Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

atl1c_main.c

/*
 * Copyright(c) 2008 - 2009 Atheros Corporation. All rights reserved.
 *
 * Derived from Intel e1000 driver
 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */

#include "atl1c.h"

#define ATL1C_DRV_VERSION "1.0.0.1-NAPI"
char atl1c_driver_name[] = "atl1c";
char atl1c_driver_version[] = ATL1C_DRV_VERSION;
#define PCI_DEVICE_ID_ATTANSIC_L2C      0x1062
#define PCI_DEVICE_ID_ATTANSIC_L1C      0x1063
/*
 * atl1c_pci_tbl - PCI Device ID Table
 *
 * Wildcard entries (PCI_ANY_ID) should come last
 * Last entry must be all 0s
 *
 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 *   Class, Class Mask, private data (not used) }
 */
static struct pci_device_id atl1c_pci_tbl[] = {
      {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1C)},
      {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2C)},
      /* required last entry */
      { 0 }
};
MODULE_DEVICE_TABLE(pci, atl1c_pci_tbl);

MODULE_AUTHOR("Jie Yang <jie.yang@atheros.com>");
MODULE_DESCRIPTION("Atheros 1000M Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(ATL1C_DRV_VERSION);

static int atl1c_stop_mac(struct atl1c_hw *hw);
static void atl1c_enable_rx_ctrl(struct atl1c_hw *hw);
static void atl1c_enable_tx_ctrl(struct atl1c_hw *hw);
static void atl1c_disable_l0s_l1(struct atl1c_hw *hw);
static void atl1c_set_aspm(struct atl1c_hw *hw, bool linkup);
static void atl1c_setup_mac_ctrl(struct atl1c_adapter *adapter);
static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter, u8 que,
               int *work_done, int work_to_do);

static const u16 atl1c_pay_load_size[] = {
      128, 256, 512, 1024, 2048, 4096,
};

static const u16 atl1c_rfd_prod_idx_regs[AT_MAX_RECEIVE_QUEUE] =
{
      REG_MB_RFD0_PROD_IDX,
      REG_MB_RFD1_PROD_IDX,
      REG_MB_RFD2_PROD_IDX,
      REG_MB_RFD3_PROD_IDX
};

static const u16 atl1c_rfd_addr_lo_regs[AT_MAX_RECEIVE_QUEUE] =
{
      REG_RFD0_HEAD_ADDR_LO,
      REG_RFD1_HEAD_ADDR_LO,
      REG_RFD2_HEAD_ADDR_LO,
      REG_RFD3_HEAD_ADDR_LO
};

static const u16 atl1c_rrd_addr_lo_regs[AT_MAX_RECEIVE_QUEUE] =
{
      REG_RRD0_HEAD_ADDR_LO,
      REG_RRD1_HEAD_ADDR_LO,
      REG_RRD2_HEAD_ADDR_LO,
      REG_RRD3_HEAD_ADDR_LO
};

static const u32 atl1c_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
      NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;

/*
 * atl1c_init_pcie - init PCIE module
 */
static void atl1c_reset_pcie(struct atl1c_hw *hw, u32 flag)
{
      u32 data;
      u32 pci_cmd;
      struct pci_dev *pdev = hw->adapter->pdev;

      AT_READ_REG(hw, PCI_COMMAND, &pci_cmd);
      pci_cmd &= ~PCI_COMMAND_INTX_DISABLE;
      pci_cmd |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
            PCI_COMMAND_IO);
      AT_WRITE_REG(hw, PCI_COMMAND, pci_cmd);

      /*
       * Clear any PowerSaveing Settings
       */
      pci_enable_wake(pdev, PCI_D3hot, 0);
      pci_enable_wake(pdev, PCI_D3cold, 0);

      /*
       * Mask some pcie error bits
       */
      AT_READ_REG(hw, REG_PCIE_UC_SEVERITY, &data);
      data &= ~PCIE_UC_SERVRITY_DLP;
      data &= ~PCIE_UC_SERVRITY_FCP;
      AT_WRITE_REG(hw, REG_PCIE_UC_SEVERITY, data);

      if (flag & ATL1C_PCIE_L0S_L1_DISABLE)
            atl1c_disable_l0s_l1(hw);
      if (flag & ATL1C_PCIE_PHY_RESET)
            AT_WRITE_REG(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
      else
            AT_WRITE_REG(hw, REG_GPHY_CTRL,
                  GPHY_CTRL_DEFAULT | GPHY_CTRL_EXT_RESET);

      msleep(1);
}

/*
 * atl1c_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 */
static inline void atl1c_irq_enable(struct atl1c_adapter *adapter)
{
      if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
            AT_WRITE_REG(&adapter->hw, REG_ISR, 0x7FFFFFFF);
            AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask);
            AT_WRITE_FLUSH(&adapter->hw);
      }
}

/*
 * atl1c_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 */
static inline void atl1c_irq_disable(struct atl1c_adapter *adapter)
{
      atomic_inc(&adapter->irq_sem);
      AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
      AT_WRITE_FLUSH(&adapter->hw);
      synchronize_irq(adapter->pdev->irq);
}

/*
 * atl1c_irq_reset - reset interrupt confiure on the NIC
 * @adapter: board private structure
 */
static inline void atl1c_irq_reset(struct atl1c_adapter *adapter)
{
      atomic_set(&adapter->irq_sem, 1);
      atl1c_irq_enable(adapter);
}

/*
 * atl1c_wait_until_idle - wait up to AT_HW_MAX_IDLE_DELAY reads
 * of the idle status register until the device is actually idle
 */
static u32 atl1c_wait_until_idle(struct atl1c_hw *hw)
{
      int timeout;
      u32 data;

      for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
            AT_READ_REG(hw, REG_IDLE_STATUS, &data);
            if ((data & IDLE_STATUS_MASK) == 0)
                  return 0;
            msleep(1);
      }
      return data;
}

/*
 * atl1c_phy_config - Timer Call-back
 * @data: pointer to netdev cast into an unsigned long
 */
static void atl1c_phy_config(unsigned long data)
{
      struct atl1c_adapter *adapter = (struct atl1c_adapter *) data;
      struct atl1c_hw *hw = &adapter->hw;
      unsigned long flags;

      spin_lock_irqsave(&adapter->mdio_lock, flags);
      atl1c_restart_autoneg(hw);
      spin_unlock_irqrestore(&adapter->mdio_lock, flags);
}

void atl1c_reinit_locked(struct atl1c_adapter *adapter)
{

      WARN_ON(in_interrupt());
      atl1c_down(adapter);
      atl1c_up(adapter);
      clear_bit(__AT_RESETTING, &adapter->flags);
}

static void atl1c_reset_task(struct work_struct *work)
{
      struct atl1c_adapter *adapter;
      struct net_device *netdev;

      adapter = container_of(work, struct atl1c_adapter, reset_task);
      netdev = adapter->netdev;

      netif_device_detach(netdev);
      atl1c_down(adapter);
      atl1c_up(adapter);
      netif_device_attach(netdev);
}

static void atl1c_check_link_status(struct atl1c_adapter *adapter)
{
      struct atl1c_hw *hw = &adapter->hw;
      struct net_device *netdev = adapter->netdev;
      struct pci_dev    *pdev   = adapter->pdev;
      int err;
      unsigned long flags;
      u16 speed, duplex, phy_data;

      spin_lock_irqsave(&adapter->mdio_lock, flags);
      /* MII_BMSR must read twise */
      atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
      atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
      spin_unlock_irqrestore(&adapter->mdio_lock, flags);

      if ((phy_data & BMSR_LSTATUS) == 0) {
            /* link down */
            if (netif_carrier_ok(netdev)) {
                  hw->hibernate = true;
                  if (atl1c_stop_mac(hw) != 0)
                        if (netif_msg_hw(adapter))
                              dev_warn(&pdev->dev,
                                    "stop mac failed\n");
                  atl1c_set_aspm(hw, false);
            }
            netif_carrier_off(netdev);
      } else {
            /* Link Up */
            hw->hibernate = false;
            spin_lock_irqsave(&adapter->mdio_lock, flags);
            err = atl1c_get_speed_and_duplex(hw, &speed, &duplex);
            spin_unlock_irqrestore(&adapter->mdio_lock, flags);
            if (unlikely(err))
                  return;
            /* link result is our setting */
            if (adapter->link_speed != speed ||
                adapter->link_duplex != duplex) {
                  adapter->link_speed  = speed;
                  adapter->link_duplex = duplex;
                  atl1c_set_aspm(hw, true);
                  atl1c_enable_tx_ctrl(hw);
                  atl1c_enable_rx_ctrl(hw);
                  atl1c_setup_mac_ctrl(adapter);
                  if (netif_msg_link(adapter))
                        dev_info(&pdev->dev,
                              "%s: %s NIC Link is Up<%d Mbps %s>\n",
                              atl1c_driver_name, netdev->name,
                              adapter->link_speed,
                              adapter->link_duplex == FULL_DUPLEX ?
                              "Full Duplex" : "Half Duplex");
            }
            if (!netif_carrier_ok(netdev))
                  netif_carrier_on(netdev);
      }
}

/*
 * atl1c_link_chg_task - deal with link change event Out of interrupt context
 * @netdev: network interface device structure
 */
static void atl1c_link_chg_task(struct work_struct *work)
{
      struct atl1c_adapter *adapter;

      adapter = container_of(work, struct atl1c_adapter, link_chg_task);
      atl1c_check_link_status(adapter);
}

static void atl1c_link_chg_event(struct atl1c_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;
      struct pci_dev    *pdev   = adapter->pdev;
      u16 phy_data;
      u16 link_up;

      spin_lock(&adapter->mdio_lock);
      atl1c_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
      atl1c_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
      spin_unlock(&adapter->mdio_lock);
      link_up = phy_data & BMSR_LSTATUS;
      /* notify upper layer link down ASAP */
      if (!link_up) {
            if (netif_carrier_ok(netdev)) {
                  /* old link state: Up */
                  netif_carrier_off(netdev);
                  if (netif_msg_link(adapter))
                        dev_info(&pdev->dev,
                              "%s: %s NIC Link is Down\n",
                              atl1c_driver_name, netdev->name);
                  adapter->link_speed = SPEED_0;
            }
      }
      schedule_work(&adapter->link_chg_task);
}

static void atl1c_del_timer(struct atl1c_adapter *adapter)
{
      del_timer_sync(&adapter->phy_config_timer);
}

static void atl1c_cancel_work(struct atl1c_adapter *adapter)
{
      cancel_work_sync(&adapter->reset_task);
      cancel_work_sync(&adapter->link_chg_task);
}

/*
 * atl1c_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 */
static void atl1c_tx_timeout(struct net_device *netdev)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);

      /* Do the reset outside of interrupt context */
      schedule_work(&adapter->reset_task);
}

/*
 * atl1c_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 */
static void atl1c_set_multi(struct net_device *netdev)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      struct atl1c_hw *hw = &adapter->hw;
      struct dev_mc_list *mc_ptr;
      u32 mac_ctrl_data;
      u32 hash_value;

      /* Check for Promiscuous and All Multicast modes */
      AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl_data);

      if (netdev->flags & IFF_PROMISC) {
            mac_ctrl_data |= MAC_CTRL_PROMIS_EN;
      } else if (netdev->flags & IFF_ALLMULTI) {
            mac_ctrl_data |= MAC_CTRL_MC_ALL_EN;
            mac_ctrl_data &= ~MAC_CTRL_PROMIS_EN;
      } else {
            mac_ctrl_data &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
      }

      AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);

      /* clear the old settings from the multicast hash table */
      AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
      AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);

