)
                && tinfo->curr.offset == spi_offset(starget)
             && tinfo->curr.ppr_options == target_ppr_options)
                  if (bootverbose == 0)
                        break;

            spi_period(starget) = tinfo->curr.period;
            spi_width(starget) = tinfo->curr.width;
            spi_offset(starget) = tinfo->curr.offset;
            spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ ? 1 : 0;
            spi_qas(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ ? 1 : 0;
            spi_iu(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ ? 1 : 0;
            spi_display_xfer_agreement(starget);
            break;
      }
        case AC_SENT_BDR:
      {
            WARN_ON(lun != CAM_LUN_WILDCARD);
            scsi_report_device_reset(ahc->platform_data->host,
                               channel - 'A', target);
            break;
      }
        case AC_BUS_RESET:
            if (ahc->platform_data->host != NULL) {
                  scsi_report_bus_reset(ahc->platform_data->host,
                                    channel - 'A');
            }
                break;
        default:
                panic("ahc_send_async: Unexpected async event");
        }
}

/*
 * Calls the higher level scsi done function and frees the scb.
 */
void
ahc_done(struct ahc_softc *ahc, struct scb *scb)
{
      struct scsi_cmnd *cmd;
      struct         ahc_linux_device *dev;

      LIST_REMOVE(scb, pending_links);
      if ((scb->flags & SCB_UNTAGGEDQ) != 0) {
            struct scb_tailq *untagged_q;
            int target_offset;

            target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
            untagged_q = &(ahc->untagged_queues[target_offset]);
            TAILQ_REMOVE(untagged_q, scb, links.tqe);
            BUG_ON(!TAILQ_EMPTY(untagged_q));
      } else if ((scb->flags & SCB_ACTIVE) == 0) {
            /*
             * Transactions aborted from the untagged queue may
             * not have been dispatched to the controller, so
             * only check the SCB_ACTIVE flag for tagged transactions.
             */
            printf("SCB %d done'd twice\n", scb->hscb->tag);
            ahc_dump_card_state(ahc);
            panic("Stopping for safety");
      }
      cmd = scb->io_ctx;
      dev = scb->platform_data->dev;
      dev->active--;
      dev->openings++;
      if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
            cmd->result &= ~(CAM_DEV_QFRZN << 16);
            dev->qfrozen--;
      }
      ahc_linux_unmap_scb(ahc, scb);

      /*
       * Guard against stale sense data.
       * The Linux mid-layer assumes that sense
       * was retrieved anytime the first byte of
       * the sense buffer looks "sane".
       */
      cmd->sense_buffer[0] = 0;
      if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) {
            uint32_t amount_xferred;

            amount_xferred =
                ahc_get_transfer_length(scb) - ahc_get_residual(scb);
            if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
#ifdef AHC_DEBUG
                  if ((ahc_debug & AHC_SHOW_MISC) != 0) {
                        ahc_print_path(ahc, scb);
                        printf("Set CAM_UNCOR_PARITY\n");
                  }
#endif
                  ahc_set_transaction_status(scb, CAM_UNCOR_PARITY);
#ifdef AHC_REPORT_UNDERFLOWS
            /*
             * This code is disabled by default as some
             * clients of the SCSI system do not properly
             * initialize the underflow parameter.  This
             * results in spurious termination of commands
             * that complete as expected (e.g. underflow is
             * allowed as command can return variable amounts
             * of data.
             */
            } else if (amount_xferred < scb->io_ctx->underflow) {
                  u_int i;

                  ahc_print_path(ahc, scb);
                  printf("CDB:");
                  for (i = 0; i < scb->io_ctx->cmd_len; i++)
                        printf(" 0x%x", scb->io_ctx->cmnd[i]);
                  printf("\n");
                  ahc_print_path(ahc, scb);
                  printf("Saw underflow (%ld of %ld bytes). "
                         "Treated as error\n",
                        ahc_get_residual(scb),
                        ahc_get_transfer_length(scb));
                  ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
#endif
            } else {
                  ahc_set_transaction_status(scb, CAM_REQ_CMP);
            }
      } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
            ahc_linux_handle_scsi_status(ahc, cmd->device, scb);
      }

