Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

cciss.c

/*
 *    Disk Array driver for HP Smart Array controllers.
 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 *    General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 *    02111-1307, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/delay.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/blkpg.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/hdreg.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <asm/uaccess.h>
#include <asm/io.h>

#include <linux/dma-mapping.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#include <linux/completion.h>
#include <scsi/scsi.h>
#include <scsi/sg.h>
#include <scsi/scsi_ioctl.h>
#include <linux/cdrom.h>
#include <linux/scatterlist.h>
#include <linux/kthread.h>

#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
#define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
                  " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
                  " Smart Array G2 Series SAS/SATA Controllers");
MODULE_VERSION("3.6.20");
MODULE_LICENSE("GPL");

#include "cciss_cmd.h"
#include "cciss.h"
#include <linux/cciss_ioctl.h>

/* define the PCI info for the cards we can control */
static const struct pci_device_id cciss_pci_device_id[] = {
      {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
      {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
      {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
      {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
      {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
      {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
      {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
      {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
      {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
      {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
      {PCI_VENDOR_ID_HP,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
            PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
      {0,}
};

MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
      {0x40700E11, "Smart Array 5300", &SA5_access},
      {0x40800E11, "Smart Array 5i", &SA5B_access},
      {0x40820E11, "Smart Array 532", &SA5B_access},
      {0x40830E11, "Smart Array 5312", &SA5B_access},
      {0x409A0E11, "Smart Array 641", &SA5_access},
      {0x409B0E11, "Smart Array 642", &SA5_access},
      {0x409C0E11, "Smart Array 6400", &SA5_access},
      {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
      {0x40910E11, "Smart Array 6i", &SA5_access},
      {0x3225103C, "Smart Array P600", &SA5_access},
      {0x3223103C, "Smart Array P800", &SA5_access},
      {0x3234103C, "Smart Array P400", &SA5_access},
      {0x3235103C, "Smart Array P400i", &SA5_access},
      {0x3211103C, "Smart Array E200i", &SA5_access},
      {0x3212103C, "Smart Array E200", &SA5_access},
      {0x3213103C, "Smart Array E200i", &SA5_access},
      {0x3214103C, "Smart Array E200i", &SA5_access},
      {0x3215103C, "Smart Array E200i", &SA5_access},
      {0x3237103C, "Smart Array E500", &SA5_access},
      {0x323D103C, "Smart Array P700m", &SA5_access},
      {0x3241103C, "Smart Array P212", &SA5_access},
      {0x3243103C, "Smart Array P410", &SA5_access},
      {0x3245103C, "Smart Array P410i", &SA5_access},
      {0x3247103C, "Smart Array P411", &SA5_access},
      {0x3249103C, "Smart Array P812", &SA5_access},
      {0x324A103C, "Smart Array P712m", &SA5_access},
      {0x324B103C, "Smart Array P711m", &SA5_access},
      {0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

#define MAX_CTLR  32

/* Originally cciss driver only supports 8 major numbers */
#define MAX_CTLR_ORIG   8

static ctlr_info_t *hba[MAX_CTLR];

static void do_cciss_request(struct request_queue *q);
static irqreturn_t do_cciss_intr(int irq, void *dev_id);
static int cciss_open(struct block_device *bdev, fmode_t mode);
static int cciss_release(struct gendisk *disk, fmode_t mode);
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
                   unsigned int cmd, unsigned long arg);
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);

static int cciss_revalidate(struct gendisk *disk);
static int rebuild_lun_table(ctlr_info_t *h, int first_time);
static int deregister_disk(ctlr_info_t *h, int drv_index,
                     int clear_all);

static void cciss_read_capacity(int ctlr, int logvol, int withirq,
                  sector_t *total_size, unsigned int *block_size);
static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
                  sector_t *total_size, unsigned int *block_size);
static void cciss_geometry_inquiry(int ctlr, int logvol,
                  int withirq, sector_t total_size,
                  unsigned int block_size, InquiryData_struct *inq_buff,
                           drive_info_struct *drv);
static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
                                 __u32);
static void start_io(ctlr_info_t *h);
static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
               __u8 page_code, unsigned char *scsi3addr, int cmd_type);
static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
                  __u8 page_code, unsigned char scsi3addr[],
                  int cmd_type);
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
      int attempt_retry);
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);

static void fail_all_cmds(unsigned long ctlr);
static int scan_thread(void *data);
static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);

#ifdef CONFIG_PROC_FS
static void cciss_procinit(int i);
#else
static void cciss_procinit(int i)
{
}
#endif                        /* CONFIG_PROC_FS */

#ifdef CONFIG_COMPAT
static int cciss_compat_ioctl(struct block_device *, fmode_t,
                        unsigned, unsigned long);
#endif

static struct block_device_operations cciss_fops = {
      .owner = THIS_MODULE,
      .open = cciss_open,
      .release = cciss_release,
      .locked_ioctl = cciss_ioctl,
      .getgeo = cciss_getgeo,
#ifdef CONFIG_COMPAT
      .compat_ioctl = cciss_compat_ioctl,
#endif
      .revalidate_disk = cciss_revalidate,
};

/*
 * Enqueuing and dequeuing functions for cmdlists.
 */
static inline void addQ(struct hlist_head *list, CommandList_struct *c)
{
      hlist_add_head(&c->list, list);
}

static inline void removeQ(CommandList_struct *c)
{
      /*
       * After kexec/dump some commands might still
       * be in flight, which the firmware will try
       * to complete. Resetting the firmware doesn't work
       * with old fw revisions, so we have to mark
       * them off as 'stale' to prevent the driver from
       * falling over.
       */
      if (WARN_ON(hlist_unhashed(&c->list))) {
            c->cmd_type = CMD_MSG_STALE;
            return;
      }

      hlist_del_init(&c->list);
}

#include "cciss_scsi.c"       /* For SCSI tape support */

#define RAID_UNKNOWN 6

#ifdef CONFIG_PROC_FS

/*
 * Report information about this controller.
 */
#define ENG_GIG 1000000000
#define ENG_GIG_FACTOR (ENG_GIG/512)
#define ENGAGE_SCSI     "engage scsi"
static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
      "UNKNOWN"
};

static struct proc_dir_entry *proc_cciss;

static void cciss_seq_show_header(struct seq_file *seq)
{
      ctlr_info_t *h = seq->private;

      seq_printf(seq, "%s: HP %s Controller\n"
            "Board ID: 0x%08lx\n"
            "Firmware Version: %c%c%c%c\n"
            "IRQ: %d\n"
            "Logical drives: %d\n"
            "Current Q depth: %d\n"
            "Current # commands on controller: %d\n"
            "Max Q depth since init: %d\n"
            "Max # commands on controller since init: %d\n"
            "Max SG entries since init: %d\n",
            h->devname,
            h->product_name,
            (unsigned long)h->board_id,
            h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
            h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
            h->num_luns,
            h->Qdepth, h->commands_outstanding,
            h->maxQsinceinit, h->max_outstanding, h->maxSG);

#ifdef CONFIG_CISS_SCSI_TAPE
      cciss_seq_tape_report(seq, h->ctlr);
#endif /* CONFIG_CISS_SCSI_TAPE */
}

static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
{
      ctlr_info_t *h = seq->private;
      unsigned ctlr = h->ctlr;
      unsigned long flags;

      /* prevent displaying bogus info during configuration
       * or deconfiguration of a logical volume
       */
      spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
      if (h->busy_configuring) {
            spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
            return ERR_PTR(-EBUSY);
      }
      h->busy_configuring = 1;
      spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);

      if (*pos == 0)
            cciss_seq_show_header(seq);

      return pos;
}

static int cciss_seq_show(struct seq_file *seq, void *v)
{
      sector_t vol_sz, vol_sz_frac;
      ctlr_info_t *h = seq->private;
      unsigned ctlr = h->ctlr;
      loff_t *pos = v;
      drive_info_struct *drv = &h->drv[*pos];

      if (*pos > h->highest_lun)
            return 0;

      if (drv->heads == 0)
            return 0;

      vol_sz = drv->nr_blocks;
      vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
      vol_sz_frac *= 100;
      sector_div(vol_sz_frac, ENG_GIG_FACTOR);

      if (drv->raid_level > 5)
            drv->raid_level = RAID_UNKNOWN;
      seq_printf(seq, "cciss/c%dd%d:"
                  "\t%4u.%02uGB\tRAID %s\n",
                  ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
                  raid_label[drv->raid_level]);
      return 0;
}

static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
      ctlr_info_t *h = seq->private;

      if (*pos > h->highest_lun)
            return NULL;
      *pos += 1;

      return pos;
}

static void cciss_seq_stop(struct seq_file *seq, void *v)
{
      ctlr_info_t *h = seq->private;

      /* Only reset h->busy_configuring if we succeeded in setting
       * it during cciss_seq_start. */
      if (v == ERR_PTR(-EBUSY))
            return;

      h->busy_configuring = 0;
}

static struct seq_operations cciss_seq_ops = {
      .start = cciss_seq_start,
      .show  = cciss_seq_show,
      .next  = cciss_seq_next,
      .stop  = cciss_seq_stop,
};

static int cciss_seq_open(struct inode *inode, struct file *file)
{
      int ret = seq_open(file, &cciss_seq_ops);
      struct seq_file *seq = file->private_data;

      if (!ret)
            seq->private = PDE(inode)->data;

      return ret;
}

static ssize_t
cciss_proc_write(struct file *file, const char __user *buf,
             size_t length, loff_t *ppos)
{
      int err;
      char *buffer;

#ifndef CONFIG_CISS_SCSI_TAPE
      return -EINVAL;
#endif

      if (!buf || length > PAGE_SIZE - 1)
            return -EINVAL;

      buffer = (char *)__get_free_page(GFP_KERNEL);
      if (!buffer)
            return -ENOMEM;

      err = -EFAULT;
      if (copy_from_user(buffer, buf, length))
            goto out;
      buffer[length] = '\0';

#ifdef CONFIG_CISS_SCSI_TAPE
      if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
            struct seq_file *seq = file->private_data;
            ctlr_info_t *h = seq->private;
            int rc;

            rc = cciss_engage_scsi(h->ctlr);
            if (rc != 0)
                  err = -rc;
            else
                  err = length;
      } else
#endif /* CONFIG_CISS_SCSI_TAPE */
            err = -EINVAL;
      /* might be nice to have "disengage" too, but it's not
         safely possible. (only 1 module use count, lock issues.) */

out:
      free_page((unsigned long)buffer);
      return err;
}

static struct file_operations cciss_proc_fops = {
      .owner       = THIS_MODULE,
      .open    = cciss_seq_open,
      .read    = seq_read,
      .llseek  = seq_lseek,
      .release = seq_release,
      .write       = cciss_proc_write,
};

static void __devinit cciss_procinit(int i)
{
      struct proc_dir_entry *pde;

      if (proc_cciss == NULL)
            proc_cciss = proc_mkdir("driver/cciss", NULL);
      if (!proc_cciss)
            return;
      pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
                              S_IROTH, proc_cciss,
                              &cciss_proc_fops, hba[i]);
}
#endif                        /* CONFIG_PROC_FS */