      /* comoute mc addresses' hash value ,and put it into hash table */
      for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
            hash_value = atl1c_hash_mc_addr(hw, mc_ptr->dmi_addr);
            atl1c_hash_set(hw, hash_value);
      }
}

static void atl1c_vlan_rx_register(struct net_device *netdev,
                           struct vlan_group *grp)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      struct pci_dev *pdev = adapter->pdev;
      u32 mac_ctrl_data = 0;

      if (netif_msg_pktdata(adapter))
            dev_dbg(&pdev->dev, "atl1c_vlan_rx_register\n");

      atl1c_irq_disable(adapter);

      adapter->vlgrp = grp;
      AT_READ_REG(&adapter->hw, REG_MAC_CTRL, &mac_ctrl_data);

      if (grp) {
            /* enable VLAN tag insert/strip */
            mac_ctrl_data |= MAC_CTRL_RMV_VLAN;
      } else {
            /* disable VLAN tag insert/strip */
            mac_ctrl_data &= ~MAC_CTRL_RMV_VLAN;
      }

      AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data);
      atl1c_irq_enable(adapter);
}

static void atl1c_restore_vlan(struct atl1c_adapter *adapter)
{
      struct pci_dev *pdev = adapter->pdev;

      if (netif_msg_pktdata(adapter))
            dev_dbg(&pdev->dev, "atl1c_restore_vlan !");
      atl1c_vlan_rx_register(adapter->netdev, adapter->vlgrp);
}
/*
 * atl1c_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 */
static int atl1c_set_mac_addr(struct net_device *netdev, void *p)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      struct sockaddr *addr = p;

      if (!is_valid_ether_addr(addr->sa_data))
            return -EADDRNOTAVAIL;

      if (netif_running(netdev))
            return -EBUSY;

      memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
      memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);

      atl1c_hw_set_mac_addr(&adapter->hw);

      return 0;
}

static void atl1c_set_rxbufsize(struct atl1c_adapter *adapter,
                        struct net_device *dev)
{
      int mtu = dev->mtu;

      adapter->rx_buffer_len = mtu > AT_RX_BUF_SIZE ?
            roundup(mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN, 8) : AT_RX_BUF_SIZE;
}
/*
 * atl1c_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 */
static int atl1c_change_mtu(struct net_device *netdev, int new_mtu)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      int old_mtu   = netdev->mtu;
      int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;

      if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
                  (max_frame > MAX_JUMBO_FRAME_SIZE)) {
            if (netif_msg_link(adapter))
                  dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
            return -EINVAL;
      }
      /* set MTU */
      if (old_mtu != new_mtu && netif_running(netdev)) {
            while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
                  msleep(1);
            netdev->mtu = new_mtu;
            adapter->hw.max_frame_size = new_mtu;
            atl1c_set_rxbufsize(adapter, netdev);
            atl1c_down(adapter);
            atl1c_up(adapter);
            clear_bit(__AT_RESETTING, &adapter->flags);
            if (adapter->hw.ctrl_flags & ATL1C_FPGA_VERSION) {
                  u32 phy_data;

                  AT_READ_REG(&adapter->hw, 0x1414, &phy_data);
                  phy_data |= 0x10000000;
                  AT_WRITE_REG(&adapter->hw, 0x1414, phy_data);
            }

      }
      return 0;
}

/*
 *  caller should hold mdio_lock
 */
static int atl1c_mdio_read(struct net_device *netdev, int phy_id, int reg_num)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      u16 result;

      atl1c_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result);
      return result;
}

static void atl1c_mdio_write(struct net_device *netdev, int phy_id,
                       int reg_num, int val)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);

      atl1c_write_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, val);
}

/*
 * atl1c_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 */
static int atl1c_mii_ioctl(struct net_device *netdev,
                     struct ifreq *ifr, int cmd)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      struct pci_dev *pdev = adapter->pdev;
      struct mii_ioctl_data *data = if_mii(ifr);
      unsigned long flags;
      int retval = 0;

      if (!netif_running(netdev))
            return -EINVAL;

      spin_lock_irqsave(&adapter->mdio_lock, flags);
      switch (cmd) {
      case SIOCGMIIPHY:
            data->phy_id = 0;
            break;

      case SIOCGMIIREG:
            if (!capable(CAP_NET_ADMIN)) {
                  retval = -EPERM;
                  goto out;
            }
            if (atl1c_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
                            &data->val_out)) {
                  retval = -EIO;
                  goto out;
            }
            break;

      case SIOCSMIIREG:
            if (!capable(CAP_NET_ADMIN)) {
                  retval = -EPERM;
                  goto out;
            }
            if (data->reg_num & ~(0x1F)) {
                  retval = -EFAULT;
                  goto out;
            }

            dev_dbg(&pdev->dev, "<atl1c_mii_ioctl> write %x %x",
                        data->reg_num, data->val_in);
            if (atl1c_write_phy_reg(&adapter->hw,
                             data->reg_num, data->val_in)) {
                  retval = -EIO;
                  goto out;
            }
            break;

      default:
            retval = -EOPNOTSUPP;
            break;
      }
out:
      spin_unlock_irqrestore(&adapter->mdio_lock, flags);
      return retval;
}

/*
 * atl1c_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 */
static int atl1c_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
      switch (cmd) {
      case SIOCGMIIPHY:
      case SIOCGMIIREG:
      case SIOCSMIIREG:
            return atl1c_mii_ioctl(netdev, ifr, cmd);
      default:
            return -EOPNOTSUPP;
      }
}

/*
 * atl1c_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 */
static int __devinit atl1c_alloc_queues(struct atl1c_adapter *adapter)
{
      return 0;
}

static void atl1c_set_mac_type(struct atl1c_hw *hw)
{
      switch (hw->device_id) {
      case PCI_DEVICE_ID_ATTANSIC_L2C:
            hw->nic_type = athr_l2c;
            break;

      case PCI_DEVICE_ID_ATTANSIC_L1C:
            hw->nic_type = athr_l1c;
            break;

      default:
            break;
      }
}

static int atl1c_setup_mac_funcs(struct atl1c_hw *hw)
{
      u32 phy_status_data;
      u32 link_ctrl_data;

      atl1c_set_mac_type(hw);
      AT_READ_REG(hw, REG_PHY_STATUS, &phy_status_data);
      AT_READ_REG(hw, REG_LINK_CTRL, &link_ctrl_data);

      hw->ctrl_flags = ATL1C_INTR_CLEAR_ON_READ |
                   ATL1C_INTR_MODRT_ENABLE  |
                   ATL1C_RX_IPV6_CHKSUM     |
                   ATL1C_TXQ_MODE_ENHANCE;
      if (link_ctrl_data & LINK_CTRL_L0S_EN)
            hw->ctrl_flags |= ATL1C_ASPM_L0S_SUPPORT;
      if (link_ctrl_data & LINK_CTRL_L1_EN)
            hw->ctrl_flags |= ATL1C_ASPM_L1_SUPPORT;

      if (hw->nic_type == athr_l1c) {
            hw->ctrl_flags |= ATL1C_ASPM_CTRL_MON;
            hw->ctrl_flags |= ATL1C_LINK_CAP_1000M;
      }
      return 0;
}
/*
 * atl1c_sw_init - Initialize general software structures (struct atl1c_adapter)
 * @adapter: board private structure to initialize
 *
 * atl1c_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 */
static int __devinit atl1c_sw_init(struct atl1c_adapter *adapter)
{
      struct atl1c_hw *hw   = &adapter->hw;
      struct pci_dev    *pdev = adapter->pdev;

      adapter->wol = 0;
      adapter->link_speed = SPEED_0;
      adapter->link_duplex = FULL_DUPLEX;
      adapter->num_rx_queues = AT_DEF_RECEIVE_QUEUE;
      adapter->tpd_ring[0].count = 1024;
      adapter->rfd_ring[0].count = 512;

      hw->vendor_id = pdev->vendor;
      hw->device_id = pdev->device;
      hw->subsystem_vendor_id = pdev->subsystem_vendor;
      hw->subsystem_id = pdev->subsystem_device;

      /* before link up, we assume hibernate is true */
      hw->hibernate = true;
      hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
      if (atl1c_setup_mac_funcs(hw) != 0) {
            dev_err(&pdev->dev, "set mac function pointers failed\n");
            return -1;
      }
      hw->intr_mask = IMR_NORMAL_MASK;
      hw->phy_configured = false;
      hw->preamble_len = 7;
      hw->max_frame_size = adapter->netdev->mtu;
      if (adapter->num_rx_queues < 2) {
            hw->rss_type = atl1c_rss_disable;
            hw->rss_mode = atl1c_rss_mode_disable;
      } else {
            hw->rss_type = atl1c_rss_ipv4;
            hw->rss_mode = atl1c_rss_mul_que_mul_int;
            hw->rss_hash_bits = 16;
      }
      hw->autoneg_advertised = ADVERTISED_Autoneg;
      hw->indirect_tab = 0xE4E4E4E4;
      hw->base_cpu = 0;

      hw->ict = 50000;        /* 100ms */
      hw->smb_timer = 200000;       /* 400ms */
      hw->cmb_tpd = 4;
      hw->cmb_tx_timer = 1;         /* 2 us  */
      hw->rx_imt = 200;
      hw->tx_imt = 1000;

      hw->tpd_burst = 5;
      hw->rfd_burst = 8;
      hw->dma_order = atl1c_dma_ord_out;
      hw->dmar_block = atl1c_dma_req_1024;
      hw->dmaw_block = atl1c_dma_req_1024;
      hw->dmar_dly_cnt = 15;
      hw->dmaw_dly_cnt = 4;

      if (atl1c_alloc_queues(adapter)) {
            dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
            return -ENOMEM;
      }
      /* TODO */
      atl1c_set_rxbufsize(adapter, adapter->netdev);
      atomic_set(&adapter->irq_sem, 1);
      spin_lock_init(&adapter->mdio_lock);
      spin_lock_init(&adapter->tx_lock);
      set_bit(__AT_DOWN, &adapter->flags);

      return 0;
}

/*
 * atl1c_clean_tx_ring - Free Tx-skb
 * @adapter: board private structure
 */
static void atl1c_clean_tx_ring(struct atl1c_adapter *adapter,
                        enum atl1c_trans_queue type)
{
      struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
      struct atl1c_buffer *buffer_info;
      struct pci_dev *pdev = adapter->pdev;
      u16 index, ring_count;

      ring_count = tpd_ring->count;
      for (index = 0; index < ring_count; index++) {
            buffer_info = &tpd_ring->buffer_info[index];
            if (buffer_info->state == ATL1_BUFFER_FREE)
                  continue;
            if (buffer_info->dma)
                  pci_unmap_single(pdev, buffer_info->dma,
                              buffer_info->length,
                              PCI_DMA_TODEVICE);
            if (buffer_info->skb)
                  dev_kfree_skb(buffer_info->skb);
            buffer_info->dma = 0;
            buffer_info->skb = NULL;
            buffer_info->state = ATL1_BUFFER_FREE;
      }

      /* Zero out Tx-buffers */
      memset(tpd_ring->desc, 0, sizeof(struct atl1c_tpd_desc) *
                        ring_count);
      atomic_set(&tpd_ring->next_to_clean, 0);
      tpd_ring->next_to_use = 0;
}

/*
 * atl1c_clean_rx_ring - Free rx-reservation skbs
 * @adapter: board private structure
 */
static void atl1c_clean_rx_ring(struct atl1c_adapter *adapter)
{
      struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring;
      struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring;
      struct atl1c_buffer *buffer_info;
      struct pci_dev *pdev = adapter->pdev;
      int i, j;

      for (i = 0; i < adapter->num_rx_queues; i++) {
            for (j = 0; j < rfd_ring[i].count; j++) {
                  buffer_info = &rfd_ring[i].buffer_info[j];
                  if (buffer_info->state == ATL1_BUFFER_FREE)
                        continue;
                  if (buffer_info->dma)
                        pci_unmap_single(pdev, buffer_info->dma,
                                    buffer_info->length,
                                    PCI_DMA_FROMDEVICE);
                  if (buffer_info->skb)
                        dev_kfree_skb(buffer_info->skb);
                  buffer_info->state = ATL1_BUFFER_FREE;
                  buffer_info->skb = NULL;
            }
            /* zero out the descriptor ring */
            memset(rfd_ring[i].desc, 0, rfd_ring[i].size);
            rfd_ring[i].next_to_clean = 0;
            rfd_ring[i].next_to_use = 0;
            rrd_ring[i].next_to_use = 0;
            rrd_ring[i].next_to_clean = 0;
      }
}