      if (dev->openings == 1
       && ahc_get_transaction_status(scb) == CAM_REQ_CMP
       && ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL)
            dev->tag_success_count++;
      /*
       * Some devices deal with temporary internal resource
       * shortages by returning queue full.  When the queue
       * full occurrs, we throttle back.  Slowly try to get
       * back to our previous queue depth.
       */
      if ((dev->openings + dev->active) < dev->maxtags
       && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) {
            dev->tag_success_count = 0;
            dev->openings++;
      }

      if (dev->active == 0)
            dev->commands_since_idle_or_otag = 0;

      if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
            printf("Recovery SCB completes\n");
            if (ahc_get_transaction_status(scb) == CAM_BDR_SENT
             || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED)
                  ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);

            if (ahc->platform_data->eh_done)
                  complete(ahc->platform_data->eh_done);
      }

      ahc_free_scb(ahc, scb);
      ahc_linux_queue_cmd_complete(ahc, cmd);
}

static void
ahc_linux_handle_scsi_status(struct ahc_softc *ahc,
                       struct scsi_device *sdev, struct scb *scb)
{
      struct      ahc_devinfo devinfo;
      struct ahc_linux_device *dev = scsi_transport_device_data(sdev);

      ahc_compile_devinfo(&devinfo,
                      ahc->our_id,
                      sdev->sdev_target->id, sdev->lun,
                      sdev->sdev_target->channel == 0 ? 'A' : 'B',
                      ROLE_INITIATOR);
      
      /*
       * We don't currently trust the mid-layer to
       * properly deal with queue full or busy.  So,
       * when one occurs, we tell the mid-layer to
       * unconditionally requeue the command to us
       * so that we can retry it ourselves.  We also
       * implement our own throttling mechanism so
       * we don't clobber the device with too many
       * commands.
       */
      switch (ahc_get_scsi_status(scb)) {
      default:
            break;
      case SCSI_STATUS_CHECK_COND:
      case SCSI_STATUS_CMD_TERMINATED:
      {
            struct scsi_cmnd *cmd;

            /*
             * Copy sense information to the OS's cmd
             * structure if it is available.
             */
            cmd = scb->io_ctx;
            if (scb->flags & SCB_SENSE) {
                  u_int sense_size;

                  sense_size = min(sizeof(struct scsi_sense_data)
                               - ahc_get_sense_residual(scb),
                               (u_long)SCSI_SENSE_BUFFERSIZE);
                  memcpy(cmd->sense_buffer,
                         ahc_get_sense_buf(ahc, scb), sense_size);
                  if (sense_size < SCSI_SENSE_BUFFERSIZE)
                        memset(&cmd->sense_buffer[sense_size], 0,
                               SCSI_SENSE_BUFFERSIZE - sense_size);
                  cmd->result |= (DRIVER_SENSE << 24);
#ifdef AHC_DEBUG
                  if (ahc_debug & AHC_SHOW_SENSE) {
                        int i;

                        printf("Copied %d bytes of sense data:",
                               sense_size);
                        for (i = 0; i < sense_size; i++) {
                              if ((i & 0xF) == 0)
                                    printf("\n");
                              printf("0x%x ", cmd->sense_buffer[i]);
                        }
                        printf("\n");
                  }
#endif
            }
            break;
      }
      case SCSI_STATUS_QUEUE_FULL:
      {
            /*
             * By the time the core driver has returned this
             * command, all other commands that were queued
             * to us but not the device have been returned.
             * This ensures that dev->active is equal to
             * the number of commands actually queued to
             * the device.
             */
            dev->tag_success_count = 0;
            if (dev->active != 0) {
                  /*
                   * Drop our opening count to the number
                   * of commands currently outstanding.
                   */
                  dev->openings = 0;
/*
                  ahc_print_path(ahc, scb);
                  printf("Dropping tag count to %d\n", dev->active);
 */
                  if (dev->active == dev->tags_on_last_queuefull) {