#define MAX_PRODUCT_NAME_LEN 19

#define to_hba(n) container_of(n, struct ctlr_info, dev)
#define to_drv(n) container_of(n, drive_info_struct, dev)

static struct device_type cciss_host_type = {
      .name       = "cciss_host",
};

static ssize_t dev_show_unique_id(struct device *dev,
                         struct device_attribute *attr,
                         char *buf)
{
      drive_info_struct *drv = to_drv(dev);
      struct ctlr_info *h = to_hba(drv->dev.parent);
      __u8 sn[16];
      unsigned long flags;
      int ret = 0;

      spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
      if (h->busy_configuring)
            ret = -EBUSY;
      else
            memcpy(sn, drv->serial_no, sizeof(sn));
      spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);

      if (ret)
            return ret;
      else
            return snprintf(buf, 16 * 2 + 2,
                        "%02X%02X%02X%02X%02X%02X%02X%02X"
                        "%02X%02X%02X%02X%02X%02X%02X%02X\n",
                        sn[0], sn[1], sn[2], sn[3],
                        sn[4], sn[5], sn[6], sn[7],
                        sn[8], sn[9], sn[10], sn[11],
                        sn[12], sn[13], sn[14], sn[15]);
}
DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);

static ssize_t dev_show_vendor(struct device *dev,
                         struct device_attribute *attr,
                         char *buf)
{
      drive_info_struct *drv = to_drv(dev);
      struct ctlr_info *h = to_hba(drv->dev.parent);
      char vendor[VENDOR_LEN + 1];
      unsigned long flags;
      int ret = 0;

      spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
      if (h->busy_configuring)
            ret = -EBUSY;
      else
            memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
      spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);

      if (ret)
            return ret;
      else
            return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
}
DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);

static ssize_t dev_show_model(struct device *dev,
                        struct device_attribute *attr,
                        char *buf)
{
      drive_info_struct *drv = to_drv(dev);
      struct ctlr_info *h = to_hba(drv->dev.parent);
      char model[MODEL_LEN + 1];
      unsigned long flags;
      int ret = 0;

      spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
      if (h->busy_configuring)
            ret = -EBUSY;
      else
            memcpy(model, drv->model, MODEL_LEN + 1);
      spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);

      if (ret)
            return ret;
      else
            return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
}
DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);

static ssize_t dev_show_rev(struct device *dev,
                      struct device_attribute *attr,
                      char *buf)
{
      drive_info_struct *drv = to_drv(dev);
      struct ctlr_info *h = to_hba(drv->dev.parent);
      char rev[REV_LEN + 1];
      unsigned long flags;
      int ret = 0;

      spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
      if (h->busy_configuring)
            ret = -EBUSY;
      else
            memcpy(rev, drv->rev, REV_LEN + 1);
      spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);

      if (ret)
            return ret;
      else
            return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
}
DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);

static struct attribute *cciss_dev_attrs[] = {
      &dev_attr_unique_id.attr,
      &dev_attr_model.attr,
      &dev_attr_vendor.attr,
      &dev_attr_rev.attr,
      NULL
};

static struct attribute_group cciss_dev_attr_group = {
      .attrs = cciss_dev_attrs,
};

static struct attribute_group *cciss_dev_attr_groups[] = {
      &cciss_dev_attr_group,
      NULL
};

static struct device_type cciss_dev_type = {
      .name       = "cciss_device",
      .groups           = cciss_dev_attr_groups,
};

static struct bus_type cciss_bus_type = {
      .name       = "cciss",
};


/*
 * Initialize sysfs entry for each controller.  This sets up and registers
 * the 'cciss#' directory for each individual controller under
 * /sys/bus/pci/devices/<dev>/.
 */
static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
{
      device_initialize(&h->dev);
      h->dev.type = &cciss_host_type;
      h->dev.bus = &cciss_bus_type;
      dev_set_name(&h->dev, "%s", h->devname);
      h->dev.parent = &h->pdev->dev;

      return device_add(&h->dev);
}

/*
 * Remove sysfs entries for an hba.
 */
static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
{
      device_del(&h->dev);
}

/*
 * Initialize sysfs for each logical drive.  This sets up and registers
 * the 'c#d#' directory for each individual logical drive under
 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
 * /sys/block/cciss!c#d# to this entry.
 */
static int cciss_create_ld_sysfs_entry(struct ctlr_info *h,
                               drive_info_struct *drv,
                               int drv_index)
{
      device_initialize(&drv->dev);
      drv->dev.type = &cciss_dev_type;
      drv->dev.bus = &cciss_bus_type;
      dev_set_name(&drv->dev, "c%dd%d", h->ctlr, drv_index);
      drv->dev.parent = &h->dev;
      return device_add(&drv->dev);
}

/*
 * Remove sysfs entries for a logical drive.
 */
static void cciss_destroy_ld_sysfs_entry(drive_info_struct *drv)
{
      device_del(&drv->dev);
}

/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  For operations that can wait for kmalloc
 * to possible sleep, this routine can be called with get_from_pool set to 0.
 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
 */
static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
{
      CommandList_struct *c;
      int i;
      u64bit temp64;
      dma_addr_t cmd_dma_handle, err_dma_handle;

      if (!get_from_pool) {
            c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
                  sizeof(CommandList_struct), &cmd_dma_handle);
            if (c == NULL)
                  return NULL;
            memset(c, 0, sizeof(CommandList_struct));

            c->cmdindex = -1;

            c->err_info = (ErrorInfo_struct *)
                pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
                      &err_dma_handle);

            if (c->err_info == NULL) {
                  pci_free_consistent(h->pdev,
                        sizeof(CommandList_struct), c, cmd_dma_handle);
                  return NULL;
            }
            memset(c->err_info, 0, sizeof(ErrorInfo_struct));
      } else {          /* get it out of the controllers pool */

            do {
                  i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
                  if (i == h->nr_cmds)
                        return NULL;
            } while (test_and_set_bit
                   (i & (BITS_PER_LONG - 1),
                    h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
#ifdef CCISS_DEBUG
            printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
#endif
            c = h->cmd_pool + i;
            memset(c, 0, sizeof(CommandList_struct));
            cmd_dma_handle = h->cmd_pool_dhandle
                + i * sizeof(CommandList_struct);
            c->err_info = h->errinfo_pool + i;
            memset(c->err_info, 0, sizeof(ErrorInfo_struct));
            err_dma_handle = h->errinfo_pool_dhandle
                + i * sizeof(ErrorInfo_struct);
            h->nr_allocs++;

            c->cmdindex = i;
      }

      INIT_HLIST_NODE(&c->list);
      c->busaddr = (__u32) cmd_dma_handle;
      temp64.val = (__u64) err_dma_handle;
      c->ErrDesc.Addr.lower = temp64.val32.lower;
      c->ErrDesc.Addr.upper = temp64.val32.upper;
      c->ErrDesc.Len = sizeof(ErrorInfo_struct);

      c->ctlr = h->ctlr;
      return c;
}

/*
 * Frees a command block that was previously allocated with cmd_alloc().
 */
static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
{
      int i;
      u64bit temp64;

      if (!got_from_pool) {
            temp64.val32.lower = c->ErrDesc.Addr.lower;
            temp64.val32.upper = c->ErrDesc.Addr.upper;
            pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
                            c->err_info, (dma_addr_t) temp64.val);
            pci_free_consistent(h->pdev, sizeof(CommandList_struct),
                            c, (dma_addr_t) c->busaddr);
      } else {
            i = c - h->cmd_pool;
            clear_bit(i & (BITS_PER_LONG - 1),
                    h->cmd_pool_bits + (i / BITS_PER_LONG));
            h->nr_frees++;
      }
}

static inline ctlr_info_t *get_host(struct gendisk *disk)
{
      return disk->queue->queuedata;
}

static inline drive_info_struct *get_drv(struct gendisk *disk)
{
      return disk->private_data;
}

/*
 * Open.  Make sure the device is really there.
 */
static int cciss_open(struct block_device *bdev, fmode_t mode)
{
      ctlr_info_t *host = get_host(bdev->bd_disk);
      drive_info_struct *drv = get_drv(bdev->bd_disk);

#ifdef CCISS_DEBUG
      printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
#endif                        /* CCISS_DEBUG */

      if (host->busy_initializing || drv->busy_configuring)
            return -EBUSY;
      /*
       * Root is allowed to open raw volume zero even if it's not configured
       * so array config can still work. Root is also allowed to open any
       * volume that has a LUN ID, so it can issue IOCTL to reread the
       * disk information.  I don't think I really like this
       * but I'm already using way to many device nodes to claim another one
       * for "raw controller".
       */
      if (drv->heads == 0) {
            if (MINOR(bdev->bd_dev) != 0) {     /* not node 0? */
                  /* if not node 0 make sure it is a partition = 0 */
                  if (MINOR(bdev->bd_dev) & 0x0f) {
                        return -ENXIO;
                        /* if it is, make sure we have a LUN ID */
                  } else if (drv->LunID == 0) {
                        return -ENXIO;
                  }
            }
            if (!capable(CAP_SYS_ADMIN))
                  return -EPERM;
      }
      drv->usage_count++;
      host->usage_count++;
      return 0;
}

/*
 * Close.  Sync first.
 */
static int cciss_release(struct gendisk *disk, fmode_t mode)
{
      ctlr_info_t *host = get_host(disk);
      drive_info_struct *drv = get_drv(disk);

#ifdef CCISS_DEBUG
      printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
#endif                        /* CCISS_DEBUG */

      drv->usage_count--;
      host->usage_count--;
      return 0;
}

#ifdef CONFIG_COMPAT

static int do_ioctl(struct block_device *bdev, fmode_t mode,
                unsigned cmd, unsigned long arg)
{
      int ret;
      lock_kernel();
      ret = cciss_ioctl(bdev, mode, cmd, arg);
      unlock_kernel();
      return ret;
}

static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
                          unsigned cmd, unsigned long arg);
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
                              unsigned cmd, unsigned long arg);

static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
                        unsigned cmd, unsigned long arg)
{
      switch (cmd) {
      case CCISS_GETPCIINFO:
      case CCISS_GETINTINFO:
      case CCISS_SETINTINFO:
      case CCISS_GETNODENAME:
      case CCISS_SETNODENAME:
      case CCISS_GETHEARTBEAT:
      case CCISS_GETBUSTYPES:
      case CCISS_GETFIRMVER:
      case CCISS_GETDRIVVER:
      case CCISS_REVALIDVOLS:
      case CCISS_DEREGDISK:
      case CCISS_REGNEWDISK:
      case CCISS_REGNEWD:
      case CCISS_RESCANDISK:
      case CCISS_GETLUNINFO:
            return do_ioctl(bdev, mode, cmd, arg);

      case CCISS_PASSTHRU32:
            return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
      case CCISS_BIG_PASSTHRU32:
            return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);

      default:
            return -ENOIOCTLCMD;
      }
}

static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
                          unsigned cmd, unsigned long arg)
{
      IOCTL32_Command_struct __user *arg32 =
          (IOCTL32_Command_struct __user *) arg;
      IOCTL_Command_struct arg64;
      IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
      int err;
      u32 cp;

      err = 0;
      err |=
          copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
                     sizeof(arg64.LUN_info));
      err |=
          copy_from_user(&arg64.Request, &arg32->Request,
                     sizeof(arg64.Request));
      err |=
          copy_from_user(&arg64.error_info, &arg32->error_info,
                     sizeof(arg64.error_info));
      err |= get_user(arg64.buf_size, &arg32->buf_size);
      err |= get_user(cp, &arg32->buf);
      arg64.buf = compat_ptr(cp);
      err |= copy_to_user(p, &arg64, sizeof(arg64));

      if (err)
            return -EFAULT;

      err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
      if (err)
            return err;
      err |=
          copy_in_user(&arg32->error_info, &p->error_info,
                   sizeof(arg32->error_info));
      if (err)
            return -EFAULT;
      return err;
}