/*
 * Read / Write Ptr Initialize:
 */
static void atl1c_init_ring_ptrs(struct atl1c_adapter *adapter)
{
      struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring;
      struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring;
      struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring;
      struct atl1c_buffer *buffer_info;
      int i, j;

      for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) {
            tpd_ring[i].next_to_use = 0;
            atomic_set(&tpd_ring[i].next_to_clean, 0);
            buffer_info = tpd_ring[i].buffer_info;
            for (j = 0; j < tpd_ring->count; j++)
                  buffer_info[i].state = ATL1_BUFFER_FREE;
      }
      for (i = 0; i < adapter->num_rx_queues; i++) {
            rfd_ring[i].next_to_use = 0;
            rfd_ring[i].next_to_clean = 0;
            rrd_ring[i].next_to_use = 0;
            rrd_ring[i].next_to_clean = 0;
            for (j = 0; j < rfd_ring[i].count; j++) {
                  buffer_info = &rfd_ring[i].buffer_info[j];
                  buffer_info->state = ATL1_BUFFER_FREE;
            }
      }
}

/*
 * atl1c_free_ring_resources - Free Tx / RX descriptor Resources
 * @adapter: board private structure
 *
 * Free all transmit software resources
 */
static void atl1c_free_ring_resources(struct atl1c_adapter *adapter)
{
      struct pci_dev *pdev = adapter->pdev;

      pci_free_consistent(pdev, adapter->ring_header.size,
                              adapter->ring_header.desc,
                              adapter->ring_header.dma);
      adapter->ring_header.desc = NULL;

      /* Note: just free tdp_ring.buffer_info,
      *  it contain rfd_ring.buffer_info, do not double free */
      if (adapter->tpd_ring[0].buffer_info) {
            kfree(adapter->tpd_ring[0].buffer_info);
            adapter->tpd_ring[0].buffer_info = NULL;
      }
}

/*
 * atl1c_setup_mem_resources - allocate Tx / RX descriptor resources
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 */
static int atl1c_setup_ring_resources(struct atl1c_adapter *adapter)
{
      struct pci_dev *pdev = adapter->pdev;
      struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring;
      struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring;
      struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring;
      struct atl1c_ring_header *ring_header = &adapter->ring_header;
      int num_rx_queues = adapter->num_rx_queues;
      int size;
      int i;
      int count = 0;
      int rx_desc_count = 0;
      u32 offset = 0;

      rrd_ring[0].count = rfd_ring[0].count;
      for (i = 1; i < AT_MAX_TRANSMIT_QUEUE; i++)
            tpd_ring[i].count = tpd_ring[0].count;

      for (i = 1; i < adapter->num_rx_queues; i++)
            rfd_ring[i].count = rrd_ring[i].count = rfd_ring[0].count;

      /* 2 tpd queue, one high priority queue,
       * another normal priority queue */
      size = sizeof(struct atl1c_buffer) * (tpd_ring->count * 2 +
            rfd_ring->count * num_rx_queues);
      tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
      if (unlikely(!tpd_ring->buffer_info)) {
            dev_err(&pdev->dev, "kzalloc failed, size = %d\n",
                  size);
            goto err_nomem;
      }
      for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) {
            tpd_ring[i].buffer_info =
                  (struct atl1c_buffer *) (tpd_ring->buffer_info + count);
            count += tpd_ring[i].count;
      }

      for (i = 0; i < num_rx_queues; i++) {
            rfd_ring[i].buffer_info =
                  (struct atl1c_buffer *) (tpd_ring->buffer_info + count);
            count += rfd_ring[i].count;
            rx_desc_count += rfd_ring[i].count;
      }
      /*
       * real ring DMA buffer
       * each ring/block may need up to 8 bytes for alignment, hence the
       * additional bytes tacked onto the end.
       */
      ring_header->size = size =
            sizeof(struct atl1c_tpd_desc) * tpd_ring->count * 2 +
            sizeof(struct atl1c_rx_free_desc) * rx_desc_count +
            sizeof(struct atl1c_recv_ret_status) * rx_desc_count +
            sizeof(struct atl1c_hw_stats) +
            8 * 4 + 8 * 2 * num_rx_queues;

      ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
                        &ring_header->dma);
      if (unlikely(!ring_header->desc)) {
            dev_err(&pdev->dev, "pci_alloc_consistend failed\n");
            goto err_nomem;
      }
      memset(ring_header->desc, 0, ring_header->size);
      /* init TPD ring */

      tpd_ring[0].dma = roundup(ring_header->dma, 8);
      offset = tpd_ring[0].dma - ring_header->dma;
      for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) {
            tpd_ring[i].dma = ring_header->dma + offset;
            tpd_ring[i].desc = (u8 *) ring_header->desc + offset;
            tpd_ring[i].size =
                  sizeof(struct atl1c_tpd_desc) * tpd_ring[i].count;
            offset += roundup(tpd_ring[i].size, 8);
      }
      /* init RFD ring */
      for (i = 0; i < num_rx_queues; i++) {
            rfd_ring[i].dma = ring_header->dma + offset;
            rfd_ring[i].desc = (u8 *) ring_header->desc + offset;
            rfd_ring[i].size = sizeof(struct atl1c_rx_free_desc) *
                        rfd_ring[i].count;
            offset += roundup(rfd_ring[i].size, 8);
      }

      /* init RRD ring */
      for (i = 0; i < num_rx_queues; i++) {
            rrd_ring[i].dma = ring_header->dma + offset;
            rrd_ring[i].desc = (u8 *) ring_header->desc + offset;
            rrd_ring[i].size = sizeof(struct atl1c_recv_ret_status) *
                        rrd_ring[i].count;
            offset += roundup(rrd_ring[i].size, 8);
      }

      adapter->smb.dma = ring_header->dma + offset;
      adapter->smb.smb = (u8 *)ring_header->desc + offset;
      return 0;

err_nomem:
      kfree(tpd_ring->buffer_info);
      return -ENOMEM;
}

static void atl1c_configure_des_ring(struct atl1c_adapter *adapter)
{
      struct atl1c_hw *hw = &adapter->hw;
      struct atl1c_rfd_ring *rfd_ring = (struct atl1c_rfd_ring *)
                        adapter->rfd_ring;
      struct atl1c_rrd_ring *rrd_ring = (struct atl1c_rrd_ring *)
                        adapter->rrd_ring;
      struct atl1c_tpd_ring *tpd_ring = (struct atl1c_tpd_ring *)
                        adapter->tpd_ring;
      struct atl1c_cmb *cmb = (struct atl1c_cmb *) &adapter->cmb;
      struct atl1c_smb *smb = (struct atl1c_smb *) &adapter->smb;
      int i;

      /* TPD */
      AT_WRITE_REG(hw, REG_TX_BASE_ADDR_HI,
                  (u32)((tpd_ring[atl1c_trans_normal].dma &
                        AT_DMA_HI_ADDR_MASK) >> 32));
      /* just enable normal priority TX queue */
      AT_WRITE_REG(hw, REG_NTPD_HEAD_ADDR_LO,
                  (u32)(tpd_ring[atl1c_trans_normal].dma &
                        AT_DMA_LO_ADDR_MASK));
      AT_WRITE_REG(hw, REG_HTPD_HEAD_ADDR_LO,
                  (u32)(tpd_ring[atl1c_trans_high].dma &
                        AT_DMA_LO_ADDR_MASK));
      AT_WRITE_REG(hw, REG_TPD_RING_SIZE,
                  (u32)(tpd_ring[0].count & TPD_RING_SIZE_MASK));


      /* RFD */
      AT_WRITE_REG(hw, REG_RX_BASE_ADDR_HI,
                  (u32)((rfd_ring[0].dma & AT_DMA_HI_ADDR_MASK) >> 32));
      for (i = 0; i < adapter->num_rx_queues; i++)
            AT_WRITE_REG(hw, atl1c_rfd_addr_lo_regs[i],
                  (u32)(rfd_ring[i].dma & AT_DMA_LO_ADDR_MASK));

      AT_WRITE_REG(hw, REG_RFD_RING_SIZE,
                  rfd_ring[0].count & RFD_RING_SIZE_MASK);
      AT_WRITE_REG(hw, REG_RX_BUF_SIZE,
                  adapter->rx_buffer_len & RX_BUF_SIZE_MASK);

      /* RRD */
      for (i = 0; i < adapter->num_rx_queues; i++)
            AT_WRITE_REG(hw, atl1c_rrd_addr_lo_regs[i],
                  (u32)(rrd_ring[i].dma & AT_DMA_LO_ADDR_MASK));
      AT_WRITE_REG(hw, REG_RRD_RING_SIZE,
                  (rrd_ring[0].count & RRD_RING_SIZE_MASK));

      /* CMB */
      AT_WRITE_REG(hw, REG_CMB_BASE_ADDR_LO, cmb->dma & AT_DMA_LO_ADDR_MASK);

      /* SMB */
      AT_WRITE_REG(hw, REG_SMB_BASE_ADDR_HI,
                  (u32)((smb->dma & AT_DMA_HI_ADDR_MASK) >> 32));
      AT_WRITE_REG(hw, REG_SMB_BASE_ADDR_LO,
                  (u32)(smb->dma & AT_DMA_LO_ADDR_MASK));
      /* Load all of base address above */
      AT_WRITE_REG(hw, REG_LOAD_PTR, 1);
}

static void atl1c_configure_tx(struct atl1c_adapter *adapter)
{
      struct atl1c_hw *hw = &adapter->hw;
      u32 dev_ctrl_data;
      u32 max_pay_load;
      u16 tx_offload_thresh;
      u32 txq_ctrl_data;
      u32 extra_size = 0;     /* Jumbo frame threshold in QWORD unit */

      extra_size = ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN;
      tx_offload_thresh = MAX_TX_OFFLOAD_THRESH;
      AT_WRITE_REG(hw, REG_TX_TSO_OFFLOAD_THRESH,
            (tx_offload_thresh >> 3) & TX_TSO_OFFLOAD_THRESH_MASK);
      AT_READ_REG(hw, REG_DEVICE_CTRL, &dev_ctrl_data);
      max_pay_load  = (dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT) &
                  DEVICE_CTRL_MAX_PAYLOAD_MASK;
      hw->dmaw_block = min(max_pay_load, hw->dmaw_block);
      max_pay_load  = (dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT) &
                  DEVICE_CTRL_MAX_RREQ_SZ_MASK;
      hw->dmar_block = min(max_pay_load, hw->dmar_block);

      txq_ctrl_data = (hw->tpd_burst & TXQ_NUM_TPD_BURST_MASK) <<
                  TXQ_NUM_TPD_BURST_SHIFT;
      if (hw->ctrl_flags & ATL1C_TXQ_MODE_ENHANCE)
            txq_ctrl_data |= TXQ_CTRL_ENH_MODE;
      txq_ctrl_data |= (atl1c_pay_load_size[hw->dmar_block] &
                  TXQ_TXF_BURST_NUM_MASK) << TXQ_TXF_BURST_NUM_SHIFT;