                        dev->last_queuefull_same_count++;
                        /*
                         * If we repeatedly see a queue full
                         * at the same queue depth, this
                         * device has a fixed number of tag
                         * slots.  Lock in this tag depth
                         * so we stop seeing queue fulls from
                         * this device.
                         */
                        if (dev->last_queuefull_same_count
                         == AHC_LOCK_TAGS_COUNT) {
                              dev->maxtags = dev->active;
                              ahc_print_path(ahc, scb);
                              printf("Locking max tag count at %d\n",
                                     dev->active);
                        }
                  } else {
                        dev->tags_on_last_queuefull = dev->active;
                        dev->last_queuefull_same_count = 0;
                  }
                  ahc_set_transaction_status(scb, CAM_REQUEUE_REQ);
                  ahc_set_scsi_status(scb, SCSI_STATUS_OK);
                  ahc_platform_set_tags(ahc, sdev, &devinfo,
                             (dev->flags & AHC_DEV_Q_BASIC)
                           ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
                  break;
            }
            /*
             * Drop down to a single opening, and treat this
             * as if the target returned BUSY SCSI status.
             */
            dev->openings = 1;
            ahc_set_scsi_status(scb, SCSI_STATUS_BUSY);
            ahc_platform_set_tags(ahc, sdev, &devinfo,
                       (dev->flags & AHC_DEV_Q_BASIC)
                     ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
            break;
      }
      }
}

static void
ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, struct scsi_cmnd *cmd)
{
      /*
       * Map CAM error codes into Linux Error codes.  We
       * avoid the conversion so that the DV code has the
       * full error information available when making
       * state change decisions.
       */
      {
            u_int new_status;

            switch (ahc_cmd_get_transaction_status(cmd)) {
            case CAM_REQ_INPROG:
            case CAM_REQ_CMP:
            case CAM_SCSI_STATUS_ERROR:
                  new_status = DID_OK;
                  break;
            case CAM_REQ_ABORTED:
                  new_status = DID_ABORT;
                  break;
            case CAM_BUSY:
                  new_status = DID_BUS_BUSY;
                  break;
            case CAM_REQ_INVALID:
            case CAM_PATH_INVALID:
                  new_status = DID_BAD_TARGET;
                  break;
            case CAM_SEL_TIMEOUT:
                  new_status = DID_NO_CONNECT;
                  break;
            case CAM_SCSI_BUS_RESET:
            case CAM_BDR_SENT:
                  new_status = DID_RESET;
                  break;
            case CAM_UNCOR_PARITY:
                  new_status = DID_PARITY;
                  break;
            case CAM_CMD_TIMEOUT:
                  new_status = DID_TIME_OUT;
                  break;
            case CAM_UA_ABORT:
            case CAM_REQ_CMP_ERR:
            case CAM_AUTOSENSE_FAIL:
            case CAM_NO_HBA:
            case CAM_DATA_RUN_ERR:
            case CAM_UNEXP_BUSFREE:
            case CAM_SEQUENCE_FAIL:
            case CAM_CCB_LEN_ERR:
            case CAM_PROVIDE_FAIL:
            case CAM_REQ_TERMIO:
            case CAM_UNREC_HBA_ERROR:
            case CAM_REQ_TOO_BIG:
                  new_status = DID_ERROR;
                  break;
            case CAM_REQUEUE_REQ:
                  new_status = DID_REQUEUE;
                  break;
            default:
                  /* We should never get here */
                  new_status = DID_ERROR;
                  break;
            }

            ahc_cmd_set_transaction_status(cmd, new_status);
      }

      cmd->scsi_done(cmd);
}

static void
ahc_linux_freeze_simq(struct ahc_softc *ahc)
{
      unsigned long s;

      ahc_lock(ahc, &s);
      ahc->platform_data->qfrozen++;
      if (ahc->platform_data->qfrozen == 1) {
            scsi_block_requests(ahc->platform_data->host);

            /* XXX What about Twin channels? */
            ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
                              CAM_LUN_WILDCARD, SCB_LIST_NULL,
                              ROLE_INITIATOR, CAM_REQUEUE_REQ);
      }
      ahc_unlock(ahc, &s);
}

static void
ahc_linux_release_simq(struct ahc_softc *ahc)
{
      u_long s;
      int    unblock_reqs;

      unblock_reqs = 0;
      ahc_lock(ahc, &s);
      if (ahc->platform_data->qfrozen > 0)
            ahc->platform_data->qfrozen--;
      if (ahc->platform_data->qfrozen == 0)
            unblock_reqs = 1;
      ahc_unlock(ahc, &s);
      /*
       * There is still a race here.  The mid-layer
       * should keep its own freeze count and use
       * a bottom half handler to run the queues
       * so we can unblock with our own lock held.
       */
      if (unblock_reqs)
            scsi_unblock_requests(ahc->platform_data->host);
}