static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
                              unsigned cmd, unsigned long arg)
{
      BIG_IOCTL32_Command_struct __user *arg32 =
          (BIG_IOCTL32_Command_struct __user *) arg;
      BIG_IOCTL_Command_struct arg64;
      BIG_IOCTL_Command_struct __user *p =
          compat_alloc_user_space(sizeof(arg64));
      int err;
      u32 cp;

      err = 0;
      err |=
          copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
                     sizeof(arg64.LUN_info));
      err |=
          copy_from_user(&arg64.Request, &arg32->Request,
                     sizeof(arg64.Request));
      err |=
          copy_from_user(&arg64.error_info, &arg32->error_info,
                     sizeof(arg64.error_info));
      err |= get_user(arg64.buf_size, &arg32->buf_size);
      err |= get_user(arg64.malloc_size, &arg32->malloc_size);
      err |= get_user(cp, &arg32->buf);
      arg64.buf = compat_ptr(cp);
      err |= copy_to_user(p, &arg64, sizeof(arg64));

      if (err)
            return -EFAULT;

      err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
      if (err)
            return err;
      err |=
          copy_in_user(&arg32->error_info, &p->error_info,
                   sizeof(arg32->error_info));
      if (err)
            return -EFAULT;
      return err;
}
#endif

static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
      drive_info_struct *drv = get_drv(bdev->bd_disk);

      if (!drv->cylinders)
            return -ENXIO;

      geo->heads = drv->heads;
      geo->sectors = drv->sectors;
      geo->cylinders = drv->cylinders;
      return 0;
}

static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
{
      if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
                  c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
            (void)check_for_unit_attention(host, c);
}
/*
 * ioctl
 */
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
                   unsigned int cmd, unsigned long arg)
{
      struct gendisk *disk = bdev->bd_disk;
      ctlr_info_t *host = get_host(disk);
      drive_info_struct *drv = get_drv(disk);
      int ctlr = host->ctlr;
      void __user *argp = (void __user *)arg;

#ifdef CCISS_DEBUG
      printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
#endif                        /* CCISS_DEBUG */

      switch (cmd) {
      case CCISS_GETPCIINFO:
            {
                  cciss_pci_info_struct pciinfo;

                  if (!arg)
                        return -EINVAL;
                  pciinfo.domain = pci_domain_nr(host->pdev->bus);
                  pciinfo.bus = host->pdev->bus->number;
                  pciinfo.dev_fn = host->pdev->devfn;
                  pciinfo.board_id = host->board_id;
                  if (copy_to_user
                      (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
                        return -EFAULT;
                  return 0;
            }
      case CCISS_GETINTINFO:
            {
                  cciss_coalint_struct intinfo;
                  if (!arg)
                        return -EINVAL;
                  intinfo.delay =
                      readl(&host->cfgtable->HostWrite.CoalIntDelay);
                  intinfo.count =
                      readl(&host->cfgtable->HostWrite.CoalIntCount);
                  if (copy_to_user
                      (argp, &intinfo, sizeof(cciss_coalint_struct)))
                        return -EFAULT;
                  return 0;
            }
      case CCISS_SETINTINFO:
            {
                  cciss_coalint_struct intinfo;
                  unsigned long flags;
                  int i;

                  if (!arg)
                        return -EINVAL;
                  if (!capable(CAP_SYS_ADMIN))
                        return -EPERM;
                  if (copy_from_user
                      (&intinfo, argp, sizeof(cciss_coalint_struct)))
                        return -EFAULT;
                  if ((intinfo.delay == 0) && (intinfo.count == 0))
                  {
//                      printk("cciss_ioctl: delay and count cannot be 0\n");
                        return -EINVAL;
                  }
                  spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
                  /* Update the field, and then ring the doorbell */
                  writel(intinfo.delay,
                         &(host->cfgtable->HostWrite.CoalIntDelay));
                  writel(intinfo.count,
                         &(host->cfgtable->HostWrite.CoalIntCount));
                  writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);

                  for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
                        if (!(readl(host->vaddr + SA5_DOORBELL)
                              & CFGTBL_ChangeReq))
                              break;
                        /* delay and try again */
                        udelay(1000);
                  }
                  spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
                  if (i >= MAX_IOCTL_CONFIG_WAIT)
                        return -EAGAIN;
                  return 0;
            }
      case CCISS_GETNODENAME:
            {
                  NodeName_type NodeName;
                  int i;

                  if (!arg)
                        return -EINVAL;
                  for (i = 0; i < 16; i++)
                        NodeName[i] =
                            readb(&host->cfgtable->ServerName[i]);
                  if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
                        return -EFAULT;
                  return 0;
            }
      case CCISS_SETNODENAME:
            {
                  NodeName_type NodeName;
                  unsigned long flags;
                  int i;

                  if (!arg)
                        return -EINVAL;
                  if (!capable(CAP_SYS_ADMIN))
                        return -EPERM;

                  if (copy_from_user
                      (NodeName, argp, sizeof(NodeName_type)))
                        return -EFAULT;

                  spin_lock_irqsave(CCISS_LOCK(ctlr), flags);

                  /* Update the field, and then ring the doorbell */
                  for (i = 0; i < 16; i++)
                        writeb(NodeName[i],
                               &host->cfgtable->ServerName[i]);

                  writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);

                  for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
                        if (!(readl(host->vaddr + SA5_DOORBELL)
                              & CFGTBL_ChangeReq))
                              break;
                        /* delay and try again */
                        udelay(1000);
                  }
                  spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
                  if (i >= MAX_IOCTL_CONFIG_WAIT)
                        return -EAGAIN;
                  return 0;
            }

      case CCISS_GETHEARTBEAT:
            {
                  Heartbeat_type heartbeat;

                  if (!arg)
                        return -EINVAL;
                  heartbeat = readl(&host->cfgtable->HeartBeat);
                  if (copy_to_user
                      (argp, &heartbeat, sizeof(Heartbeat_type)))
                        return -EFAULT;
                  return 0;
            }
      case CCISS_GETBUSTYPES:
            {
                  BusTypes_type BusTypes;

                  if (!arg)
                        return -EINVAL;
                  BusTypes = readl(&host->cfgtable->BusTypes);
                  if (copy_to_user
                      (argp, &BusTypes, sizeof(BusTypes_type)))
                        return -EFAULT;
                  return 0;
            }
      case CCISS_GETFIRMVER:
            {
                  FirmwareVer_type firmware;

                  if (!arg)
                        return -EINVAL;
                  memcpy(firmware, host->firm_ver, 4);

                  if (copy_to_user
                      (argp, firmware, sizeof(FirmwareVer_type)))
                        return -EFAULT;
                  return 0;
            }
      case CCISS_GETDRIVVER:
            {
                  DriverVer_type DriverVer = DRIVER_VERSION;

                  if (!arg)
                        return -EINVAL;

                  if (copy_to_user
                      (argp, &DriverVer, sizeof(DriverVer_type)))
                        return -EFAULT;
                  return 0;
            }

      case CCISS_DEREGDISK:
      case CCISS_REGNEWD:
      case CCISS_REVALIDVOLS:
            return rebuild_lun_table(host, 0);

      case CCISS_GETLUNINFO:{
                  LogvolInfo_struct luninfo;

                  luninfo.LunID = drv->LunID;
                  luninfo.num_opens = drv->usage_count;
                  luninfo.num_parts = 0;
                  if (copy_to_user(argp, &luninfo,
                               sizeof(LogvolInfo_struct)))
                        return -EFAULT;
                  return 0;
            }
      case CCISS_PASSTHRU:
            {
                  IOCTL_Command_struct iocommand;
                  CommandList_struct *c;
                  char *buff = NULL;
                  u64bit temp64;
                  unsigned long flags;
                  DECLARE_COMPLETION_ONSTACK(wait);

                  if (!arg)
                        return -EINVAL;

                  if (!capable(CAP_SYS_RAWIO))
                        return -EPERM;

                  if (copy_from_user
                      (&iocommand, argp, sizeof(IOCTL_Command_struct)))
                        return -EFAULT;
                  if ((iocommand.buf_size < 1) &&
                      (iocommand.Request.Type.Direction != XFER_NONE)) {
                        return -EINVAL;
                  }
#if 0                   /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
                  /* Check kmalloc limits */
                  if (iocommand.buf_size > 128000)
                        return -EINVAL;
#endif
                  if (iocommand.buf_size > 0) {
                        buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
                        if (buff == NULL)
                              return -EFAULT;
                  }
                  if (iocommand.Request.Type.Direction == XFER_WRITE) {
                        /* Copy the data into the buffer we created */
                        if (copy_from_user
                            (buff, iocommand.buf, iocommand.buf_size)) {
                              kfree(buff);
                              return -EFAULT;
                        }
                  } else {
                        memset(buff, 0, iocommand.buf_size);
                  }
                  if ((c = cmd_alloc(host, 0)) == NULL) {
                        kfree(buff);
                        return -ENOMEM;
                  }
                  // Fill in the command type
                  c->cmd_type = CMD_IOCTL_PEND;
                  // Fill in Command Header
                  c->Header.ReplyQueue = 0;     // unused in simple mode
                  if (iocommand.buf_size > 0)   // buffer to fill
                  {
                        c->Header.SGList = 1;
                        c->Header.SGTotal = 1;
                  } else      // no buffers to fill
                  {
                        c->Header.SGList = 0;
                        c->Header.SGTotal = 0;
                  }
                  c->Header.LUN = iocommand.LUN_info;
                  c->Header.Tag.lower = c->busaddr;   // use the kernel address the cmd block for tag

                  // Fill in Request block
                  c->Request = iocommand.Request;

                  // Fill in the scatter gather information
                  if (iocommand.buf_size > 0) {
                        temp64.val = pci_map_single(host->pdev, buff,
                              iocommand.buf_size,
                              PCI_DMA_BIDIRECTIONAL);
                        c->SG[0].Addr.lower = temp64.val32.lower;
                        c->SG[0].Addr.upper = temp64.val32.upper;
                        c->SG[0].Len = iocommand.buf_size;
                        c->SG[0].Ext = 0; // we are not chaining
                  }
                  c->waiting = &wait;

                  /* Put the request on the tail of the request queue */
                  spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
                  addQ(&host->reqQ, c);
                  host->Qdepth++;
                  start_io(host);
                  spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);

                  wait_for_completion(&wait);

                  /* unlock the buffers from DMA */
                  temp64.val32.lower = c->SG[0].Addr.lower;
                  temp64.val32.upper = c->SG[0].Addr.upper;
                  pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
                               iocommand.buf_size,
                               PCI_DMA_BIDIRECTIONAL);

                  check_ioctl_unit_attention(host, c);