      AT_WRITE_REG(hw, REG_TXQ_CTRL, txq_ctrl_data);
}

static void atl1c_configure_rx(struct atl1c_adapter *adapter)
{
      struct atl1c_hw *hw = &adapter->hw;
      u32 rxq_ctrl_data;

      rxq_ctrl_data = (hw->rfd_burst & RXQ_RFD_BURST_NUM_MASK) <<
                  RXQ_RFD_BURST_NUM_SHIFT;

      if (hw->ctrl_flags & ATL1C_RX_IPV6_CHKSUM)
            rxq_ctrl_data |= IPV6_CHKSUM_CTRL_EN;
      if (hw->rss_type == atl1c_rss_ipv4)
            rxq_ctrl_data |= RSS_HASH_IPV4;
      if (hw->rss_type == atl1c_rss_ipv4_tcp)
            rxq_ctrl_data |= RSS_HASH_IPV4_TCP;
      if (hw->rss_type == atl1c_rss_ipv6)
            rxq_ctrl_data |= RSS_HASH_IPV6;
      if (hw->rss_type == atl1c_rss_ipv6_tcp)
            rxq_ctrl_data |= RSS_HASH_IPV6_TCP;
      if (hw->rss_type != atl1c_rss_disable)
            rxq_ctrl_data |= RRS_HASH_CTRL_EN;

      rxq_ctrl_data |= (hw->rss_mode & RSS_MODE_MASK) <<
                  RSS_MODE_SHIFT;
      rxq_ctrl_data |= (hw->rss_hash_bits & RSS_HASH_BITS_MASK) <<
                  RSS_HASH_BITS_SHIFT;
      if (hw->ctrl_flags & ATL1C_ASPM_CTRL_MON)
            rxq_ctrl_data |= (ASPM_THRUPUT_LIMIT_100M &
                  ASPM_THRUPUT_LIMIT_MASK) << ASPM_THRUPUT_LIMIT_SHIFT;

      AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data);
}

static void atl1c_configure_rss(struct atl1c_adapter *adapter)
{
      struct atl1c_hw *hw = &adapter->hw;

      AT_WRITE_REG(hw, REG_IDT_TABLE, hw->indirect_tab);
      AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, hw->base_cpu);
}

static void atl1c_configure_dma(struct atl1c_adapter *adapter)
{
      struct atl1c_hw *hw = &adapter->hw;
      u32 dma_ctrl_data;

      dma_ctrl_data = DMA_CTRL_DMAR_REQ_PRI;
      if (hw->ctrl_flags & ATL1C_CMB_ENABLE)
            dma_ctrl_data |= DMA_CTRL_CMB_EN;
      if (hw->ctrl_flags & ATL1C_SMB_ENABLE)
            dma_ctrl_data |= DMA_CTRL_SMB_EN;
      else
            dma_ctrl_data |= MAC_CTRL_SMB_DIS;

      switch (hw->dma_order) {
      case atl1c_dma_ord_in:
            dma_ctrl_data |= DMA_CTRL_DMAR_IN_ORDER;
            break;
      case atl1c_dma_ord_enh:
            dma_ctrl_data |= DMA_CTRL_DMAR_ENH_ORDER;
            break;
      case atl1c_dma_ord_out:
            dma_ctrl_data |= DMA_CTRL_DMAR_OUT_ORDER;
            break;
      default:
            break;
      }

      dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
            << DMA_CTRL_DMAR_BURST_LEN_SHIFT;
      dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
            << DMA_CTRL_DMAW_BURST_LEN_SHIFT;
      dma_ctrl_data |= (((u32)hw->dmar_dly_cnt) & DMA_CTRL_DMAR_DLY_CNT_MASK)
            << DMA_CTRL_DMAR_DLY_CNT_SHIFT;
      dma_ctrl_data |= (((u32)hw->dmaw_dly_cnt) & DMA_CTRL_DMAW_DLY_CNT_MASK)
            << DMA_CTRL_DMAW_DLY_CNT_SHIFT;

      AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data);
}

/*
 * Stop the mac, transmit and receive units
 * hw - Struct containing variables accessed by shared code
 * return : 0  or  idle status (if error)
 */
static int atl1c_stop_mac(struct atl1c_hw *hw)
{
      u32 data;

      AT_READ_REG(hw, REG_RXQ_CTRL, &data);
      data &= ~(RXQ1_CTRL_EN | RXQ2_CTRL_EN |
              RXQ3_CTRL_EN | RXQ_CTRL_EN);
      AT_WRITE_REG(hw, REG_RXQ_CTRL, data);

      AT_READ_REG(hw, REG_TXQ_CTRL, &data);
      data &= ~TXQ_CTRL_EN;
      AT_WRITE_REG(hw, REG_TWSI_CTRL, data);

      atl1c_wait_until_idle(hw);

      AT_READ_REG(hw, REG_MAC_CTRL, &data);
      data &= ~(MAC_CTRL_TX_EN | MAC_CTRL_RX_EN);
      AT_WRITE_REG(hw, REG_MAC_CTRL, data);

      return (int)atl1c_wait_until_idle(hw);
}

static void atl1c_enable_rx_ctrl(struct atl1c_hw *hw)
{
      u32 data;

      AT_READ_REG(hw, REG_RXQ_CTRL, &data);
      switch (hw->adapter->num_rx_queues) {
      case 4:
            data |= (RXQ3_CTRL_EN | RXQ2_CTRL_EN | RXQ1_CTRL_EN);
            break;
      case 3:
            data |= (RXQ2_CTRL_EN | RXQ1_CTRL_EN);
            break;
      case 2:
            data |= RXQ1_CTRL_EN;
            break;
      default:
            break;
      }
      data |= RXQ_CTRL_EN;
      AT_WRITE_REG(hw, REG_RXQ_CTRL, data);
}

static void atl1c_enable_tx_ctrl(struct atl1c_hw *hw)
{
      u32 data;

      AT_READ_REG(hw, REG_TXQ_CTRL, &data);
      data |= TXQ_CTRL_EN;
      AT_WRITE_REG(hw, REG_TXQ_CTRL, data);
}

/*
 * Reset the transmit and receive units; mask and clear all interrupts.
 * hw - Struct containing variables accessed by shared code
 * return : 0  or  idle status (if error)
 */
static int atl1c_reset_mac(struct atl1c_hw *hw)
{
      struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
      struct pci_dev *pdev = adapter->pdev;
      int ret;

      AT_WRITE_REG(hw, REG_IMR, 0);
      AT_WRITE_REG(hw, REG_ISR, ISR_DIS_INT);

      ret = atl1c_stop_mac(hw);
      if (ret)
            return ret;
      /*
       * Issue Soft Reset to the MAC.  This will reset the chip's
       * transmit, receive, DMA.  It will not effect
       * the current PCI configuration.  The global reset bit is self-
       * clearing, and should clear within a microsecond.
       */
      AT_WRITE_REGW(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
      AT_WRITE_FLUSH(hw);
      msleep(10);
      /* Wait at least 10ms for All module to be Idle */

      if (atl1c_wait_until_idle(hw)) {
            dev_err(&pdev->dev,
                  "MAC state machine can't be idle since"
                  " disabled for 10ms second\n");
            return -1;
      }
      return 0;
}

static void atl1c_disable_l0s_l1(struct atl1c_hw *hw)
{
      u32 pm_ctrl_data;

      AT_READ_REG(hw, REG_PM_CTRL, &pm_ctrl_data);
      pm_ctrl_data &= ~(PM_CTRL_L1_ENTRY_TIMER_MASK <<
                  PM_CTRL_L1_ENTRY_TIMER_SHIFT);
      pm_ctrl_data &= ~PM_CTRL_CLK_SWH_L1;
      pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN;
      pm_ctrl_data &= ~PM_CTRL_ASPM_L1_EN;
      pm_ctrl_data &= ~PM_CTRL_MAC_ASPM_CHK;
      pm_ctrl_data &= ~PM_CTRL_SERDES_PD_EX_L1;

      pm_ctrl_data |= PM_CTRL_SERDES_BUDS_RX_L1_EN;
      pm_ctrl_data |= PM_CTRL_SERDES_PLL_L1_EN;
      pm_ctrl_data |=   PM_CTRL_SERDES_L1_EN;
      AT_WRITE_REG(hw, REG_PM_CTRL, pm_ctrl_data);
}

/*
 * Set ASPM state.
 * Enable/disable L0s/L1 depend on link state.
 */
static void atl1c_set_aspm(struct atl1c_hw *hw, bool linkup)
{
      u32 pm_ctrl_data;

      AT_READ_REG(hw, REG_PM_CTRL, &pm_ctrl_data);

      pm_ctrl_data &= ~PM_CTRL_SERDES_PD_EX_L1;
      pm_ctrl_data &=  ~(PM_CTRL_L1_ENTRY_TIMER_MASK <<
                  PM_CTRL_L1_ENTRY_TIMER_SHIFT);

      pm_ctrl_data |= PM_CTRL_MAC_ASPM_CHK;

      if (linkup) {
            pm_ctrl_data |= PM_CTRL_SERDES_PLL_L1_EN;
            pm_ctrl_data &= ~PM_CTRL_CLK_SWH_L1;

            pm_ctrl_data |= PM_CTRL_SERDES_BUDS_RX_L1_EN;
            pm_ctrl_data |= PM_CTRL_SERDES_L1_EN;
      } else {
            pm_ctrl_data &= ~PM_CTRL_SERDES_BUDS_RX_L1_EN;
            pm_ctrl_data &= ~PM_CTRL_SERDES_L1_EN;
            pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN;
            pm_ctrl_data &= ~PM_CTRL_SERDES_PLL_L1_EN;

            pm_ctrl_data |= PM_CTRL_CLK_SWH_L1;

            if (hw->ctrl_flags & ATL1C_ASPM_L1_SUPPORT)
                  pm_ctrl_data |= PM_CTRL_ASPM_L1_EN;
            else
                  pm_ctrl_data &= ~PM_CTRL_ASPM_L1_EN;
      }

      AT_WRITE_REG(hw, REG_PM_CTRL, pm_ctrl_data);
}

static void atl1c_setup_mac_ctrl(struct atl1c_adapter *adapter)
{
      struct atl1c_hw *hw = &adapter->hw;
      struct net_device *netdev = adapter->netdev;
      u32 mac_ctrl_data;

      mac_ctrl_data = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
      mac_ctrl_data |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);

      if (adapter->link_duplex == FULL_DUPLEX) {
            hw->mac_duplex = true;
            mac_ctrl_data |= MAC_CTRL_DUPLX;
      }

      if (adapter->link_speed == SPEED_1000)
            hw->mac_speed = atl1c_mac_speed_1000;
      else
            hw->mac_speed = atl1c_mac_speed_10_100;

      mac_ctrl_data |= (hw->mac_speed & MAC_CTRL_SPEED_MASK) <<
                  MAC_CTRL_SPEED_SHIFT;

      mac_ctrl_data |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
      mac_ctrl_data |= ((hw->preamble_len & MAC_CTRL_PRMLEN_MASK) <<
                  MAC_CTRL_PRMLEN_SHIFT);

      if (adapter->vlgrp)
            mac_ctrl_data |= MAC_CTRL_RMV_VLAN;

      mac_ctrl_data |= MAC_CTRL_BC_EN;
      if (netdev->flags & IFF_PROMISC)
            mac_ctrl_data |= MAC_CTRL_PROMIS_EN;
      if (netdev->flags & IFF_ALLMULTI)
            mac_ctrl_data |= MAC_CTRL_MC_ALL_EN;

      mac_ctrl_data |= MAC_CTRL_SINGLE_PAUSE_EN;
      AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
}

/*
 * atl1c_configure - Configure Transmit&Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx /Rx unit of the MAC after a reset.
 */
static int atl1c_configure(struct atl1c_adapter *adapter)
{
      struct atl1c_hw *hw = &adapter->hw;
      u32 master_ctrl_data = 0;
      u32 intr_modrt_data;

      /* clear interrupt status */
      AT_WRITE_REG(hw, REG_ISR, 0xFFFFFFFF);
      /*  Clear any WOL status */
      AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
      /* set Interrupt Clear Timer
       * HW will enable self to assert interrupt event to system after
       * waiting x-time for software to notify it accept interrupt.
       */
      AT_WRITE_REG(hw, REG_INT_RETRIG_TIMER,
            hw->ict & INT_RETRIG_TIMER_MASK);

      atl1c_configure_des_ring(adapter);

      if (hw->ctrl_flags & ATL1C_INTR_MODRT_ENABLE) {
            intr_modrt_data = (hw->tx_imt & IRQ_MODRT_TIMER_MASK) <<
                              IRQ_MODRT_TX_TIMER_SHIFT;
            intr_modrt_data |= (hw->rx_imt & IRQ_MODRT_TIMER_MASK) <<
                              IRQ_MODRT_RX_TIMER_SHIFT;
            AT_WRITE_REG(hw, REG_IRQ_MODRT_TIMER_INIT, intr_modrt_data);
            master_ctrl_data |=
                  MASTER_CTRL_TX_ITIMER_EN | MASTER_CTRL_RX_ITIMER_EN;
      }

      if (hw->ctrl_flags & ATL1C_INTR_CLEAR_ON_READ)
            master_ctrl_data |= MASTER_CTRL_INT_RDCLR;

      AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl_data);

      if (hw->ctrl_flags & ATL1C_CMB_ENABLE) {
            AT_WRITE_REG(hw, REG_CMB_TPD_THRESH,
                  hw->cmb_tpd & CMB_TPD_THRESH_MASK);
            AT_WRITE_REG(hw, REG_CMB_TX_TIMER,
                  hw->cmb_tx_timer & CMB_TX_TIMER_MASK);
      }

      if (hw->ctrl_flags & ATL1C_SMB_ENABLE)
            AT_WRITE_REG(hw, REG_SMB_STAT_TIMER,
                  hw->smb_timer & SMB_STAT_TIMER_MASK);
      /* set MTU */
      AT_WRITE_REG(hw, REG_MTU, hw->max_frame_size + ETH_HLEN +
                  VLAN_HLEN + ETH_FCS_LEN);
      /* HDS, disable */
      AT_WRITE_REG(hw, REG_HDS_CTRL, 0);

      atl1c_configure_tx(adapter);
      atl1c_configure_rx(adapter);
      atl1c_configure_rss(adapter);
      atl1c_configure_dma(adapter);

      return 0;
}

static void atl1c_update_hw_stats(struct atl1c_adapter *adapter)
{
      u16 hw_reg_addr = 0;
      unsigned long *stats_item = NULL;
      u32 data;

      /* update rx status */
      hw_reg_addr = REG_MAC_RX_STATUS_BIN;
      stats_item  = &adapter->hw_stats.rx_ok;
      while (hw_reg_addr <= REG_MAC_RX_STATUS_END) {
            AT_READ_REG(&adapter->hw, hw_reg_addr, &data);
            *stats_item += data;
            stats_item++;
            hw_reg_addr += 4;
      }
/* update tx status */
      hw_reg_addr = REG_MAC_TX_STATUS_BIN;
      stats_item  = &adapter->hw_stats.tx_ok;
      while (hw_reg_addr <= REG_MAC_TX_STATUS_END) {
            AT_READ_REG(&adapter->hw, hw_reg_addr, &data);
            *stats_item += data;
            stats_item++;
            hw_reg_addr += 4;
      }
}

/*
 * atl1c_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 */
static struct net_device_stats *atl1c_get_stats(struct net_device *netdev)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      struct atl1c_hw_stats  *hw_stats = &adapter->hw_stats;
      struct net_device_stats *net_stats = &adapter->net_stats;

      atl1c_update_hw_stats(adapter);
      net_stats->rx_packets = hw_stats->rx_ok;
      net_stats->tx_packets = hw_stats->tx_ok;
      net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
      net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
      net_stats->multicast  = hw_stats->rx_mcast;
      net_stats->collisions = hw_stats->tx_1_col +
                        hw_stats->tx_2_col * 2 +
                        hw_stats->tx_late_col + hw_stats->tx_abort_col;
      net_stats->rx_errors  = hw_stats->rx_frag + hw_stats->rx_fcs_err +
                        hw_stats->rx_len_err + hw_stats->rx_sz_ov +
                        hw_stats->rx_rrd_ov + hw_stats->rx_align_err;
      net_stats->rx_fifo_errors   = hw_stats->rx_rxf_ov;
      net_stats->rx_length_errors = hw_stats->rx_len_err;
      net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
      net_stats->rx_frame_errors  = hw_stats->rx_align_err;
      net_stats->rx_over_errors   = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov;

      net_stats->rx_missed_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov;

      net_stats->tx_errors = hw_stats->tx_late_col + hw_stats->tx_abort_col +
                        hw_stats->tx_underrun + hw_stats->tx_trunc;
      net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
      net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
      net_stats->tx_window_errors  = hw_stats->tx_late_col;

      return &adapter->net_stats;
}

static inline void atl1c_clear_phy_int(struct atl1c_adapter *adapter)
{
      u16 phy_data;

      spin_lock(&adapter->mdio_lock);
      atl1c_read_phy_reg(&adapter->hw, MII_ISR, &phy_data);
      spin_unlock(&adapter->mdio_lock);
}

static bool atl1c_clean_tx_irq(struct atl1c_adapter *adapter,
                        enum atl1c_trans_queue type)
{
      struct atl1c_tpd_ring *tpd_ring = (struct atl1c_tpd_ring *)
                        &adapter->tpd_ring[type];
      struct atl1c_buffer *buffer_info;
      u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
      u16 hw_next_to_clean;
      u16 shift;
      u32 data;

      if (type == atl1c_trans_high)
            shift = MB_HTPD_CONS_IDX_SHIFT;
      else
            shift = MB_NTPD_CONS_IDX_SHIFT;

      AT_READ_REG(&adapter->hw, REG_MB_PRIO_CONS_IDX, &data);
      hw_next_to_clean = (data >> shift) & MB_PRIO_PROD_IDX_MASK;

      while (next_to_clean != hw_next_to_clean) {
            buffer_info = &tpd_ring->buffer_info[next_to_clean];
            if (buffer_info->state == ATL1_BUFFER_BUSY) {
                  pci_unmap_page(adapter->pdev, buffer_info->dma,
                              buffer_info->length, PCI_DMA_TODEVICE);
                  buffer_info->dma = 0;
                  if (buffer_info->skb) {
                        dev_kfree_skb_irq(buffer_info->skb);
                        buffer_info->skb = NULL;
                  }
                  buffer_info->state = ATL1_BUFFER_FREE;
            }
            if (++next_to_clean == tpd_ring->count)
                  next_to_clean = 0;
            atomic_set(&tpd_ring->next_to_clean, next_to_clean);
      }

      if (netif_queue_stopped(adapter->netdev) &&
                  netif_carrier_ok(adapter->netdev)) {
            netif_wake_queue(adapter->netdev);
      }

      return true;
}

/*
 * atl1c_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 * @pt_regs: CPU registers structure
 */
static irqreturn_t atl1c_intr(int irq, void *data)
{
      struct net_device *netdev  = data;
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      struct pci_dev *pdev = adapter->pdev;
      struct atl1c_hw *hw = &adapter->hw;
      int max_ints = AT_MAX_INT_WORK;
      int handled = IRQ_NONE;
      u32 status;
      u32 reg_data;

      do {
            AT_READ_REG(hw, REG_ISR, &reg_data);
            status = reg_data & hw->intr_mask;

            if (status == 0 || (status & ISR_DIS_INT) != 0) {
                  if (max_ints != AT_MAX_INT_WORK)
                        handled = IRQ_HANDLED;
                  break;
            }
            /* link event */
            if (status & ISR_GPHY)
                  atl1c_clear_phy_int(adapter);
            /* Ack ISR */
            AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
            if (status & ISR_RX_PKT) {
                  if (likely(napi_schedule_prep(&adapter->napi))) {
                        hw->intr_mask &= ~ISR_RX_PKT;
                        AT_WRITE_REG(hw, REG_IMR, hw->intr_mask);
                        __napi_schedule(&adapter->napi);
                  }
            }
            if (status & ISR_TX_PKT)
                  atl1c_clean_tx_irq(adapter, atl1c_trans_normal);

            handled = IRQ_HANDLED;
            /* check if PCIE PHY Link down */
            if (status & ISR_ERROR) {
                  if (netif_msg_hw(adapter))
                        dev_err(&pdev->dev,
                              "atl1c hardware error (status = 0x%x)\n",
                              status & ISR_ERROR);
                  /* reset MAC */
                  hw->intr_mask &= ~ISR_ERROR;
                  AT_WRITE_REG(hw, REG_IMR, hw->intr_mask);
                  schedule_work(&adapter->reset_task);
                  break;
            }

            if (status & ISR_OVER)
                  if (netif_msg_intr(adapter))
                        dev_warn(&pdev->dev,
                              "TX/RX over flow (status = 0x%x)\n",
                              status & ISR_OVER);

            /* link event */
            if (status & (ISR_GPHY | ISR_MANUAL)) {
                  adapter->net_stats.tx_carrier_errors++;
                  atl1c_link_chg_event(adapter);
                  break;
            }

      } while (--max_ints > 0);
      /* re-enable Interrupt*/
      AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
      return handled;
}

static inline void atl1c_rx_checksum(struct atl1c_adapter *adapter,
              struct sk_buff *skb, struct atl1c_recv_ret_status *prrs)
{
      /*
       * The pid field in RRS in not correct sometimes, so we
       * cannot figure out if the packet is fragmented or not,
       * so we tell the KERNEL CHECKSUM_NONE
       */
      skb->ip_summed = CHECKSUM_NONE;
}

static int atl1c_alloc_rx_buffer(struct atl1c_adapter *adapter, const int ringid)
{
      struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[ringid];
      struct pci_dev *pdev = adapter->pdev;
      struct atl1c_buffer *buffer_info, *next_info;
      struct sk_buff *skb;
      void *vir_addr = NULL;
      u16 num_alloc = 0;
      u16 rfd_next_to_use, next_next;
      struct atl1c_rx_free_desc *rfd_desc;

      next_next = rfd_next_to_use = rfd_ring->next_to_use;
      if (++next_next == rfd_ring->count)
            next_next = 0;
      buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
      next_info = &rfd_ring->buffer_info[next_next];

      while (next_info->state == ATL1_BUFFER_FREE) {
            rfd_desc = ATL1C_RFD_DESC(rfd_ring, rfd_next_to_use);

            skb = dev_alloc_skb(adapter->rx_buffer_len);
            if (unlikely(!skb)) {
                  if (netif_msg_rx_err(adapter))
                        dev_warn(&pdev->dev, "alloc rx buffer failed\n");
                  break;
            }

            /*
             * Make buffer alignment 2 beyond a 16 byte boundary
             * this will result in a 16 byte aligned IP header after
             * the 14 byte MAC header is removed
             */
            vir_addr = skb->data;
            buffer_info->state = ATL1_BUFFER_BUSY;
            buffer_info->skb = skb;
            buffer_info->length = adapter->rx_buffer_len;
            buffer_info->dma = pci_map_single(pdev, vir_addr,
                                    buffer_info->length,
                                    PCI_DMA_FROMDEVICE);
            rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
            rfd_next_to_use = next_next;
            if (++next_next == rfd_ring->count)
                  next_next = 0;
            buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
            next_info = &rfd_ring->buffer_info[next_next];
            num_alloc++;
      }

      if (num_alloc) {
            /* TODO: update mailbox here */
            wmb();
            rfd_ring->next_to_use = rfd_next_to_use;
            AT_WRITE_REG(&adapter->hw, atl1c_rfd_prod_idx_regs[ringid],
                  rfd_ring->next_to_use & MB_RFDX_PROD_IDX_MASK);
      }

      return num_alloc;
}

static void atl1c_clean_rrd(struct atl1c_rrd_ring *rrd_ring,
                  struct      atl1c_recv_ret_status *rrs, u16 num)
{
      u16 i;
      /* the relationship between rrd and rfd is one map one */
      for (i = 0; i < num; i++, rrs = ATL1C_RRD_DESC(rrd_ring,
                              rrd_ring->next_to_clean)) {
            rrs->word3 &= ~RRS_RXD_UPDATED;
            if (++rrd_ring->next_to_clean == rrd_ring->count)
                  rrd_ring->next_to_clean = 0;
      }
}

static void atl1c_clean_rfd(struct atl1c_rfd_ring *rfd_ring,
      struct atl1c_recv_ret_status *rrs, u16 num)
{
      u16 i;
      u16 rfd_index;
      struct atl1c_buffer *buffer_info = rfd_ring->buffer_info;