static int
ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag)
{
      struct ahc_softc *ahc;
      struct ahc_linux_device *dev;
      struct scb *pending_scb;
      u_int  saved_scbptr;
      u_int  active_scb_index;
      u_int  last_phase;
      u_int  saved_scsiid;
      u_int  cdb_byte;
      int    retval;
      int    was_paused;
      int    paused;
      int    wait;
      int    disconnected;
      unsigned long flags;

      pending_scb = NULL;
      paused = FALSE;
      wait = FALSE;
      ahc = *(struct ahc_softc **)cmd->device->host->hostdata;

      scmd_printk(KERN_INFO, cmd, "Attempting to queue a%s message\n",
             flag == SCB_ABORT ? "n ABORT" : " TARGET RESET");

      printf("CDB:");
      for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
            printf(" 0x%x", cmd->cmnd[cdb_byte]);
      printf("\n");

      ahc_lock(ahc, &flags);

      /*
       * First determine if we currently own this command.
       * Start by searching the device queue.  If not found
       * there, check the pending_scb list.  If not found
       * at all, and the system wanted us to just abort the
       * command, return success.
       */
      dev = scsi_transport_device_data(cmd->device);

      if (dev == NULL) {
            /*
             * No target device for this command exists,
             * so we must not still own the command.
             */
            printf("%s:%d:%d:%d: Is not an active device\n",
                   ahc_name(ahc), cmd->device->channel, cmd->device->id,
                   cmd->device->lun);
            retval = SUCCESS;
            goto no_cmd;
      }

      if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0
       && ahc_search_untagged_queues(ahc, cmd, cmd->device->id,
                               cmd->device->channel + 'A',
                               cmd->device->lun,
                               CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) {
            printf("%s:%d:%d:%d: Command found on untagged queue\n",
                   ahc_name(ahc), cmd->device->channel, cmd->device->id,
                   cmd->device->lun);
            retval = SUCCESS;
            goto done;
      }

      /*
       * See if we can find a matching cmd in the pending list.
       */
      LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
            if (pending_scb->io_ctx == cmd)
                  break;
      }

      if (pending_scb == NULL && flag == SCB_DEVICE_RESET) {

            /* Any SCB for this device will do for a target reset */
            LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
                  if (ahc_match_scb(ahc, pending_scb, scmd_id(cmd),
                                scmd_channel(cmd) + 'A',
                                CAM_LUN_WILDCARD,
                                SCB_LIST_NULL, ROLE_INITIATOR))
                        break;
            }
      }

      if (pending_scb == NULL) {
            scmd_printk(KERN_INFO, cmd, "Command not found\n");
            goto no_cmd;
      }

      if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
            /*
             * We can't queue two recovery actions using the same SCB
             */
            retval = FAILED;
            goto  done;
      }

      /*
       * Ensure that the card doesn't do anything
       * behind our back and that we didn't "just" miss
       * an interrupt that would affect this cmd.
       */
      was_paused = ahc_is_paused(ahc);
      ahc_pause_and_flushwork(ahc);
      paused = TRUE;

      if ((pending_scb->flags & SCB_ACTIVE) == 0) {
            scmd_printk(KERN_INFO, cmd, "Command already completed\n");
            goto no_cmd;
      }

      printf("%s: At time of recovery, card was %spaused\n",
             ahc_name(ahc), was_paused ? "" : "not ");
      ahc_dump_card_state(ahc);

      disconnected = TRUE;
      if (flag == SCB_ABORT) {
            if (ahc_search_qinfifo(ahc, cmd->device->id,
                               cmd->device->channel + 'A',
                               cmd->device->lun,
                               pending_scb->hscb->tag,
                               ROLE_INITIATOR, CAM_REQ_ABORTED,
                               SEARCH_COMPLETE) > 0) {
                  printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
                         ahc_name(ahc), cmd->device->channel,
                              cmd->device->id, cmd->device->lun);
                  retval = SUCCESS;
                  goto done;
            }
      } else if (ahc_search_qinfifo(ahc, cmd->device->id,
                              cmd->device->channel + 'A',
                              cmd->device->lun, pending_scb->hscb->tag,
                              ROLE_INITIATOR, /*status*/0,
                              SEARCH_COUNT) > 0) {
            disconnected = FALSE;
      }

      if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
            struct scb *bus_scb;

            bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG));
            if (bus_scb == pending_scb)
                  disconnected = FALSE;
            else if (flag != SCB_ABORT
                  && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid
                  && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb))
                  disconnected = FALSE;
      }