                  /* Copy the error information out */
                  iocommand.error_info = *(c->err_info);
                  if (copy_to_user
                      (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
                        kfree(buff);
                        cmd_free(host, c, 0);
                        return -EFAULT;
                  }

                  if (iocommand.Request.Type.Direction == XFER_READ) {
                        /* Copy the data out of the buffer we created */
                        if (copy_to_user
                            (iocommand.buf, buff, iocommand.buf_size)) {
                              kfree(buff);
                              cmd_free(host, c, 0);
                              return -EFAULT;
                        }
                  }
                  kfree(buff);
                  cmd_free(host, c, 0);
                  return 0;
            }
      case CCISS_BIG_PASSTHRU:{
                  BIG_IOCTL_Command_struct *ioc;
                  CommandList_struct *c;
                  unsigned char **buff = NULL;
                  int *buff_size = NULL;
                  u64bit temp64;
                  unsigned long flags;
                  BYTE sg_used = 0;
                  int status = 0;
                  int i;
                  DECLARE_COMPLETION_ONSTACK(wait);
                  __u32 left;
                  __u32 sz;
                  BYTE __user *data_ptr;

                  if (!arg)
                        return -EINVAL;
                  if (!capable(CAP_SYS_RAWIO))
                        return -EPERM;
                  ioc = (BIG_IOCTL_Command_struct *)
                      kmalloc(sizeof(*ioc), GFP_KERNEL);
                  if (!ioc) {
                        status = -ENOMEM;
                        goto cleanup1;
                  }
                  if (copy_from_user(ioc, argp, sizeof(*ioc))) {
                        status = -EFAULT;
                        goto cleanup1;
                  }
                  if ((ioc->buf_size < 1) &&
                      (ioc->Request.Type.Direction != XFER_NONE)) {
                        status = -EINVAL;
                        goto cleanup1;
                  }
                  /* Check kmalloc limits  using all SGs */
                  if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
                        status = -EINVAL;
                        goto cleanup1;
                  }
                  if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
                        status = -EINVAL;
                        goto cleanup1;
                  }
                  buff =
                      kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
                  if (!buff) {
                        status = -ENOMEM;
                        goto cleanup1;
                  }
                  buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
                                       GFP_KERNEL);
                  if (!buff_size) {
                        status = -ENOMEM;
                        goto cleanup1;
                  }
                  left = ioc->buf_size;
                  data_ptr = ioc->buf;
                  while (left) {
                        sz = (left >
                              ioc->malloc_size) ? ioc->
                            malloc_size : left;
                        buff_size[sg_used] = sz;
                        buff[sg_used] = kmalloc(sz, GFP_KERNEL);
                        if (buff[sg_used] == NULL) {
                              status = -ENOMEM;
                              goto cleanup1;
                        }
                        if (ioc->Request.Type.Direction == XFER_WRITE) {
                              if (copy_from_user
                                  (buff[sg_used], data_ptr, sz)) {
                                    status = -EFAULT;
                                    goto cleanup1;
                              }
                        } else {
                              memset(buff[sg_used], 0, sz);
                        }
                        left -= sz;
                        data_ptr += sz;
                        sg_used++;
                  }
                  if ((c = cmd_alloc(host, 0)) == NULL) {
                        status = -ENOMEM;
                        goto cleanup1;
                  }
                  c->cmd_type = CMD_IOCTL_PEND;
                  c->Header.ReplyQueue = 0;

                  if (ioc->buf_size > 0) {
                        c->Header.SGList = sg_used;
                        c->Header.SGTotal = sg_used;
                  } else {
                        c->Header.SGList = 0;
                        c->Header.SGTotal = 0;
                  }
                  c->Header.LUN = ioc->LUN_info;
                  c->Header.Tag.lower = c->busaddr;

                  c->Request = ioc->Request;
                  if (ioc->buf_size > 0) {
                        int i;
                        for (i = 0; i < sg_used; i++) {
                              temp64.val =
                                  pci_map_single(host->pdev, buff[i],
                                        buff_size[i],
                                        PCI_DMA_BIDIRECTIONAL);
                              c->SG[i].Addr.lower =
                                  temp64.val32.lower;
                              c->SG[i].Addr.upper =
                                  temp64.val32.upper;
                              c->SG[i].Len = buff_size[i];
                              c->SG[i].Ext = 0; /* we are not chaining */
                        }
                  }
                  c->waiting = &wait;
                  /* Put the request on the tail of the request queue */
                  spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
                  addQ(&host->reqQ, c);
                  host->Qdepth++;
                  start_io(host);
                  spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
                  wait_for_completion(&wait);
                  /* unlock the buffers from DMA */
                  for (i = 0; i < sg_used; i++) {
                        temp64.val32.lower = c->SG[i].Addr.lower;
                        temp64.val32.upper = c->SG[i].Addr.upper;
                        pci_unmap_single(host->pdev,
                              (dma_addr_t) temp64.val, buff_size[i],
                              PCI_DMA_BIDIRECTIONAL);
                  }
                  check_ioctl_unit_attention(host, c);
                  /* Copy the error information out */
                  ioc->error_info = *(c->err_info);
                  if (copy_to_user(argp, ioc, sizeof(*ioc))) {
                        cmd_free(host, c, 0);
                        status = -EFAULT;
                        goto cleanup1;
                  }
                  if (ioc->Request.Type.Direction == XFER_READ) {
                        /* Copy the data out of the buffer we created */
                        BYTE __user *ptr = ioc->buf;
                        for (i = 0; i < sg_used; i++) {
                              if (copy_to_user
                                  (ptr, buff[i], buff_size[i])) {
                                    cmd_free(host, c, 0);
                                    status = -EFAULT;
                                    goto cleanup1;
                              }
                              ptr += buff_size[i];
                        }
                  }
                  cmd_free(host, c, 0);
                  status = 0;
                  cleanup1:
                  if (buff) {
                        for (i = 0; i < sg_used; i++)
                              kfree(buff[i]);
                        kfree(buff);
                  }
                  kfree(buff_size);
                  kfree(ioc);
                  return status;
            }

      /* scsi_cmd_ioctl handles these, below, though some are not */
      /* very meaningful for cciss.  SG_IO is the main one people want. */

      case SG_GET_VERSION_NUM:
      case SG_SET_TIMEOUT:
      case SG_GET_TIMEOUT:
      case SG_GET_RESERVED_SIZE:
      case SG_SET_RESERVED_SIZE:
      case SG_EMULATED_HOST:
      case SG_IO:
      case SCSI_IOCTL_SEND_COMMAND:
            return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);

      /* scsi_cmd_ioctl would normally handle these, below, but */
      /* they aren't a good fit for cciss, as CD-ROMs are */
      /* not supported, and we don't have any bus/target/lun */
      /* which we present to the kernel. */

      case CDROM_SEND_PACKET:
      case CDROMCLOSETRAY:
      case CDROMEJECT:
      case SCSI_IOCTL_GET_IDLUN:
      case SCSI_IOCTL_GET_BUS_NUMBER:
      default:
            return -ENOTTY;
      }
}

static void cciss_check_queues(ctlr_info_t *h)
{
      int start_queue = h->next_to_run;
      int i;

      /* check to see if we have maxed out the number of commands that can
       * be placed on the queue.  If so then exit.  We do this check here
       * in case the interrupt we serviced was from an ioctl and did not
       * free any new commands.
       */
      if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
            return;

      /* We have room on the queue for more commands.  Now we need to queue
       * them up.  We will also keep track of the next queue to run so
       * that every queue gets a chance to be started first.
       */
      for (i = 0; i < h->highest_lun + 1; i++) {
            int curr_queue = (start_queue + i) % (h->highest_lun + 1);
            /* make sure the disk has been added and the drive is real
             * because this can be called from the middle of init_one.
             */
            if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
                  continue;
            blk_start_queue(h->gendisk[curr_queue]->queue);

            /* check to see if we have maxed out the number of commands
             * that can be placed on the queue.
             */
            if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
                  if (curr_queue == start_queue) {
                        h->next_to_run =
                            (start_queue + 1) % (h->highest_lun + 1);
                        break;
                  } else {
                        h->next_to_run = curr_queue;
                        break;
                  }
            }
      }
}

static void cciss_softirq_done(struct request *rq)
{
      CommandList_struct *cmd = rq->completion_data;
      ctlr_info_t *h = hba[cmd->ctlr];
      unsigned long flags;
      u64bit temp64;
      int i, ddir;

      if (cmd->Request.Type.Direction == XFER_READ)
            ddir = PCI_DMA_FROMDEVICE;
      else
            ddir = PCI_DMA_TODEVICE;

      /* command did not need to be retried */
      /* unmap the DMA mapping for all the scatter gather elements */
      for (i = 0; i < cmd->Header.SGList; i++) {
            temp64.val32.lower = cmd->SG[i].Addr.lower;
            temp64.val32.upper = cmd->SG[i].Addr.upper;
            pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
      }

#ifdef CCISS_DEBUG
      printk("Done with %p\n", rq);
#endif                        /* CCISS_DEBUG */

      /* set the residual count for pc requests */
      if (blk_pc_request(rq))
            rq->resid_len = cmd->err_info->ResidualCnt;

      blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);

      spin_lock_irqsave(&h->lock, flags);
      cmd_free(h, cmd, 1);
      cciss_check_queues(h);
      spin_unlock_irqrestore(&h->lock, flags);
}

static void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[],
      uint32_t log_unit)
{
      log_unit = h->drv[log_unit].LunID & 0x03fff;
      memset(&scsi3addr[4], 0, 4);
      memcpy(&scsi3addr[0], &log_unit, 4);
      scsi3addr[3] |= 0x40;
}

/* This function gets the SCSI vendor, model, and revision of a logical drive
 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
 * they cannot be read.
 */
static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
                           char *vendor, char *model, char *rev)
{
      int rc;
      InquiryData_struct *inq_buf;
      unsigned char scsi3addr[8];

      *vendor = '\0';
      *model = '\0';
      *rev = '\0';

      inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
      if (!inq_buf)
            return;

      log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
      if (withirq)
            rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
                       sizeof(InquiryData_struct), 0,
                        scsi3addr, TYPE_CMD);
      else
            rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
                       sizeof(InquiryData_struct), 0,
                        scsi3addr, TYPE_CMD);
      if (rc == IO_OK) {
            memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
            vendor[VENDOR_LEN] = '\0';
            memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
            model[MODEL_LEN] = '\0';
            memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
            rev[REV_LEN] = '\0';
      }

      kfree(inq_buf);
      return;
}

/* This function gets the serial number of a logical drive via
 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
 * number cannot be had, for whatever reason, 16 bytes of 0xff
 * are returned instead.
 */
static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
                        unsigned char *serial_no, int buflen)
{
#define PAGE_83_INQ_BYTES 64
      int rc;
      unsigned char *buf;
      unsigned char scsi3addr[8];

      if (buflen > 16)
            buflen = 16;
      memset(serial_no, 0xff, buflen);
      buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
      if (!buf)
            return;
      memset(serial_no, 0, buflen);
      log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
      if (withirq)
            rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
                  PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
      else
            rc = sendcmd(CISS_INQUIRY, ctlr, buf,
                  PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
      if (rc == IO_OK)
            memcpy(serial_no, &buf[8], buflen);
      kfree(buf);
      return;
}

static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
                        int drv_index)
{
      disk->queue = blk_init_queue(do_cciss_request, &h->lock);
      sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
      disk->major = h->major;
      disk->first_minor = drv_index << NWD_SHIFT;
      disk->fops = &cciss_fops;
      disk->private_data = &h->drv[drv_index];
      disk->driverfs_dev = &h->drv[drv_index].dev;

      /* Set up queue information */
      blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);

      /* This is a hardware imposed limit. */
      blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);

      /* This is a limit in the driver and could be eliminated. */
      blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);

      blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);

      blk_queue_softirq_done(disk->queue, cciss_softirq_done);

      disk->queue->queuedata = h;

      blk_queue_logical_block_size(disk->queue,
                             h->drv[drv_index].block_size);

      /* Make sure all queue data is written out before */
      /* setting h->drv[drv_index].queue, as setting this */
      /* allows the interrupt handler to start the queue */
      wmb();
      h->drv[drv_index].queue = disk->queue;
      add_disk(disk);
}