      rfd_index = (rrs->word0 >> RRS_RX_RFD_INDEX_SHIFT) &
                  RRS_RX_RFD_INDEX_MASK;
      for (i = 0; i < num; i++) {
            buffer_info[rfd_index].skb = NULL;
            buffer_info[rfd_index].state = ATL1_BUFFER_FREE;
            if (++rfd_index == rfd_ring->count)
                  rfd_index = 0;
      }
      rfd_ring->next_to_clean = rfd_index;
}

static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter, u8 que,
               int *work_done, int work_to_do)
{
      u16 rfd_num, rfd_index;
      u16 count = 0;
      u16 length;
      struct pci_dev *pdev = adapter->pdev;
      struct net_device *netdev  = adapter->netdev;
      struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[que];
      struct atl1c_rrd_ring *rrd_ring = &adapter->rrd_ring[que];
      struct sk_buff *skb;
      struct atl1c_recv_ret_status *rrs;
      struct atl1c_buffer *buffer_info;

      while (1) {
            if (*work_done >= work_to_do)
                  break;
            rrs = ATL1C_RRD_DESC(rrd_ring, rrd_ring->next_to_clean);
            if (likely(RRS_RXD_IS_VALID(rrs->word3))) {
                  rfd_num = (rrs->word0 >> RRS_RX_RFD_CNT_SHIFT) &
                        RRS_RX_RFD_CNT_MASK;
                  if (unlikely(rfd_num != 1))
                        /* TODO support mul rfd*/
                        if (netif_msg_rx_err(adapter))
                              dev_warn(&pdev->dev,
                                    "Multi rfd not support yet!\n");
                  goto rrs_checked;
            } else {
                  break;
            }
rrs_checked:
            atl1c_clean_rrd(rrd_ring, rrs, rfd_num);
            if (rrs->word3 & (RRS_RX_ERR_SUM | RRS_802_3_LEN_ERR)) {
                  atl1c_clean_rfd(rfd_ring, rrs, rfd_num);
                        if (netif_msg_rx_err(adapter))
                              dev_warn(&pdev->dev,
                                    "wrong packet! rrs word3 is %x\n",
                                    rrs->word3);
                  continue;
            }

            length = le16_to_cpu((rrs->word3 >> RRS_PKT_SIZE_SHIFT) &
                        RRS_PKT_SIZE_MASK);
            /* Good Receive */
            if (likely(rfd_num == 1)) {
                  rfd_index = (rrs->word0 >> RRS_RX_RFD_INDEX_SHIFT) &
                              RRS_RX_RFD_INDEX_MASK;
                  buffer_info = &rfd_ring->buffer_info[rfd_index];
                  pci_unmap_single(pdev, buffer_info->dma,
                        buffer_info->length, PCI_DMA_FROMDEVICE);
                  skb = buffer_info->skb;
            } else {
                  /* TODO */
                  if (netif_msg_rx_err(adapter))
                        dev_warn(&pdev->dev,
                              "Multi rfd not support yet!\n");
                  break;
            }
            atl1c_clean_rfd(rfd_ring, rrs, rfd_num);
            skb_put(skb, length - ETH_FCS_LEN);
            skb->protocol = eth_type_trans(skb, netdev);
            skb->dev = netdev;
            atl1c_rx_checksum(adapter, skb, rrs);
            if (unlikely(adapter->vlgrp) && rrs->word3 & RRS_VLAN_INS) {
                  u16 vlan;

                  AT_TAG_TO_VLAN(rrs->vlan_tag, vlan);
                  vlan = le16_to_cpu(vlan);
                  vlan_hwaccel_receive_skb(skb, adapter->vlgrp, vlan);
            } else
                  netif_receive_skb(skb);

            netdev->last_rx = jiffies;
            (*work_done)++;
            count++;
      }
      if (count)
            atl1c_alloc_rx_buffer(adapter, que);
}

/*
 * atl1c_clean - NAPI Rx polling callback
 * @adapter: board private structure
 */
static int atl1c_clean(struct napi_struct *napi, int budget)
{
      struct atl1c_adapter *adapter =
                  container_of(napi, struct atl1c_adapter, napi);
      int work_done = 0;

      /* Keep link state information with original netdev */
      if (!netif_carrier_ok(adapter->netdev))
            goto quit_polling;
      /* just enable one RXQ */
      atl1c_clean_rx_irq(adapter, 0, &work_done, budget);

      if (work_done < budget) {
quit_polling:
            napi_complete(napi);
            adapter->hw.intr_mask |= ISR_RX_PKT;
            AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask);
      }
      return work_done;
}

#ifdef CONFIG_NET_POLL_CONTROLLER

/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void atl1c_netpoll(struct net_device *netdev)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);

      disable_irq(adapter->pdev->irq);
      atl1c_intr(adapter->pdev->irq, netdev);
      enable_irq(adapter->pdev->irq);
}
#endif

static inline u16 atl1c_tpd_avail(struct atl1c_adapter *adapter, enum atl1c_trans_queue type)
{
      struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
      u16 next_to_use = 0;
      u16 next_to_clean = 0;

      next_to_clean = atomic_read(&tpd_ring->next_to_clean);
      next_to_use   = tpd_ring->next_to_use;

      return (u16)(next_to_clean > next_to_use) ?
            (next_to_clean - next_to_use - 1) :
            (tpd_ring->count + next_to_clean - next_to_use - 1);
}

/*
 * get next usable tpd
 * Note: should call atl1c_tdp_avail to make sure
 * there is enough tpd to use
 */
static struct atl1c_tpd_desc *atl1c_get_tpd(struct atl1c_adapter *adapter,
      enum atl1c_trans_queue type)
{
      struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
      struct atl1c_tpd_desc *tpd_desc;
      u16 next_to_use = 0;

      next_to_use = tpd_ring->next_to_use;
      if (++tpd_ring->next_to_use == tpd_ring->count)
            tpd_ring->next_to_use = 0;
      tpd_desc = ATL1C_TPD_DESC(tpd_ring, next_to_use);
      memset(tpd_desc, 0, sizeof(struct atl1c_tpd_desc));
      return      tpd_desc;
}

static struct atl1c_buffer *
atl1c_get_tx_buffer(struct atl1c_adapter *adapter, struct atl1c_tpd_desc *tpd)
{
      struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring;

      return &tpd_ring->buffer_info[tpd -
                  (struct atl1c_tpd_desc *)tpd_ring->desc];
}

/* Calculate the transmit packet descript needed*/
static u16 atl1c_cal_tpd_req(const struct sk_buff *skb)
{
      u16 tpd_req;
      u16 proto_hdr_len = 0;

      tpd_req = skb_shinfo(skb)->nr_frags + 1;

      if (skb_is_gso(skb)) {
            proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
            if (proto_hdr_len < skb_headlen(skb))
                  tpd_req++;
            if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
                  tpd_req++;
      }
      return tpd_req;
}

static int atl1c_tso_csum(struct atl1c_adapter *adapter,
                    struct sk_buff *skb,
                    struct atl1c_tpd_desc **tpd,
                    enum atl1c_trans_queue type)
{
      struct pci_dev *pdev = adapter->pdev;
      u8 hdr_len;
      u32 real_len;
      unsigned short offload_type;
      int err;

      if (skb_is_gso(skb)) {
            if (skb_header_cloned(skb)) {
                  err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
                  if (unlikely(err))
                        return -1;
            }
            offload_type = skb_shinfo(skb)->gso_type;

            if (offload_type & SKB_GSO_TCPV4) {
                  real_len = (((unsigned char *)ip_hdr(skb) - skb->data)
                              + ntohs(ip_hdr(skb)->tot_len));

                  if (real_len < skb->len)
                        pskb_trim(skb, real_len);

                  hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
                  if (unlikely(skb->len == hdr_len)) {
                        /* only xsum need */
                        if (netif_msg_tx_queued(adapter))
                              dev_warn(&pdev->dev,
                                    "IPV4 tso with zero data??\n");
                        goto check_sum;
                  } else {
                        ip_hdr(skb)->check = 0;
                        tcp_hdr(skb)->check = ~csum_tcpudp_magic(
                                          ip_hdr(skb)->saddr,
                                          ip_hdr(skb)->daddr,
                                          0, IPPROTO_TCP, 0);
                        (*tpd)->word1 |= 1 << TPD_IPV4_PACKET_SHIFT;
                  }
            }

            if (offload_type & SKB_GSO_TCPV6) {
                  struct atl1c_tpd_ext_desc *etpd =
                        *(struct atl1c_tpd_ext_desc **)(tpd);

                  memset(etpd, 0, sizeof(struct atl1c_tpd_ext_desc));
                  *tpd = atl1c_get_tpd(adapter, type);
                  ipv6_hdr(skb)->payload_len = 0;
                  /* check payload == 0 byte ? */
                  hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
                  if (unlikely(skb->len == hdr_len)) {
                        /* only xsum need */
                        if (netif_msg_tx_queued(adapter))
                              dev_warn(&pdev->dev,
                                    "IPV6 tso with zero data??\n");
                        goto check_sum;
                  } else
                        tcp_hdr(skb)->check = ~csum_ipv6_magic(
                                    &ipv6_hdr(skb)->saddr,
                                    &ipv6_hdr(skb)->daddr,
                                    0, IPPROTO_TCP, 0);
                  etpd->word1 |= 1 << TPD_LSO_EN_SHIFT;
                  etpd->word1 |= 1 << TPD_LSO_VER_SHIFT;
                  etpd->pkt_len = cpu_to_le32(skb->len);
                  (*tpd)->word1 |= 1 << TPD_LSO_VER_SHIFT;
            }

            (*tpd)->word1 |= 1 << TPD_LSO_EN_SHIFT;
            (*tpd)->word1 |= (skb_transport_offset(skb) & TPD_TCPHDR_OFFSET_MASK) <<
                        TPD_TCPHDR_OFFSET_SHIFT;
            (*tpd)->word1 |= (skb_shinfo(skb)->gso_size & TPD_MSS_MASK) <<
                        TPD_MSS_SHIFT;
            return 0;
      }

check_sum:
      if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
            u8 css, cso;
            cso = skb_transport_offset(skb);

            if (unlikely(cso & 0x1)) {
                  if (netif_msg_tx_err(adapter))
                        dev_err(&adapter->pdev->dev,
                              "payload offset should not an event number\n");
                  return -1;
            } else {
                  css = cso + skb->csum_offset;

                  (*tpd)->word1 |= ((cso >> 1) & TPD_PLOADOFFSET_MASK) <<
                              TPD_PLOADOFFSET_SHIFT;
                  (*tpd)->word1 |= ((css >> 1) & TPD_CCSUM_OFFSET_MASK) <<
                              TPD_CCSUM_OFFSET_SHIFT;
                  (*tpd)->word1 |= 1 << TPD_CCSUM_EN_SHIFT;
            }
      }
      return 0;
}

static void atl1c_tx_map(struct atl1c_adapter *adapter,
                  struct sk_buff *skb, struct atl1c_tpd_desc *tpd,
                  enum atl1c_trans_queue type)
{
      struct atl1c_tpd_desc *use_tpd = NULL;
      struct atl1c_buffer *buffer_info = NULL;
      u16 buf_len = skb_headlen(skb);
      u16 map_len = 0;
      u16 mapped_len = 0;
      u16 hdr_len = 0;
      u16 nr_frags;
      u16 f;
      int tso;

      nr_frags = skb_shinfo(skb)->nr_frags;
      tso = (tpd->word1 >> TPD_LSO_EN_SHIFT) & TPD_LSO_EN_MASK;
      if (tso) {
            /* TSO */
            map_len = hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
            use_tpd = tpd;

            buffer_info = atl1c_get_tx_buffer(adapter, use_tpd);
            buffer_info->length = map_len;
            buffer_info->dma = pci_map_single(adapter->pdev,
                              skb->data, hdr_len, PCI_DMA_TODEVICE);
            buffer_info->state = ATL1_BUFFER_BUSY;
            mapped_len += map_len;
            use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
            use_tpd->buffer_len = cpu_to_le16(buffer_info->length);
      }

      if (mapped_len < buf_len) {
            /* mapped_len == 0, means we should use the first tpd,
               which is given by caller  */
            if (mapped_len == 0)
                  use_tpd = tpd;
            else {
                  use_tpd = atl1c_get_tpd(adapter, type);
                  memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc));
                  use_tpd = atl1c_get_tpd(adapter, type);
                  memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc));
            }
            buffer_info = atl1c_get_tx_buffer(adapter, use_tpd);
            buffer_info->length = buf_len - mapped_len;
            buffer_info->dma =
                  pci_map_single(adapter->pdev, skb->data + mapped_len,
                              buffer_info->length, PCI_DMA_TODEVICE);
            buffer_info->state = ATL1_BUFFER_BUSY;

            use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
            use_tpd->buffer_len  = cpu_to_le16(buffer_info->length);
      }

      for (f = 0; f < nr_frags; f++) {
            struct skb_frag_struct *frag;

            frag = &skb_shinfo(skb)->frags[f];

            use_tpd = atl1c_get_tpd(adapter, type);
            memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc));

            buffer_info = atl1c_get_tx_buffer(adapter, use_tpd);
            buffer_info->length = frag->size;
            buffer_info->dma =
                  pci_map_page(adapter->pdev, frag->page,
                              frag->page_offset,
                              buffer_info->length,
                              PCI_DMA_TODEVICE);
            buffer_info->state = ATL1_BUFFER_BUSY;

            use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
            use_tpd->buffer_len  = cpu_to_le16(buffer_info->length);
      }