      /*
       * At this point, pending_scb is the scb associated with the
       * passed in command.  That command is currently active on the
       * bus, is in the disconnected state, or we're hoping to find
       * a command for the same target active on the bus to abuse to
       * send a BDR.  Queue the appropriate message based on which of
       * these states we are in.
       */
      last_phase = ahc_inb(ahc, LASTPHASE);
      saved_scbptr = ahc_inb(ahc, SCBPTR);
      active_scb_index = ahc_inb(ahc, SCB_TAG);
      saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
      if (last_phase != P_BUSFREE
       && (pending_scb->hscb->tag == active_scb_index
        || (flag == SCB_DEVICE_RESET
         && SCSIID_TARGET(ahc, saved_scsiid) == scmd_id(cmd)))) {

            /*
             * We're active on the bus, so assert ATN
             * and hope that the target responds.
             */
            pending_scb = ahc_lookup_scb(ahc, active_scb_index);
            pending_scb->flags |= SCB_RECOVERY_SCB|flag;
            ahc_outb(ahc, MSG_OUT, HOST_MSG);
            ahc_outb(ahc, SCSISIGO, last_phase|ATNO);
            scmd_printk(KERN_INFO, cmd, "Device is active, asserting ATN\n");
            wait = TRUE;
      } else if (disconnected) {

            /*
             * Actually re-queue this SCB in an attempt
             * to select the device before it reconnects.
             * In either case (selection or reselection),
             * we will now issue the approprate message
             * to the timed-out device.
             *
             * Set the MK_MESSAGE control bit indicating
             * that we desire to send a message.  We
             * also set the disconnected flag since
             * in the paging case there is no guarantee
             * that our SCB control byte matches the
             * version on the card.  We don't want the
             * sequencer to abort the command thinking
             * an unsolicited reselection occurred.
             */
            pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
            pending_scb->flags |= SCB_RECOVERY_SCB|flag;

            /*
             * Remove any cached copy of this SCB in the
             * disconnected list in preparation for the
             * queuing of our abort SCB.  We use the
             * same element in the SCB, SCB_NEXT, for
             * both the qinfifo and the disconnected list.
             */
            ahc_search_disc_list(ahc, cmd->device->id,
                             cmd->device->channel + 'A',
                             cmd->device->lun, pending_scb->hscb->tag,
                             /*stop_on_first*/TRUE,
                             /*remove*/TRUE,
                             /*save_state*/FALSE);

            /*
             * In the non-paging case, the sequencer will
             * never re-reference the in-core SCB.
             * To make sure we are notified during
             * reslection, set the MK_MESSAGE flag in
             * the card's copy of the SCB.
             */
            if ((ahc->flags & AHC_PAGESCBS) == 0) {
                  ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag);
                  ahc_outb(ahc, SCB_CONTROL,
                         ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE);
            }

            /*
             * Clear out any entries in the QINFIFO first
             * so we are the next SCB for this target
             * to run.
             */
            ahc_search_qinfifo(ahc, cmd->device->id,
                           cmd->device->channel + 'A',
                           cmd->device->lun, SCB_LIST_NULL,
                           ROLE_INITIATOR, CAM_REQUEUE_REQ,
                           SEARCH_COMPLETE);
            ahc_qinfifo_requeue_tail(ahc, pending_scb);
            ahc_outb(ahc, SCBPTR, saved_scbptr);
            ahc_print_path(ahc, pending_scb);
            printf("Device is disconnected, re-queuing SCB\n");
            wait = TRUE;
      } else {
            scmd_printk(KERN_INFO, cmd, "Unable to deliver message\n");
            retval = FAILED;
            goto done;
      }

no_cmd:
      /*
       * Our assumption is that if we don't have the command, no
       * recovery action was required, so we return success.  Again,
       * the semantics of the mid-layer recovery engine are not
       * well defined, so this may change in time.
       */
      retval = SUCCESS;
done:
      if (paused)
            ahc_unpause(ahc);
      if (wait) {
            DECLARE_COMPLETION_ONSTACK(done);

            ahc->platform_data->eh_done = &done;
            ahc_unlock(ahc, &flags);

            printf("Recovery code sleeping\n");
            if (!wait_for_completion_timeout(&done, 5 * HZ)) {
                  ahc_lock(ahc, &flags);
                  ahc->platform_data->eh_done = NULL;
                  ahc_unlock(ahc, &flags);

                  printf("Timer Expired\n");
                  retval = FAILED;
            }
            printf("Recovery code awake\n");
      } else
            ahc_unlock(ahc, &flags);
      return (retval);
}

void
ahc_platform_dump_card_state(struct ahc_softc *ahc)
{
}

static void ahc_linux_set_width(struct scsi_target *starget, int width)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
      struct ahc_devinfo devinfo;
      unsigned long flags;

      ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
                      starget->channel + 'A', ROLE_INITIATOR);
      ahc_lock(ahc, &flags);
      ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE);
      ahc_unlock(ahc, &flags);
}

static void ahc_linux_set_period(struct scsi_target *starget, int period)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
      struct ahc_tmode_tstate *tstate;
      struct ahc_initiator_tinfo *tinfo 
            = ahc_fetch_transinfo(ahc,
                              starget->channel + 'A',
                              shost->this_id, starget->id, &tstate);
      struct ahc_devinfo devinfo;
      unsigned int ppr_options = tinfo->goal.ppr_options;
      unsigned long flags;
      unsigned long offset = tinfo->goal.offset;
      const struct ahc_syncrate *syncrate;

      if (offset == 0)
            offset = MAX_OFFSET;

      if (period < 9)
            period = 9; /* 12.5ns is our minimum */
      if (period == 9) {
            if (spi_max_width(starget))
                  ppr_options |= MSG_EXT_PPR_DT_REQ;
            else
                  /* need wide for DT and need DT for 12.5 ns */
                  period = 10;
      }

      ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
                      starget->channel + 'A', ROLE_INITIATOR);

      /* all PPR requests apart from QAS require wide transfers */
      if (ppr_options & ~MSG_EXT_PPR_QAS_REQ) {
            if (spi_width(starget) == 0)
                  ppr_options &= MSG_EXT_PPR_QAS_REQ;
      }

      syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
      ahc_lock(ahc, &flags);
      ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
                   ppr_options, AHC_TRANS_GOAL, FALSE);
      ahc_unlock(ahc, &flags);
}

static void ahc_linux_set_offset(struct scsi_target *starget, int offset)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
      struct ahc_tmode_tstate *tstate;
      struct ahc_initiator_tinfo *tinfo 
            = ahc_fetch_transinfo(ahc,
                              starget->channel + 'A',
                              shost->this_id, starget->id, &tstate);
      struct ahc_devinfo devinfo;
      unsigned int ppr_options = 0;
      unsigned int period = 0;
      unsigned long flags;
      const struct ahc_syncrate *syncrate = NULL;

      ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
                      starget->channel + 'A', ROLE_INITIATOR);
      if (offset != 0) {
            syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
            period = tinfo->goal.period;
            ppr_options = tinfo->goal.ppr_options;
      }
      ahc_lock(ahc, &flags);
      ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
                   ppr_options, AHC_TRANS_GOAL, FALSE);
      ahc_unlock(ahc, &flags);
}

static void ahc_linux_set_dt(struct scsi_target *starget, int dt)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
      struct ahc_tmode_tstate *tstate;
      struct ahc_initiator_tinfo *tinfo 
            = ahc_fetch_transinfo(ahc,
                              starget->channel + 'A',
                              shost->this_id, starget->id, &tstate);
      struct ahc_devinfo devinfo;
      unsigned int ppr_options = tinfo->goal.ppr_options
            & ~MSG_EXT_PPR_DT_REQ;
      unsigned int period = tinfo->goal.period;
      unsigned int width = tinfo->goal.width;
      unsigned long flags;
      const struct ahc_syncrate *syncrate;

      if (dt && spi_max_width(starget)) {
            ppr_options |= MSG_EXT_PPR_DT_REQ;
            if (!width)
                  ahc_linux_set_width(starget, 1);
      } else if (period == 9)
            period = 10;      /* if resetting DT, period must be >= 25ns */

      ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
                      starget->channel + 'A', ROLE_INITIATOR);
      syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,AHC_SYNCRATE_DT);
      ahc_lock(ahc, &flags);
      ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
                   ppr_options, AHC_TRANS_GOAL, FALSE);
      ahc_unlock(ahc, &flags);
}