/* This function will check the usage_count of the drive to be updated/added.
 * If the usage_count is zero and it is a heretofore unknown drive, or,
 * the drive's capacity, geometry, or serial number has changed,
 * then the drive information will be updated and the disk will be
 * re-registered with the kernel.  If these conditions don't hold,
 * then it will be left alone for the next reboot.  The exception to this
 * is disk 0 which will always be left registered with the kernel since it
 * is also the controller node.  Any changes to disk 0 will show up on
 * the next reboot.
 */
static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
{
      ctlr_info_t *h = hba[ctlr];
      struct gendisk *disk;
      InquiryData_struct *inq_buff = NULL;
      unsigned int block_size;
      sector_t total_size;
      unsigned long flags = 0;
      int ret = 0;
      drive_info_struct *drvinfo;
      int was_only_controller_node;

      /* Get information about the disk and modify the driver structure */
      inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
      drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
      if (inq_buff == NULL || drvinfo == NULL)
            goto mem_msg;

      /* See if we're trying to update the "controller node"
       * this will happen the when the first logical drive gets
       * created by ACU.
       */
      was_only_controller_node = (drv_index == 0 &&
                        h->drv[0].raid_level == -1);

      /* testing to see if 16-byte CDBs are already being used */
      if (h->cciss_read == CCISS_READ_16) {
            cciss_read_capacity_16(h->ctlr, drv_index, 1,
                  &total_size, &block_size);

      } else {
            cciss_read_capacity(ctlr, drv_index, 1,
                            &total_size, &block_size);

            /* if read_capacity returns all F's this volume is >2TB */
            /* in size so we switch to 16-byte CDB's for all */
            /* read/write ops */
            if (total_size == 0xFFFFFFFFULL) {
                  cciss_read_capacity_16(ctlr, drv_index, 1,
                  &total_size, &block_size);
                  h->cciss_read = CCISS_READ_16;
                  h->cciss_write = CCISS_WRITE_16;
            } else {
                  h->cciss_read = CCISS_READ_10;
                  h->cciss_write = CCISS_WRITE_10;
            }
      }

      cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
                         inq_buff, drvinfo);
      drvinfo->block_size = block_size;
      drvinfo->nr_blocks = total_size + 1;

      cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
                        drvinfo->model, drvinfo->rev);
      cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
                  sizeof(drvinfo->serial_no));

      /* Is it the same disk we already know, and nothing's changed? */
      if (h->drv[drv_index].raid_level != -1 &&
            ((memcmp(drvinfo->serial_no,
                        h->drv[drv_index].serial_no, 16) == 0) &&
            drvinfo->block_size == h->drv[drv_index].block_size &&
            drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
            drvinfo->heads == h->drv[drv_index].heads &&
            drvinfo->sectors == h->drv[drv_index].sectors &&
            drvinfo->cylinders == h->drv[drv_index].cylinders))
                  /* The disk is unchanged, nothing to update */
                  goto freeret;

      /* If we get here it's not the same disk, or something's changed,
       * so we need to * deregister it, and re-register it, if it's not
       * in use.
       * If the disk already exists then deregister it before proceeding
       * (unless it's the first disk (for the controller node).
       */
      if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
            printk(KERN_WARNING "disk %d has changed.\n", drv_index);
            spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
            h->drv[drv_index].busy_configuring = 1;
            spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);

            /* deregister_disk sets h->drv[drv_index].queue = NULL
             * which keeps the interrupt handler from starting
             * the queue.
             */
            ret = deregister_disk(h, drv_index, 0);
            h->drv[drv_index].busy_configuring = 0;
      }

      /* If the disk is in use return */
      if (ret)
            goto freeret;

      /* Save the new information from cciss_geometry_inquiry
       * and serial number inquiry.
       */
      h->drv[drv_index].block_size = drvinfo->block_size;
      h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
      h->drv[drv_index].heads = drvinfo->heads;
      h->drv[drv_index].sectors = drvinfo->sectors;
      h->drv[drv_index].cylinders = drvinfo->cylinders;
      h->drv[drv_index].raid_level = drvinfo->raid_level;
      memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
      memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
      memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
      memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);

      ++h->num_luns;
      disk = h->gendisk[drv_index];
      set_capacity(disk, h->drv[drv_index].nr_blocks);

      /* If it's not disk 0 (drv_index != 0)
       * or if it was disk 0, but there was previously
       * no actual corresponding configured logical drive
       * (raid_leve == -1) then we want to update the
       * logical drive's information.
       */
      if (drv_index || first_time)
            cciss_add_disk(h, disk, drv_index);

freeret:
      kfree(inq_buff);
      kfree(drvinfo);
      return;
mem_msg:
      printk(KERN_ERR "cciss: out of memory\n");
      goto freeret;
}

/* This function will find the first index of the controllers drive array
 * that has a -1 for the raid_level and will return that index.  This is
 * where new drives will be added.  If the index to be returned is greater
 * than the highest_lun index for the controller then highest_lun is set
 * to this new index.  If there are no available indexes then -1 is returned.
 * "controller_node" is used to know if this is a real logical drive, or just
 * the controller node, which determines if this counts towards highest_lun.
 */
static int cciss_find_free_drive_index(int ctlr, int controller_node)
{
      int i;

      for (i = 0; i < CISS_MAX_LUN; i++) {
            if (hba[ctlr]->drv[i].raid_level == -1) {
                  if (i > hba[ctlr]->highest_lun)
                        if (!controller_node)
                              hba[ctlr]->highest_lun = i;
                  return i;
            }
      }
      return -1;
}

/* cciss_add_gendisk finds a free hba[]->drv structure
 * and allocates a gendisk if needed, and sets the lunid
 * in the drvinfo structure.   It returns the index into
 * the ->drv[] array, or -1 if none are free.
 * is_controller_node indicates whether highest_lun should
 * count this disk, or if it's only being added to provide
 * a means to talk to the controller in case no logical
 * drives have yet been configured.
 */
static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
{
      int drv_index;

      drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
      if (drv_index == -1)
            return -1;
      /*Check if the gendisk needs to be allocated */
      if (!h->gendisk[drv_index]) {
            h->gendisk[drv_index] =
                  alloc_disk(1 << NWD_SHIFT);
            if (!h->gendisk[drv_index]) {
                  printk(KERN_ERR "cciss%d: could not "
                        "allocate a new disk %d\n",
                        h->ctlr, drv_index);
                  return -1;
            }
      }
      h->drv[drv_index].LunID = lunid;
      if (cciss_create_ld_sysfs_entry(h, &h->drv[drv_index], drv_index))
            goto err_free_disk;

      /* Don't need to mark this busy because nobody */
      /* else knows about this disk yet to contend */
      /* for access to it. */
      h->drv[drv_index].busy_configuring = 0;
      wmb();
      return drv_index;

err_free_disk:
      put_disk(h->gendisk[drv_index]);
      h->gendisk[drv_index] = NULL;
      return -1;
}

/* This is for the special case of a controller which
 * has no logical drives.  In this case, we still need
 * to register a disk so the controller can be accessed
 * by the Array Config Utility.
 */
static void cciss_add_controller_node(ctlr_info_t *h)
{
      struct gendisk *disk;
      int drv_index;

      if (h->gendisk[0] != NULL) /* already did this? Then bail. */
            return;

      drv_index = cciss_add_gendisk(h, 0, 1);
      if (drv_index == -1) {
            printk(KERN_WARNING "cciss%d: could not "
                  "add disk 0.\n", h->ctlr);
            return;
      }
      h->drv[drv_index].block_size = 512;
      h->drv[drv_index].nr_blocks = 0;
      h->drv[drv_index].heads = 0;
      h->drv[drv_index].sectors = 0;
      h->drv[drv_index].cylinders = 0;
      h->drv[drv_index].raid_level = -1;
      memset(h->drv[drv_index].serial_no, 0, 16);
      disk = h->gendisk[drv_index];
      cciss_add_disk(h, disk, drv_index);
}

/* This function will add and remove logical drives from the Logical
 * drive array of the controller and maintain persistency of ordering
 * so that mount points are preserved until the next reboot.  This allows
 * for the removal of logical drives in the middle of the drive array
 * without a re-ordering of those drives.
 * INPUT
 * h        = The controller to perform the operations on
 */
static int rebuild_lun_table(ctlr_info_t *h, int first_time)
{
      int ctlr = h->ctlr;
      int num_luns;
      ReportLunData_struct *ld_buff = NULL;
      int return_code;
      int listlength = 0;
      int i;
      int drv_found;
      int drv_index = 0;
      __u32 lunid = 0;
      unsigned long flags;

      if (!capable(CAP_SYS_RAWIO))
            return -EPERM;

      /* Set busy_configuring flag for this operation */
      spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
      if (h->busy_configuring) {
            spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
            return -EBUSY;
      }
      h->busy_configuring = 1;
      spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);

      ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
      if (ld_buff == NULL)
            goto mem_msg;

      return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
                              sizeof(ReportLunData_struct),
                              0, CTLR_LUNID, TYPE_CMD);

      if (return_code == IO_OK)
            listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
      else {      /* reading number of logical volumes failed */
            printk(KERN_WARNING "cciss: report logical volume"
                   " command failed\n");
            listlength = 0;
            goto freeret;
      }

      num_luns = listlength / 8;    /* 8 bytes per entry */
      if (num_luns > CISS_MAX_LUN) {
            num_luns = CISS_MAX_LUN;
            printk(KERN_WARNING "cciss: more luns configured"
                   " on controller than can be handled by"
                   " this driver.\n");
      }

      if (num_luns == 0)
            cciss_add_controller_node(h);

      /* Compare controller drive array to driver's drive array
       * to see if any drives are missing on the controller due
       * to action of Array Config Utility (user deletes drive)
       * and deregister logical drives which have disappeared.
       */
      for (i = 0; i <= h->highest_lun; i++) {
            int j;
            drv_found = 0;

            /* skip holes in the array from already deleted drives */
            if (h->drv[i].raid_level == -1)
                  continue;

            for (j = 0; j < num_luns; j++) {
                  memcpy(&lunid, &ld_buff->LUN[j][0], 4);
                  lunid = le32_to_cpu(lunid);
                  if (h->drv[i].LunID == lunid) {
                        drv_found = 1;
                        break;
                  }
            }
            if (!drv_found) {
                  /* Deregister it from the OS, it's gone. */
                  spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
                  h->drv[i].busy_configuring = 1;
                  spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
                  return_code = deregister_disk(h, i, 1);
                  cciss_destroy_ld_sysfs_entry(&h->drv[i]);
                  h->drv[i].busy_configuring = 0;
            }
      }

      /* Compare controller drive array to driver's drive array.
       * Check for updates in the drive information and any new drives
       * on the controller due to ACU adding logical drives, or changing
       * a logical drive's size, etc.  Reregister any new/changed drives
       */
      for (i = 0; i < num_luns; i++) {
            int j;

            drv_found = 0;

            memcpy(&lunid, &ld_buff->LUN[i][0], 4);
            lunid = le32_to_cpu(lunid);

            /* Find if the LUN is already in the drive array
             * of the driver.  If so then update its info
             * if not in use.  If it does not exist then find
             * the first free index and add it.
             */
            for (j = 0; j <= h->highest_lun; j++) {
                  if (h->drv[j].raid_level != -1 &&
                        h->drv[j].LunID == lunid) {
                        drv_index = j;
                        drv_found = 1;
                        break;
                  }
            }

            /* check if the drive was found already in the array */
            if (!drv_found) {
                  drv_index = cciss_add_gendisk(h, lunid, 0);
                  if (drv_index == -1)
                        goto freeret;
            }
            cciss_update_drive_info(ctlr, drv_index, first_time);
      }           /* end for */

freeret:
      kfree(ld_buff);
      h->busy_configuring = 0;
      /* We return -1 here to tell the ACU that we have registered/updated
       * all of the drives that we can and to keep it from calling us
       * additional times.
       */
      return -1;
mem_msg:
      printk(KERN_ERR "cciss: out of memory\n");
      h->busy_configuring = 0;
      goto freeret;
}