      /* The last tpd */
      use_tpd->word1 |= 1 << TPD_EOP_SHIFT;
      /* The last buffer info contain the skb address,
         so it will be free after unmap */
      buffer_info->skb = skb;
}

static void atl1c_tx_queue(struct atl1c_adapter *adapter, struct sk_buff *skb,
                     struct atl1c_tpd_desc *tpd, enum atl1c_trans_queue type)
{
      struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
      u32 prod_data;

      AT_READ_REG(&adapter->hw, REG_MB_PRIO_PROD_IDX, &prod_data);
      switch (type) {
      case atl1c_trans_high:
            prod_data &= 0xFFFF0000;
            prod_data |= tpd_ring->next_to_use & 0xFFFF;
            break;
      case atl1c_trans_normal:
            prod_data &= 0x0000FFFF;
            prod_data |= (tpd_ring->next_to_use & 0xFFFF) << 16;
            break;
      default:
            break;
      }
      wmb();
      AT_WRITE_REG(&adapter->hw, REG_MB_PRIO_PROD_IDX, prod_data);
}

static int atl1c_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      unsigned long flags;
      u16 tpd_req = 1;
      struct atl1c_tpd_desc *tpd;
      enum atl1c_trans_queue type = atl1c_trans_normal;

      if (test_bit(__AT_DOWN, &adapter->flags)) {
            dev_kfree_skb_any(skb);
            return NETDEV_TX_OK;
      }

      tpd_req = atl1c_cal_tpd_req(skb);
      if (!spin_trylock_irqsave(&adapter->tx_lock, flags)) {
            if (netif_msg_pktdata(adapter))
                  dev_info(&adapter->pdev->dev, "tx locked\n");
            return NETDEV_TX_LOCKED;
      }
      if (skb->mark == 0x01)
            type = atl1c_trans_high;
      else
            type = atl1c_trans_normal;

      if (atl1c_tpd_avail(adapter, type) < tpd_req) {
            /* no enough descriptor, just stop queue */
            netif_stop_queue(netdev);
            spin_unlock_irqrestore(&adapter->tx_lock, flags);
            return NETDEV_TX_BUSY;
      }

      tpd = atl1c_get_tpd(adapter, type);

      /* do TSO and check sum */
      if (atl1c_tso_csum(adapter, skb, &tpd, type) != 0) {
            spin_unlock_irqrestore(&adapter->tx_lock, flags);
            dev_kfree_skb_any(skb);
            return NETDEV_TX_OK;
      }

      if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
            u16 vlan = vlan_tx_tag_get(skb);
            __le16 tag;

            vlan = cpu_to_le16(vlan);
            AT_VLAN_TO_TAG(vlan, tag);
            tpd->word1 |= 1 << TPD_INS_VTAG_SHIFT;
            tpd->vlan_tag = tag;
      }

      if (skb_network_offset(skb) != ETH_HLEN)
            tpd->word1 |= 1 << TPD_ETH_TYPE_SHIFT; /* Ethernet frame */

      atl1c_tx_map(adapter, skb, tpd, type);
      atl1c_tx_queue(adapter, skb, tpd, type);

      spin_unlock_irqrestore(&adapter->tx_lock, flags);
      return NETDEV_TX_OK;
}

static void atl1c_free_irq(struct atl1c_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;

      free_irq(adapter->pdev->irq, netdev);

      if (adapter->have_msi)
            pci_disable_msi(adapter->pdev);
}

static int atl1c_request_irq(struct atl1c_adapter *adapter)
{
      struct pci_dev    *pdev   = adapter->pdev;
      struct net_device *netdev = adapter->netdev;
      int flags = 0;
      int err = 0;

      adapter->have_msi = true;
      err = pci_enable_msi(adapter->pdev);
      if (err) {
            if (netif_msg_ifup(adapter))
                  dev_err(&pdev->dev,
                        "Unable to allocate MSI interrupt Error: %d\n",
                        err);
            adapter->have_msi = false;
      } else
            netdev->irq = pdev->irq;

      if (!adapter->have_msi)
            flags |= IRQF_SHARED;
      err = request_irq(adapter->pdev->irq, &atl1c_intr, flags,
                  netdev->name, netdev);
      if (err) {
            if (netif_msg_ifup(adapter))
                  dev_err(&pdev->dev,
                        "Unable to allocate interrupt Error: %d\n",
                        err);
            if (adapter->have_msi)
                  pci_disable_msi(adapter->pdev);
            return err;
      }
      if (netif_msg_ifup(adapter))
            dev_dbg(&pdev->dev, "atl1c_request_irq OK\n");
      return err;
}

int atl1c_up(struct atl1c_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;
      int num;
      int err;
      int i;

      netif_carrier_off(netdev);
      atl1c_init_ring_ptrs(adapter);
      atl1c_set_multi(netdev);
      atl1c_restore_vlan(adapter);

      for (i = 0; i < adapter->num_rx_queues; i++) {
            num = atl1c_alloc_rx_buffer(adapter, i);
            if (unlikely(num == 0)) {
                  err = -ENOMEM;
                  goto err_alloc_rx;
            }
      }

      if (atl1c_configure(adapter)) {
            err = -EIO;
            goto err_up;
      }

      err = atl1c_request_irq(adapter);
      if (unlikely(err))
            goto err_up;

      clear_bit(__AT_DOWN, &adapter->flags);
      napi_enable(&adapter->napi);
      atl1c_irq_enable(adapter);
      atl1c_check_link_status(adapter);
      netif_start_queue(netdev);
      return err;

err_up:
err_alloc_rx:
      atl1c_clean_rx_ring(adapter);
      return err;
}

void atl1c_down(struct atl1c_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;

      atl1c_del_timer(adapter);
      atl1c_cancel_work(adapter);

      /* signal that we're down so the interrupt handler does not
       * reschedule our watchdog timer */
      set_bit(__AT_DOWN, &adapter->flags);
      netif_carrier_off(netdev);
      napi_disable(&adapter->napi);
      atl1c_irq_disable(adapter);
      atl1c_free_irq(adapter);
      AT_WRITE_REG(&adapter->hw, REG_ISR, ISR_DIS_INT);
      /* reset MAC to disable all RX/TX */
      atl1c_reset_mac(&adapter->hw);
      msleep(1);

      adapter->link_speed = SPEED_0;
      adapter->link_duplex = -1;
      atl1c_clean_tx_ring(adapter, atl1c_trans_normal);
      atl1c_clean_tx_ring(adapter, atl1c_trans_high);
      atl1c_clean_rx_ring(adapter);
}

/*
 * atl1c_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 */
static int atl1c_open(struct net_device *netdev)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      int err;

      /* disallow open during test */
      if (test_bit(__AT_TESTING, &adapter->flags))
            return -EBUSY;

      /* allocate rx/tx dma buffer & descriptors */
      err = atl1c_setup_ring_resources(adapter);
      if (unlikely(err))
            return err;

      err = atl1c_up(adapter);
      if (unlikely(err))
            goto err_up;

      if (adapter->hw.ctrl_flags & ATL1C_FPGA_VERSION) {
            u32 phy_data;

            AT_READ_REG(&adapter->hw, REG_MDIO_CTRL, &phy_data);
            phy_data |= MDIO_AP_EN;
            AT_WRITE_REG(&adapter->hw, REG_MDIO_CTRL, phy_data);
      }
      return 0;

err_up:
      atl1c_free_irq(adapter);
      atl1c_free_ring_resources(adapter);
      atl1c_reset_mac(&adapter->hw);
      return err;
}

/*
 * atl1c_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 */
static int atl1c_close(struct net_device *netdev)
{
      struct atl1c_adapter *adapter = netdev_priv(netdev);

      WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
      atl1c_down(adapter);
      atl1c_free_ring_resources(adapter);
      return 0;
}

static int atl1c_suspend(struct pci_dev *pdev, pm_message_t state)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct atl1c_adapter *adapter = netdev_priv(netdev);
      struct atl1c_hw *hw = &adapter->hw;
      u32 ctrl;
      u32 mac_ctrl_data;
      u32 master_ctrl_data;
      u32 wol_ctrl_data;
      u16 mii_bmsr_data;
      u16 save_autoneg_advertised;
      u16 mii_intr_status_data;
      u32 wufc = adapter->wol;
      u32 i;
      int retval = 0;

      if (netif_running(netdev)) {
            WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
            atl1c_down(adapter);
      }
      netif_device_detach(netdev);
      atl1c_disable_l0s_l1(hw);
      retval = pci_save_state(pdev);
      if (retval)
            return retval;
      if (wufc) {
            AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl_data);
            master_ctrl_data &= ~MASTER_CTRL_CLK_SEL_DIS;

            /* get link status */
            atl1c_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data);
            atl1c_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data);
            save_autoneg_advertised = hw->autoneg_advertised;
            hw->autoneg_advertised = ADVERTISED_10baseT_Half;
            if (atl1c_restart_autoneg(hw) != 0)
                  if (netif_msg_link(adapter))
                        dev_warn(&pdev->dev, "phy autoneg failed\n");
            hw->phy_configured = false; /* re-init PHY when resume */
            hw->autoneg_advertised = save_autoneg_advertised;
            /* turn on magic packet wol */
            if (wufc & AT_WUFC_MAG)
                  wol_ctrl_data = WOL_MAGIC_EN | WOL_MAGIC_PME_EN;

            if (wufc & AT_WUFC_LNKC) {
                  for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
                        msleep(100);
                        atl1c_read_phy_reg(hw, MII_BMSR,
                              (u16 *)&mii_bmsr_data);
                        if (mii_bmsr_data & BMSR_LSTATUS)
                              break;
                  }
                  if ((mii_bmsr_data & BMSR_LSTATUS) == 0)
                        if (netif_msg_link(adapter))
                              dev_warn(&pdev->dev,
                                    "%s: Link may change"
                                    "when suspend\n",
                                    atl1c_driver_name);
                  wol_ctrl_data |=  WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
                  /* only link up can wake up */
                  if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) {
                        if (netif_msg_link(adapter))
                              dev_err(&pdev->dev,
                                    "%s: read write phy "
                                    "register failed.\n",
                                    atl1c_driver_name);
                        goto wol_dis;
                  }
            }
            /* clear phy interrupt */
            atl1c_read_phy_reg(hw, MII_ISR, &mii_intr_status_data);
            /* Config MAC Ctrl register */
            mac_ctrl_data = MAC_CTRL_RX_EN;
            /* set to 10/100M halt duplex */
            mac_ctrl_data |= atl1c_mac_speed_10_100 << MAC_CTRL_SPEED_SHIFT;
            mac_ctrl_data |= (((u32)adapter->hw.preamble_len &
                         MAC_CTRL_PRMLEN_MASK) <<
                         MAC_CTRL_PRMLEN_SHIFT);

            if (adapter->vlgrp)
                  mac_ctrl_data |= MAC_CTRL_RMV_VLAN;