#if 0
/* FIXME: This code claims to support IU and QAS.  However, the actual
 * sequencer code and aic7xxx_core have no support for these parameters and
 * will get into a bad state if they're negotiated.  Do not enable this
 * unless you know what you're doing */
static void ahc_linux_set_qas(struct scsi_target *starget, int qas)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
      struct ahc_tmode_tstate *tstate;
      struct ahc_initiator_tinfo *tinfo 
            = ahc_fetch_transinfo(ahc,
                              starget->channel + 'A',
                              shost->this_id, starget->id, &tstate);
      struct ahc_devinfo devinfo;
      unsigned int ppr_options = tinfo->goal.ppr_options
            & ~MSG_EXT_PPR_QAS_REQ;
      unsigned int period = tinfo->goal.period;
      unsigned long flags;
      struct ahc_syncrate *syncrate;

      if (qas)
            ppr_options |= MSG_EXT_PPR_QAS_REQ;

      ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
                      starget->channel + 'A', ROLE_INITIATOR);
      syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
      ahc_lock(ahc, &flags);
      ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
                   ppr_options, AHC_TRANS_GOAL, FALSE);
      ahc_unlock(ahc, &flags);
}

static void ahc_linux_set_iu(struct scsi_target *starget, int iu)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
      struct ahc_tmode_tstate *tstate;
      struct ahc_initiator_tinfo *tinfo 
            = ahc_fetch_transinfo(ahc,
                              starget->channel + 'A',
                              shost->this_id, starget->id, &tstate);
      struct ahc_devinfo devinfo;
      unsigned int ppr_options = tinfo->goal.ppr_options
            & ~MSG_EXT_PPR_IU_REQ;
      unsigned int period = tinfo->goal.period;
      unsigned long flags;
      struct ahc_syncrate *syncrate;

      if (iu)
            ppr_options |= MSG_EXT_PPR_IU_REQ;

      ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
                      starget->channel + 'A', ROLE_INITIATOR);
      syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
      ahc_lock(ahc, &flags);
      ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
                   ppr_options, AHC_TRANS_GOAL, FALSE);
      ahc_unlock(ahc, &flags);
}
#endif

static void ahc_linux_get_signalling(struct Scsi_Host *shost)
{
      struct ahc_softc *ahc = *(struct ahc_softc **)shost->hostdata;
      unsigned long flags;
      u8 mode;

      if (!(ahc->features & AHC_ULTRA2)) {
            /* non-LVD chipset, may not have SBLKCTL reg */
            spi_signalling(shost) = 
                  ahc->features & AHC_HVD ?
                  SPI_SIGNAL_HVD :
                  SPI_SIGNAL_SE;
            return;
      }

      ahc_lock(ahc, &flags);
      ahc_pause(ahc);
      mode = ahc_inb(ahc, SBLKCTL);
      ahc_unpause(ahc);
      ahc_unlock(ahc, &flags);

      if (mode & ENAB40)
            spi_signalling(shost) = SPI_SIGNAL_LVD;
      else if (mode & ENAB20)
            spi_signalling(shost) = SPI_SIGNAL_SE;
      else
            spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
}

static struct spi_function_template ahc_linux_transport_functions = {
      .set_offset = ahc_linux_set_offset,
      .show_offset      = 1,
      .set_period = ahc_linux_set_period,
      .show_period      = 1,
      .set_width  = ahc_linux_set_width,
      .show_width = 1,
      .set_dt           = ahc_linux_set_dt,
      .show_dt    = 1,
#if 0
      .set_iu           = ahc_linux_set_iu,
      .show_iu    = 1,
      .set_qas    = ahc_linux_set_qas,
      .show_qas   = 1,
#endif
      .get_signalling   = ahc_linux_get_signalling,
};



static int __init
ahc_linux_init(void)
{
      /*
       * If we've been passed any parameters, process them now.
       */
      if (aic7xxx)
            aic7xxx_setup(aic7xxx);

      ahc_linux_transport_template =
            spi_attach_transport(&ahc_linux_transport_functions);
      if (!ahc_linux_transport_template)
            return -ENODEV;

      scsi_transport_reserve_device(ahc_linux_transport_template,
                              sizeof(struct ahc_linux_device));

      ahc_linux_pci_init();
      ahc_linux_eisa_init();
      return 0;
}

static void
ahc_linux_exit(void)
{
      ahc_linux_pci_exit();
      ahc_linux_eisa_exit();
      spi_release_transport(ahc_linux_transport_template);
}

module_init(ahc_linux_init);
module_exit(ahc_linux_exit);

Generated by  Doxygen 1.6.0   Back to index