/* This function will deregister the disk and it's queue from the
 * kernel.  It must be called with the controller lock held and the
 * drv structures busy_configuring flag set.  It's parameters are:
 *
 * disk = This is the disk to be deregistered
 * drv  = This is the drive_info_struct associated with the disk to be
 *        deregistered.  It contains information about the disk used
 *        by the driver.
 * clear_all = This flag determines whether or not the disk information
 *             is going to be completely cleared out and the highest_lun
 *             reset.  Sometimes we want to clear out information about
 *             the disk in preparation for re-adding it.  In this case
 *             the highest_lun should be left unchanged and the LunID
 *             should not be cleared.
*/
static int deregister_disk(ctlr_info_t *h, int drv_index,
                     int clear_all)
{
      int i;
      struct gendisk *disk;
      drive_info_struct *drv;

      if (!capable(CAP_SYS_RAWIO))
            return -EPERM;

      drv = &h->drv[drv_index];
      disk = h->gendisk[drv_index];

      /* make sure logical volume is NOT is use */
      if (clear_all || (h->gendisk[0] == disk)) {
            if (drv->usage_count > 1)
                  return -EBUSY;
      } else if (drv->usage_count > 0)
            return -EBUSY;

      /* invalidate the devices and deregister the disk.  If it is disk
       * zero do not deregister it but just zero out it's values.  This
       * allows us to delete disk zero but keep the controller registered.
       */
      if (h->gendisk[0] != disk) {
            struct request_queue *q = disk->queue;
            if (disk->flags & GENHD_FL_UP)
                  del_gendisk(disk);
            if (q) {
                  blk_cleanup_queue(q);
                  /* Set drv->queue to NULL so that we do not try
                   * to call blk_start_queue on this queue in the
                   * interrupt handler
                   */
                  drv->queue = NULL;
            }
            /* If clear_all is set then we are deleting the logical
             * drive, not just refreshing its info.  For drives
             * other than disk 0 we will call put_disk.  We do not
             * do this for disk 0 as we need it to be able to
             * configure the controller.
             */
            if (clear_all){
                  /* This isn't pretty, but we need to find the
                   * disk in our array and NULL our the pointer.
                   * This is so that we will call alloc_disk if
                   * this index is used again later.
                   */
                  for (i=0; i < CISS_MAX_LUN; i++){
                        if (h->gendisk[i] == disk) {
                              h->gendisk[i] = NULL;
                              break;
                        }
                  }
                  put_disk(disk);
            }
      } else {
            set_capacity(disk, 0);
      }

      --h->num_luns;
      /* zero out the disk size info */
      drv->nr_blocks = 0;
      drv->block_size = 0;
      drv->heads = 0;
      drv->sectors = 0;
      drv->cylinders = 0;
      drv->raid_level = -1;   /* This can be used as a flag variable to
                         * indicate that this element of the drive
                         * array is free.
                         */

      if (clear_all) {
            /* check to see if it was the last disk */
            if (drv == h->drv + h->highest_lun) {
                  /* if so, find the new hightest lun */
                  int i, newhighest = -1;
                  for (i = 0; i <= h->highest_lun; i++) {
                        /* if the disk has size > 0, it is available */
                        if (h->drv[i].heads)
                              newhighest = i;
                  }
                  h->highest_lun = newhighest;
            }

            drv->LunID = 0;
      }
      return 0;
}

static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
            size_t size, __u8 page_code, unsigned char *scsi3addr,
            int cmd_type)
{
      ctlr_info_t *h = hba[ctlr];
      u64bit buff_dma_handle;
      int status = IO_OK;

      c->cmd_type = CMD_IOCTL_PEND;
      c->Header.ReplyQueue = 0;
      if (buff != NULL) {
            c->Header.SGList = 1;
            c->Header.SGTotal = 1;
      } else {
            c->Header.SGList = 0;
            c->Header.SGTotal = 0;
      }
      c->Header.Tag.lower = c->busaddr;
      memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

      c->Request.Type.Type = cmd_type;
      if (cmd_type == TYPE_CMD) {
            switch (cmd) {
            case CISS_INQUIRY:
                  /* are we trying to read a vital product page */
                  if (page_code != 0) {
                        c->Request.CDB[1] = 0x01;
                        c->Request.CDB[2] = page_code;
                  }
                  c->Request.CDBLen = 6;
                  c->Request.Type.Attribute = ATTR_SIMPLE;
                  c->Request.Type.Direction = XFER_READ;
                  c->Request.Timeout = 0;
                  c->Request.CDB[0] = CISS_INQUIRY;
                  c->Request.CDB[4] = size & 0xFF;
                  break;
            case CISS_REPORT_LOG:
            case CISS_REPORT_PHYS:
                  /* Talking to controller so It's a physical command
                     mode = 00 target = 0.  Nothing to write.
                   */
                  c->Request.CDBLen = 12;
                  c->Request.Type.Attribute = ATTR_SIMPLE;
                  c->Request.Type.Direction = XFER_READ;
                  c->Request.Timeout = 0;
                  c->Request.CDB[0] = cmd;
                  c->Request.CDB[6] = (size >> 24) & 0xFF;  //MSB
                  c->Request.CDB[7] = (size >> 16) & 0xFF;
                  c->Request.CDB[8] = (size >> 8) & 0xFF;
                  c->Request.CDB[9] = size & 0xFF;
                  break;

            case CCISS_READ_CAPACITY:
                  c->Request.CDBLen = 10;
                  c->Request.Type.Attribute = ATTR_SIMPLE;
                  c->Request.Type.Direction = XFER_READ;
                  c->Request.Timeout = 0;
                  c->Request.CDB[0] = cmd;
                  break;
            case CCISS_READ_CAPACITY_16:
                  c->Request.CDBLen = 16;
                  c->Request.Type.Attribute = ATTR_SIMPLE;
                  c->Request.Type.Direction = XFER_READ;
                  c->Request.Timeout = 0;
                  c->Request.CDB[0] = cmd;
                  c->Request.CDB[1] = 0x10;
                  c->Request.CDB[10] = (size >> 24) & 0xFF;
                  c->Request.CDB[11] = (size >> 16) & 0xFF;
                  c->Request.CDB[12] = (size >> 8) & 0xFF;
                  c->Request.CDB[13] = size & 0xFF;
                  c->Request.Timeout = 0;
                  c->Request.CDB[0] = cmd;
                  break;
            case CCISS_CACHE_FLUSH:
                  c->Request.CDBLen = 12;
                  c->Request.Type.Attribute = ATTR_SIMPLE;
                  c->Request.Type.Direction = XFER_WRITE;
                  c->Request.Timeout = 0;
                  c->Request.CDB[0] = BMIC_WRITE;
                  c->Request.CDB[6] = BMIC_CACHE_FLUSH;
                  break;
            case TEST_UNIT_READY:
                  c->Request.CDBLen = 6;
                  c->Request.Type.Attribute = ATTR_SIMPLE;
                  c->Request.Type.Direction = XFER_NONE;
                  c->Request.Timeout = 0;
                  break;
            default:
                  printk(KERN_WARNING
                         "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
                  return IO_ERROR;
            }
      } else if (cmd_type == TYPE_MSG) {
            switch (cmd) {
            case 0:     /* ABORT message */
                  c->Request.CDBLen = 12;
                  c->Request.Type.Attribute = ATTR_SIMPLE;
                  c->Request.Type.Direction = XFER_WRITE;
                  c->Request.Timeout = 0;
                  c->Request.CDB[0] = cmd;      /* abort */
                  c->Request.CDB[1] = 0;  /* abort a command */
                  /* buff contains the tag of the command to abort */
                  memcpy(&c->Request.CDB[4], buff, 8);
                  break;
            case 1:     /* RESET message */
                  c->Request.CDBLen = 16;
                  c->Request.Type.Attribute = ATTR_SIMPLE;
                  c->Request.Type.Direction = XFER_NONE;
                  c->Request.Timeout = 0;
                  memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
                  c->Request.CDB[0] = cmd;      /* reset */
                  c->Request.CDB[1] = 0x03;     /* reset a target */
                  break;
            case 3:     /* No-Op message */
                  c->Request.CDBLen = 1;
                  c->Request.Type.Attribute = ATTR_SIMPLE;
                  c->Request.Type.Direction = XFER_WRITE;
                  c->Request.Timeout = 0;
                  c->Request.CDB[0] = cmd;
                  break;
            default:
                  printk(KERN_WARNING
                         "cciss%d: unknown message type %d\n", ctlr, cmd);
                  return IO_ERROR;
            }
      } else {
            printk(KERN_WARNING
                   "cciss%d: unknown command type %d\n", ctlr, cmd_type);
            return IO_ERROR;
      }
      /* Fill in the scatter gather information */
      if (size > 0) {
            buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
                                               buff, size,
                                               PCI_DMA_BIDIRECTIONAL);
            c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
            c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
            c->SG[0].Len = size;
            c->SG[0].Ext = 0; /* we are not chaining */
      }
      return status;
}

static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
{
      switch (c->err_info->ScsiStatus) {
      case SAM_STAT_GOOD:
            return IO_OK;
      case SAM_STAT_CHECK_CONDITION:
            switch (0xf & c->err_info->SenseInfo[2]) {
            case 0: return IO_OK; /* no sense */
            case 1: return IO_OK; /* recovered error */
            default:
                  printk(KERN_WARNING "cciss%d: cmd 0x%02x "
                        "check condition, sense key = 0x%02x\n",
                        h->ctlr, c->Request.CDB[0],
                        c->err_info->SenseInfo[2]);
            }
            break;
      default:
            printk(KERN_WARNING "cciss%d: cmd 0x%02x"
                  "scsi status = 0x%02x\n", h->ctlr,
                  c->Request.CDB[0], c->err_info->ScsiStatus);
            break;
      }
      return IO_ERROR;
}

static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
{
      int return_status = IO_OK;

      if (c->err_info->CommandStatus == CMD_SUCCESS)
            return IO_OK;

      switch (c->err_info->CommandStatus) {
      case CMD_TARGET_STATUS:
            return_status = check_target_status(h, c);
            break;
      case CMD_DATA_UNDERRUN:
      case CMD_DATA_OVERRUN:
            /* expected for inquiry and report lun commands */
            break;
      case CMD_INVALID:
            printk(KERN_WARNING "cciss: cmd 0x%02x is "
                   "reported invalid\n", c->Request.CDB[0]);
            return_status = IO_ERROR;
            break;
      case CMD_PROTOCOL_ERR:
            printk(KERN_WARNING "cciss: cmd 0x%02x has "
                   "protocol error \n", c->Request.CDB[0]);
            return_status = IO_ERROR;
            break;
      case CMD_HARDWARE_ERR:
            printk(KERN_WARNING "cciss: cmd 0x%02x had "
                   " hardware error\n", c->Request.CDB[0]);
            return_status = IO_ERROR;
            break;
      case CMD_CONNECTION_LOST:
            printk(KERN_WARNING "cciss: cmd 0x%02x had "
                   "connection lost\n", c->Request.CDB[0]);
            return_status = IO_ERROR;
            break;
      case CMD_ABORTED:
            printk(KERN_WARNING "cciss: cmd 0x%02x was "
                   "aborted\n", c->Request.CDB[0]);
            return_status = IO_ERROR;
            break;
      case CMD_ABORT_FAILED:
            printk(KERN_WARNING "cciss: cmd 0x%02x reports "
                   "abort failed\n", c->Request.CDB[0]);
            return_status = IO_ERROR;
            break;
      case CMD_UNSOLICITED_ABORT:
            printk(KERN_WARNING
                   "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
                  c->Request.CDB[0]);
            return_status = IO_NEEDS_RETRY;
            break;
      default:
            printk(KERN_WARNING "cciss: cmd 0x%02x returned "
                   "unknown status %x\n", c->Request.CDB[0],
                   c->err_info->CommandStatus);
            return_status = IO_ERROR;
      }
      return return_status;
}