            /* magic packet maybe Broadcast&multicast&Unicast frame */
            if (wufc & AT_WUFC_MAG)
                  mac_ctrl_data |= MAC_CTRL_BC_EN;

            if (netif_msg_hw(adapter))
                  dev_dbg(&pdev->dev,
                        "%s: suspend MAC=0x%x\n",
                        atl1c_driver_name, mac_ctrl_data);
            AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl_data);
            AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl_data);
            AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);

            /* pcie patch */
            AT_READ_REG(hw, REG_PCIE_PHYMISC, &ctrl);
            ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
            AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);

            pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
            goto suspend_exit;
      }
wol_dis:

      /* WOL disabled */
      AT_WRITE_REG(hw, REG_WOL_CTRL, 0);

      /* pcie patch */
      AT_READ_REG(hw, REG_PCIE_PHYMISC, &ctrl);
      ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
      AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);

      atl1c_phy_disable(hw);
      hw->phy_configured = false; /* re-init PHY when resume */

      pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
suspend_exit:

      pci_disable_device(pdev);
      pci_set_power_state(pdev, pci_choose_state(pdev, state));

      return 0;
}

static int atl1c_resume(struct pci_dev *pdev)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct atl1c_adapter *adapter = netdev_priv(netdev);

      pci_set_power_state(pdev, PCI_D0);
      pci_restore_state(pdev);
      pci_enable_wake(pdev, PCI_D3hot, 0);
      pci_enable_wake(pdev, PCI_D3cold, 0);

      AT_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);

      atl1c_phy_reset(&adapter->hw);
      atl1c_reset_mac(&adapter->hw);
      netif_device_attach(netdev);
      if (netif_running(netdev))
            atl1c_up(adapter);

      return 0;
}

static void atl1c_shutdown(struct pci_dev *pdev)
{
      atl1c_suspend(pdev, PMSG_SUSPEND);
}

static const struct net_device_ops atl1c_netdev_ops = {
      .ndo_open         = atl1c_open,
      .ndo_stop         = atl1c_close,
      .ndo_validate_addr      = eth_validate_addr,
      .ndo_start_xmit         = atl1c_xmit_frame,
      .ndo_set_mac_address    = atl1c_set_mac_addr,
      .ndo_set_multicast_list = atl1c_set_multi,
      .ndo_change_mtu         = atl1c_change_mtu,
      .ndo_do_ioctl           = atl1c_ioctl,
      .ndo_tx_timeout         = atl1c_tx_timeout,
      .ndo_get_stats          = atl1c_get_stats,
      .ndo_vlan_rx_register   = atl1c_vlan_rx_register,
#ifdef CONFIG_NET_POLL_CONTROLLER
      .ndo_poll_controller    = atl1c_netpoll,
#endif
};

static int atl1c_init_netdev(struct net_device *netdev, struct pci_dev *pdev)
{
      SET_NETDEV_DEV(netdev, &pdev->dev);
      pci_set_drvdata(pdev, netdev);

      netdev->irq  = pdev->irq;
      netdev->netdev_ops = &atl1c_netdev_ops;
      netdev->watchdog_timeo = AT_TX_WATCHDOG;
      atl1c_set_ethtool_ops(netdev);

      /* TODO: add when ready */
      netdev->features =      NETIF_F_SG     |
                        NETIF_F_HW_CSUM      |
                        NETIF_F_HW_VLAN_TX |
                        NETIF_F_HW_VLAN_RX |
                        NETIF_F_TSO    |
                        NETIF_F_TSO6;
      return 0;
}

/*
 * atl1c_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in atl1c_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * atl1c_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 */
static int __devinit atl1c_probe(struct pci_dev *pdev,
                         const struct pci_device_id *ent)
{
      struct net_device *netdev;
      struct atl1c_adapter *adapter;
      static int cards_found;

      int err = 0;

      /* enable device (incl. PCI PM wakeup and hotplug setup) */
      err = pci_enable_device_mem(pdev);
      if (err) {
            dev_err(&pdev->dev, "cannot enable PCI device\n");
            return err;
      }

      /*
       * The atl1c chip can DMA to 64-bit addresses, but it uses a single
       * shared register for the high 32 bits, so only a single, aligned,
       * 4 GB physical address range can be used at a time.
       *
       * Supporting 64-bit DMA on this hardware is more trouble than it's
       * worth.  It is far easier to limit to 32-bit DMA than update
       * various kernel subsystems to support the mechanics required by a
       * fixed-high-32-bit system.
       */
      if ((pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) ||
          (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)) {
            dev_err(&pdev->dev, "No usable DMA configuration,aborting\n");
            goto err_dma;
      }

      err = pci_request_regions(pdev, atl1c_driver_name);
      if (err) {
            dev_err(&pdev->dev, "cannot obtain PCI resources\n");
            goto err_pci_reg;
      }

      pci_set_master(pdev);

      netdev = alloc_etherdev(sizeof(struct atl1c_adapter));
      if (netdev == NULL) {
            err = -ENOMEM;
            dev_err(&pdev->dev, "etherdev alloc failed\n");
            goto err_alloc_etherdev;
      }

      err = atl1c_init_netdev(netdev, pdev);
      if (err) {
            dev_err(&pdev->dev, "init netdevice failed\n");
            goto err_init_netdev;
      }
      adapter = netdev_priv(netdev);
      adapter->bd_number = cards_found;
      adapter->netdev = netdev;
      adapter->pdev = pdev;
      adapter->hw.adapter = adapter;
      adapter->msg_enable = netif_msg_init(-1, atl1c_default_msg);
      adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
      if (!adapter->hw.hw_addr) {
            err = -EIO;
            dev_err(&pdev->dev, "cannot map device registers\n");
            goto err_ioremap;
      }
      netdev->base_addr = (unsigned long)adapter->hw.hw_addr;

      /* init mii data */
      adapter->mii.dev = netdev;
      adapter->mii.mdio_read  = atl1c_mdio_read;
      adapter->mii.mdio_write = atl1c_mdio_write;
      adapter->mii.phy_id_mask = 0x1f;
      adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK;
      netif_napi_add(netdev, &adapter->napi, atl1c_clean, 64);
      setup_timer(&adapter->phy_config_timer, atl1c_phy_config,
                  (unsigned long)adapter);
      /* setup the private structure */
      err = atl1c_sw_init(adapter);
      if (err) {
            dev_err(&pdev->dev, "net device private data init failed\n");
            goto err_sw_init;
      }
      atl1c_reset_pcie(&adapter->hw, ATL1C_PCIE_L0S_L1_DISABLE |
                  ATL1C_PCIE_PHY_RESET);

      /* Init GPHY as early as possible due to power saving issue  */
      atl1c_phy_reset(&adapter->hw);

      err = atl1c_reset_mac(&adapter->hw);
      if (err) {
            err = -EIO;
            goto err_reset;
      }

      device_init_wakeup(&pdev->dev, 1);
      /* reset the controller to
       * put the device in a known good starting state */
      err = atl1c_phy_init(&adapter->hw);
      if (err) {
            err = -EIO;
            goto err_reset;
      }
      if (atl1c_read_mac_addr(&adapter->hw) != 0) {
            err = -EIO;
            dev_err(&pdev->dev, "get mac address failed\n");
            goto err_eeprom;
      }
      memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
      memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
      if (netif_msg_probe(adapter))
            dev_dbg(&pdev->dev,
                  "mac address : %02x-%02x-%02x-%02x-%02x-%02x\n",
                  adapter->hw.mac_addr[0], adapter->hw.mac_addr[1],
                  adapter->hw.mac_addr[2], adapter->hw.mac_addr[3],
                  adapter->hw.mac_addr[4], adapter->hw.mac_addr[5]);

      atl1c_hw_set_mac_addr(&adapter->hw);
      INIT_WORK(&adapter->reset_task, atl1c_reset_task);
      INIT_WORK(&adapter->link_chg_task, atl1c_link_chg_task);
      err = register_netdev(netdev);
      if (err) {
            dev_err(&pdev->dev, "register netdevice failed\n");
            goto err_register;
      }

      if (netif_msg_probe(adapter))
            dev_info(&pdev->dev, "version %s\n", ATL1C_DRV_VERSION);
      cards_found++;
      return 0;

err_reset:
err_register:
err_sw_init:
err_eeprom:
      iounmap(adapter->hw.hw_addr);
err_init_netdev:
err_ioremap:
      free_netdev(netdev);
err_alloc_etherdev:
      pci_release_regions(pdev);
err_pci_reg:
err_dma:
      pci_disable_device(pdev);
      return err;
}

/*
 * atl1c_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * atl1c_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 */
static void __devexit atl1c_remove(struct pci_dev *pdev)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct atl1c_adapter *adapter = netdev_priv(netdev);

      unregister_netdev(netdev);
      atl1c_phy_disable(&adapter->hw);

      iounmap(adapter->hw.hw_addr);

      pci_release_regions(pdev);
      pci_disable_device(pdev);
      free_netdev(netdev);
}

/*
 * atl1c_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t atl1c_io_error_detected(struct pci_dev *pdev,
                                    pci_channel_state_t state)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct atl1c_adapter *adapter = netdev_priv(netdev);

      netif_device_detach(netdev);

      if (netif_running(netdev))
            atl1c_down(adapter);

      pci_disable_device(pdev);

      /* Request a slot slot reset. */
      return PCI_ERS_RESULT_NEED_RESET;
}

/*
 * atl1c_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t atl1c_io_slot_reset(struct pci_dev *pdev)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct atl1c_adapter *adapter = netdev_priv(netdev);

      if (pci_enable_device(pdev)) {
            if (netif_msg_hw(adapter))
                  dev_err(&pdev->dev,
                        "Cannot re-enable PCI device after reset\n");
            return PCI_ERS_RESULT_DISCONNECT;
      }
      pci_set_master(pdev);

      pci_enable_wake(pdev, PCI_D3hot, 0);
      pci_enable_wake(pdev, PCI_D3cold, 0);

      atl1c_reset_mac(&adapter->hw);

      return PCI_ERS_RESULT_RECOVERED;
}

/*
 * atl1c_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the atl1c_resume routine.
 */
static void atl1c_io_resume(struct pci_dev *pdev)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct atl1c_adapter *adapter = netdev_priv(netdev);

      if (netif_running(netdev)) {
            if (atl1c_up(adapter)) {
                  if (netif_msg_hw(adapter))
                        dev_err(&pdev->dev,
                              "Cannot bring device back up after reset\n");
                  return;
            }
      }

      netif_device_attach(netdev);
}

static struct pci_error_handlers atl1c_err_handler = {
      .error_detected = atl1c_io_error_detected,
      .slot_reset = atl1c_io_slot_reset,
      .resume = atl1c_io_resume,
};

static struct pci_driver atl1c_driver = {
      .name     = atl1c_driver_name,
      .id_table = atl1c_pci_tbl,
      .probe    = atl1c_probe,
      .remove   = __devexit_p(atl1c_remove),
      /* Power Managment Hooks */
      .suspend  = atl1c_suspend,
      .resume   = atl1c_resume,
      .shutdown = atl1c_shutdown,
      .err_handler = &atl1c_err_handler
};

/*
 * atl1c_init_module - Driver Registration Routine
 *
 * atl1c_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 */
static int __init atl1c_init_module(void)
{
      return pci_register_driver(&atl1c_driver);
}

/*
 * atl1c_exit_module - Driver Exit Cleanup Routine
 *
 * atl1c_exit_module is called just before the driver is removed
 * from memory.
 */
static void __exit atl1c_exit_module(void)
{
      pci_unregister_driver(&atl1c_driver);
}

module_init(atl1c_init_module);
module_exit(atl1c_exit_module);

Generated by  Doxygen 1.6.0   Back to index