static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
      int attempt_retry)
{
      DECLARE_COMPLETION_ONSTACK(wait);
      u64bit buff_dma_handle;
      unsigned long flags;
      int return_status = IO_OK;

resend_cmd2:
      c->waiting = &wait;
      /* Put the request on the tail of the queue and send it */
      spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
      addQ(&h->reqQ, c);
      h->Qdepth++;
      start_io(h);
      spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);

      wait_for_completion(&wait);

      if (c->err_info->CommandStatus == 0 || !attempt_retry)
            goto command_done;

      return_status = process_sendcmd_error(h, c);

      if (return_status == IO_NEEDS_RETRY &&
            c->retry_count < MAX_CMD_RETRIES) {
            printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
                  c->Request.CDB[0]);
            c->retry_count++;
            /* erase the old error information */
            memset(c->err_info, 0, sizeof(ErrorInfo_struct));
            return_status = IO_OK;
            INIT_COMPLETION(wait);
            goto resend_cmd2;
      }

command_done:
      /* unlock the buffers from DMA */
      buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
      buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
      pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
                   c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
      return return_status;
}

static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
                     __u8 page_code, unsigned char scsi3addr[],
                  int cmd_type)
{
      ctlr_info_t *h = hba[ctlr];
      CommandList_struct *c;
      int return_status;

      c = cmd_alloc(h, 0);
      if (!c)
            return -ENOMEM;
      return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
            scsi3addr, cmd_type);
      if (return_status == IO_OK)
            return_status = sendcmd_withirq_core(h, c, 1);

      cmd_free(h, c, 0);
      return return_status;
}

static void cciss_geometry_inquiry(int ctlr, int logvol,
                           int withirq, sector_t total_size,
                           unsigned int block_size,
                           InquiryData_struct *inq_buff,
                           drive_info_struct *drv)
{
      int return_code;
      unsigned long t;
      unsigned char scsi3addr[8];

      memset(inq_buff, 0, sizeof(InquiryData_struct));
      log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
      if (withirq)
            return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
                                    inq_buff, sizeof(*inq_buff),
                                    0xC1, scsi3addr, TYPE_CMD);
      else
            return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
                              sizeof(*inq_buff), 0xC1, scsi3addr,
                              TYPE_CMD);
      if (return_code == IO_OK) {
            if (inq_buff->data_byte[8] == 0xFF) {
                  printk(KERN_WARNING
                         "cciss: reading geometry failed, volume "
                         "does not support reading geometry\n");
                  drv->heads = 255;
                  drv->sectors = 32;      // Sectors per track
                  drv->cylinders = total_size + 1;
                  drv->raid_level = RAID_UNKNOWN;
            } else {
                  drv->heads = inq_buff->data_byte[6];
                  drv->sectors = inq_buff->data_byte[7];
                  drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
                  drv->cylinders += inq_buff->data_byte[5];
                  drv->raid_level = inq_buff->data_byte[8];
            }
            drv->block_size = block_size;
            drv->nr_blocks = total_size + 1;
            t = drv->heads * drv->sectors;
            if (t > 1) {
                  sector_t real_size = total_size + 1;
                  unsigned long rem = sector_div(real_size, t);
                  if (rem)
                        real_size++;
                  drv->cylinders = real_size;
            }
      } else {          /* Get geometry failed */
            printk(KERN_WARNING "cciss: reading geometry failed\n");
      }
      printk(KERN_INFO "      heads=%d, sectors=%d, cylinders=%d\n\n",
             drv->heads, drv->sectors, drv->cylinders);
}

static void
cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
                unsigned int *block_size)
{
      ReadCapdata_struct *buf;
      int return_code;
      unsigned char scsi3addr[8];

      buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
      if (!buf) {
            printk(KERN_WARNING "cciss: out of memory\n");
            return;
      }

      log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
      if (withirq)
            return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
                        ctlr, buf, sizeof(ReadCapdata_struct),
                              0, scsi3addr, TYPE_CMD);
      else
            return_code = sendcmd(CCISS_READ_CAPACITY,
                        ctlr, buf, sizeof(ReadCapdata_struct),
                              0, scsi3addr, TYPE_CMD);
      if (return_code == IO_OK) {
            *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
            *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
      } else {          /* read capacity command failed */
            printk(KERN_WARNING "cciss: read capacity failed\n");
            *total_size = 0;
            *block_size = BLOCK_SIZE;
      }
      if (*total_size != 0)
            printk(KERN_INFO "      blocks= %llu block_size= %d\n",
            (unsigned long long)*total_size+1, *block_size);
      kfree(buf);
}

static void
cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size,                       unsigned int *block_size)
{
      ReadCapdata_struct_16 *buf;
      int return_code;
      unsigned char scsi3addr[8];

      buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
      if (!buf) {
            printk(KERN_WARNING "cciss: out of memory\n");
            return;
      }

      log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
      if (withirq) {
            return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
                  ctlr, buf, sizeof(ReadCapdata_struct_16),
                        0, scsi3addr, TYPE_CMD);
      }
      else {
            return_code = sendcmd(CCISS_READ_CAPACITY_16,
                  ctlr, buf, sizeof(ReadCapdata_struct_16),
                        0, scsi3addr, TYPE_CMD);
      }
      if (return_code == IO_OK) {
            *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
            *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
      } else {          /* read capacity command failed */
            printk(KERN_WARNING "cciss: read capacity failed\n");
            *total_size = 0;
            *block_size = BLOCK_SIZE;
      }
      printk(KERN_INFO "      blocks= %llu block_size= %d\n",
             (unsigned long long)*total_size+1, *block_size);
      kfree(buf);
}

static int cciss_revalidate(struct gendisk *disk)
{
      ctlr_info_t *h = get_host(disk);
      drive_info_struct *drv = get_drv(disk);
      int logvol;
      int FOUND = 0;
      unsigned int block_size;
      sector_t total_size;
      InquiryData_struct *inq_buff = NULL;

      for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
            if (h->drv[logvol].LunID == drv->LunID) {
                  FOUND = 1;
                  break;
            }
      }

      if (!FOUND)
            return 1;

      inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
      if (inq_buff == NULL) {
            printk(KERN_WARNING "cciss: out of memory\n");
            return 1;
      }
      if (h->cciss_read == CCISS_READ_10) {
            cciss_read_capacity(h->ctlr, logvol, 1,
                              &total_size, &block_size);
      } else {
            cciss_read_capacity_16(h->ctlr, logvol, 1,
                              &total_size, &block_size);
      }
      cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
                         inq_buff, drv);

      blk_queue_logical_block_size(drv->queue, drv->block_size);
      set_capacity(disk, drv->nr_blocks);

      kfree(inq_buff);
      return 0;
}

/*
 *   Wait polling for a command to complete.
 *   The memory mapped FIFO is polled for the completion.
 *   Used only at init time, interrupts from the HBA are disabled.
 */
static unsigned long pollcomplete(int ctlr)
{
      unsigned long done;
      int i;

      /* Wait (up to 20 seconds) for a command to complete */

      for (i = 20 * HZ; i > 0; i--) {
            done = hba[ctlr]->access.command_completed(hba[ctlr]);
            if (done == FIFO_EMPTY)
                  schedule_timeout_uninterruptible(1);
            else
                  return done;
      }
      /* Invalid address to tell caller we ran out of time */
      return 1;
}

/* Send command c to controller h and poll for it to complete.
 * Turns interrupts off on the board.  Used at driver init time
 * and during SCSI error recovery.
 */
static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
{
      int i;
      unsigned long complete;
      int status = IO_ERROR;
      u64bit buff_dma_handle;

resend_cmd1:

      /* Disable interrupt on the board. */
      h->access.set_intr_mask(h, CCISS_INTR_OFF);

      /* Make sure there is room in the command FIFO */
      /* Actually it should be completely empty at this time */
      /* unless we are in here doing error handling for the scsi */
      /* tape side of the driver. */
      for (i = 200000; i > 0; i--) {
            /* if fifo isn't full go */
            if (!(h->access.fifo_full(h)))
                  break;
            udelay(10);
            printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
                   " waiting!\n", h->ctlr);
      }
      h->access.submit_command(h, c); /* Send the cmd */
      do {
            complete = pollcomplete(h->ctlr);

#ifdef CCISS_DEBUG
            printk(KERN_DEBUG "cciss: command completed\n");
#endif                        /* CCISS_DEBUG */

            if (complete == 1) {
                  printk(KERN_WARNING
                         "cciss cciss%d: SendCmd Timeout out, "
                         "No command list address returned!\n", h->ctlr);
                  status = IO_ERROR;
                  break;
            }

            /* Make sure it's the command we're expecting. */
            if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
                  printk(KERN_WARNING "cciss%d: Unexpected command "
                        "completion.\n", h->ctlr);
                  continue;
            }

            /* It is our command.  If no error, we're done. */
            if (!(complete & CISS_ERROR_BIT)) {
                  status = IO_OK;
                  break;
            }

            /* There is an error... */

            /* if data overrun or underun on Report command ignore it */
            if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
                 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
                 (c->Request.CDB[0] == CISS_INQUIRY)) &&
                  ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
                   (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
                  complete = c->busaddr;
                  status = IO_OK;
                  break;
            }

            if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
                  printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
                        h->ctlr, c);
                  if (c->retry_count < MAX_CMD_RETRIES) {
                        printk(KERN_WARNING "cciss%d: retrying %p\n",
                           h->ctlr, c);
                        c->retry_count++;
                        /* erase the old error information */
                        memset(c->err_info, 0, sizeof(c->err_info));
                        goto resend_cmd1;
                  }
                  printk(KERN_WARNING "cciss%d: retried %p too many "
                        "times\n", h->ctlr, c);
                  status = IO_ERROR;
                  break;
            }

            if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
                  printk(KERN_WARNING "cciss%d: command could not be "
                        "aborted.\n", h->ctlr);
                  status = IO_ERROR;
                  break;
            }

            if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
                  status = check_target_status(h, c);
                  break;
            }

            printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
            printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
                  c->Request.CDB[0], c->err_info->CommandStatus);
            status = IO_ERROR;
            break;

      } while (1);

      /* unlock the data buffer from DMA */
      buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
      buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
      pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
                   c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
      return status;
}

/*
 * Send a command to the controller, and wait for it to complete.
 * Used at init time, and during SCSI error recovery.
 */
static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
      __u8 page_code, unsigned char *scsi3addr, int cmd_type)
{
      CommandList_struct *c;
      int status;

      c = cmd_alloc(hba[ctlr], 1);
      if (!c) {
            printk(KERN_WARNING "cciss: unable to get memory");
            return IO_ERROR;
      }
      status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
            scsi3addr, cmd_type);
      if (status == IO_OK)
            status = sendcmd_core(hba[ctlr], c);
      cmd_free(hba[ctlr], c, 1);
      return status;
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
      ulong page_base = ((ulong) base) & PAGE_MASK;
      ulong page_offs = ((ulong) base) - page_base;
      void __iomem *page_remapped = ioremap(page_base, page_offs + size);

      return page_remapped ? (page_remapped + page_offs) : NULL;
}

/*
 * Takes jobs of the Q and sends them to the hardware, then puts it on
 * the Q to wait for completion.
 */
static void start_io(ctlr_info_t *h)
{
      CommandList_struct *c;

      while (!hlist_empty(&h->reqQ)) {
            c = hlist_entry(h->reqQ.first, CommandList_struct, list);
            /* can't do anything if fifo is full */
            if ((h->access.fifo_full(h))) {
                  printk(KERN_WARNING "cciss: fifo full\n");
                  break;
            }

            /* Get the first entry from the Request Q */
            removeQ(c);
            h->Qdepth--;

            /* Tell the controller execute command */
            h->access.submit_command(h, c);

            /* Put job onto the completed Q */
            addQ(&h->cmpQ, c);
      }
}

/* Assumes that CCISS_LOCK(h->ctlr) is held. */
/* Zeros out the error record and then resends the command back */
/* to the controller */
static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
{
      /* erase the old error information */
      memset(c->err_info, 0, sizeof(ErrorInfo_struct));

      /* add it to software queue and then send it to the controller */
      addQ(&h->reqQ, c);
      h->Qdepth++;
      if (h->Qdepth > h->maxQsinceinit)
            h->maxQsinceinit = h->Qdepth;

      start_io(h);
}

static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
      unsigned int msg_byte, unsigned int host_byte,
      unsigned int driver_byte)
{
      /* inverse of macros in scsi.h */
      return (scsi_status_byte & 0xff) |
            ((msg_byte & 0xff) << 8) |
            ((host_byte & 0xff) << 16) |
            ((driver_byte & 0xff) << 24);
}

static inline int evaluate_target_status(ctlr_info_t *h,
                  CommandList_struct *cmd, int *retry_cmd)
{
      unsigned char sense_key;
      unsigned char status_byte, msg_byte, host_byte, driver_byte;
      int error_value;

      *retry_cmd = 0;
      /* If we get in here, it means we got "target status", that is, scsi status */
      status_byte = cmd->err_info->ScsiStatus;
      driver_byte = DRIVER_OK;
      msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */

      if (blk_pc_request(cmd->rq))
            host_byte = DID_PASSTHROUGH;
      else
            host_byte = DID_OK;

      error_value = make_status_bytes(status_byte, msg_byte,
            host_byte, driver_byte);

      if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
            if (!blk_pc_request(cmd->rq))
                  printk(KERN_WARNING "cciss: cmd %p "
                         "has SCSI Status 0x%x\n",
                         cmd, cmd->err_info->ScsiStatus);
            return error_value;
      }

      /* check the sense key */
      sense_key = 0xf & cmd->err_info->SenseInfo[2];
      /* no status or recovered error */
      if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
            error_value = 0;

      if (check_for_unit_attention(h, cmd)) {
            *retry_cmd = !blk_pc_request(cmd->rq);
            return 0;
      }

      if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
            if (error_value != 0)
                  printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
                         " sense key = 0x%x\n", cmd, sense_key);
            return error_value;
      }

      /* SG_IO or similar, copy sense data back */
      if (cmd->rq->sense) {
            if (cmd->rq->sense_len > cmd->err_info->SenseLen)
                  cmd->rq->sense_len = cmd->err_info->SenseLen;
            memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
                  cmd->rq->sense_len);
      } else
            cmd->rq->sense_len = 0;

      return error_value;
}

/* checks the status of the job and calls complete buffers to mark all
 * buffers for the completed job. Note that this function does not need
 * to hold the hba/queue lock.
 */
static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
                            int timeout)
{
      int retry_cmd = 0;
      struct request *rq = cmd->rq;

      rq->errors = 0;

      if (timeout)
            rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);

      if (cmd->err_info->CommandStatus == 0)    /* no error has occurred */
            goto after_error_processing;

      switch (cmd->err_info->CommandStatus) {
      case CMD_TARGET_STATUS:
            rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
            break;
      case CMD_DATA_UNDERRUN:
            if (blk_fs_request(cmd->rq)) {
                  printk(KERN_WARNING "cciss: cmd %p has"
                         " completed with data underrun "
                         "reported\n", cmd);
                  cmd->rq->resid_len = cmd->err_info->ResidualCnt;
            }
            break;
      case CMD_DATA_OVERRUN:
            if (blk_fs_request(cmd->rq))
                  printk(KERN_WARNING "cciss: cmd %p has"
                         " completed with data overrun "
                         "reported\n", cmd);
            break;
      case CMD_INVALID:
            printk(KERN_WARNING "cciss: cmd %p is "
                   "reported invalid\n", cmd);
            rq->errors = make_status_bytes(SAM_STAT_GOOD,
                  cmd->err_info->CommandStatus, DRIVER_OK,
                  blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
            break;
      case CMD_PROTOCOL_ERR:
            printk(KERN_WARNING "cciss: cmd %p has "
                   "protocol error \n", cmd);
            rq->errors = make_status_bytes(SAM_STAT_GOOD,
                  cmd->err_info->CommandStatus, DRIVER_OK,
                  blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
            break;
      case CMD_HARDWARE_ERR:
            printk(KERN_WARNING "cciss: cmd %p had "
                   " hardware error\n", cmd);
            rq->errors = make_status_bytes(SAM_STAT_GOOD,
                  cmd->err_info->CommandStatus, DRIVER_OK,
                  blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
            break;
      case CMD_CONNECTION_LOST:
            printk(KERN_WARNING "cciss: cmd %p had "
                   "connection lost\n", cmd);
            rq->errors = make_status_bytes(SAM_STAT_GOOD,
                  cmd->err_info->CommandStatus, DRIVER_OK,
                  blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
            break;
      case CMD_ABORTED:
            printk(KERN_WARNING "cciss: cmd %p was "
                   "aborted\n", cmd);
            rq->errors = make_status_bytes(SAM_STAT_GOOD,
                  cmd->err_info->CommandStatus, DRIVER_OK,
                  blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
            break;
      case CMD_ABORT_FAILED:
            printk(KERN_WARNING "cciss: cmd %p reports "
                   "abort failed\n", cmd);
            rq->errors = make_status_bytes(SAM_STAT_GOOD,
                  cmd->err_info->CommandStatus, DRIVER_OK,
                  blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
            break;
      case CMD_UNSOLICITED_ABORT:
            printk(KERN_WARNING "cciss%d: unsolicited "
                   "abort %p\n", h->ctlr, cmd);
            if (cmd->retry_count < MAX_CMD_RETRIES) {
                  retry_cmd = 1;
                  printk(KERN_WARNING
                         "cciss%d: retrying %p\n", h->ctlr, cmd);
                  cmd->retry_count++;
            } else
                  printk(KERN_WARNING
                         "cciss%d: %p retried too "
                         "many times\n", h->ctlr, cmd);
            rq->errors = make_status_bytes(SAM_STAT_GOOD,
                  cmd->err_info->CommandStatus, DRIVER_OK,
                  blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
            break;
      case CMD_TIMEOUT:
            printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
            rq->errors = make_status_bytes(SAM_STAT_GOOD,
                  cmd->err_info->CommandStatus, DRIVER_OK,
                  blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
            break;
      default:
            printk(KERN_WARNING "cciss: cmd %p returned "
                   "unknown status %x\n", cmd,
                   cmd->err_info->CommandStatus);
            rq->errors = make_status_bytes(SAM_STAT_GOOD,
                  cmd->err_info->CommandStatus, DRIVER_OK,
                  blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
      }

after_error_processing:

      /* We need to return this command */
      if (retry_cmd) {
            resend_cciss_cmd(h, cmd);
            return;
      }
      cmd->rq->completion_data = cmd;
      blk_complete_request(cmd->rq);
}

/*
 * Get a request and submit it to the controller.
 */
static void do_cciss_request(struct request_queue *q)
{
      ctlr_info_t *h = q->queuedata;
      CommandList_struct *c;
      sector_t start_blk;
      int seg;
      struct request *creq;
      u64bit temp64;
      struct scatterlist tmp_sg[MAXSGENTRIES];
      drive_info_struct *drv;
      int i, dir;

      /* We call start_io here in case there is a command waiting on the
       * queue that has not been sent.
       */
      if (blk_queue_plugged(q))
            goto startio;

      queue:
      creq = blk_peek_request(q);
      if (!creq)
            goto startio;

      BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);

      if ((c = cmd_alloc(h, 1)) == NULL)
            goto full;

      blk_start_request(creq);

      spin_unlock_irq(q->queue_lock);

      c->cmd_type = CMD_RWREQ;
      c->rq = creq;

      /* fill in the request */
      drv = creq->rq_disk->private_data;
      c->Header.ReplyQueue = 0;     // unused in simple mode
      /* got command from pool, so use the command block index instead */
      /* for direct lookups. */
      /* The first 2 bits are reserved for controller error reporting. */
      c->Header.Tag.lower = (c->cmdindex << 3);
      c->Header.Tag.lower |= 0x04;  /* flag for direct lookup. */
      c->Header.LUN.LogDev.VolId = drv->LunID;
      c->Header.LUN.LogDev.Mode = 1;
      c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
      c->Request.Type.Type = TYPE_CMD;    // It is a command.
      c->Request.Type.Attribute = ATTR_SIMPLE;
      c->Request.Type.Direction =
          (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
      c->Request.Timeout = 0; // Don't time out
      c->Request.CDB[0] =
          (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
      start_blk = blk_rq_pos(creq);
#ifdef CCISS_DEBUG
      printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
             (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
#endif                        /* CCISS_DEBUG */

      sg_init_table(tmp_sg, MAXSGENTRIES);
      seg = blk_rq_map_sg(q, creq, tmp_sg);

      /* get the DMA records for the setup */
      if (c->Request.Type.Direction == XFER_READ)
            dir = PCI_DMA_FROMDEVICE;
      else
            dir = PCI_DMA_TODEVICE;

      for (i = 0; i < seg; i++) {
            c->SG[i].Len = tmp_sg[i].length;
            temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
                                      tmp_sg[i].offset,
                                      tmp_sg[i].length, dir);
            c->SG[i].Addr.lower = temp64.val32.lower;
            c->SG[i].Addr.upper = temp64.val32.upper;
            c->SG[i].Ext = 0; // we are not chaining
      }
      /* track how many SG entries we are using */
      if (seg > h->maxSG)
            h->maxSG = seg;

#ifdef CCISS_DEBUG
      printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
             blk_rq_sectors(creq), seg);
#endif                        /* CCISS_DEBUG */

      c->Header.SGList = c->Header.SGTotal = seg;
      if (likely(blk_fs_request(creq))) {
            if(h->cciss_read == CCISS_READ_10) {
                  c->Request.CDB[1] = 0;
                  c->Request.CDB[2] = (start_blk >> 24) & 0xff;   //MSB
                  c->Request.CDB[3] = (start_blk >> 16) & 0xff;
                  c->Request.CDB[4] = (start_blk >> 8) & 0xff;
                  c->Request.CDB[5] = start_blk & 0xff;
                  c->Request.CDB[6] = 0;  // (sect >> 24) & 0xff; MSB
                  c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
                  c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
                  c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
            } else {
                  u32 upper32 = upper_32_bits(start_blk);

                  c->Request.CDBLen = 16;
                  c->Request.CDB[1]= 0;
                  c->Request.CDB[2]= (upper32 >> 24) & 0xff;      //MSB
                  c->Request.CDB[3]= (upper32 >> 16) & 0xff;
                  c->Request.CDB[4]= (upper32 >>  8) & 0xff;
                  c->Request.CDB[5]= upper32 & 0xff;
                  c->Request.CDB[6]= (start_blk >> 24) & 0xff;
                  c->Request.CDB[7]= (start_blk >> 16) & 0xff;
                  c->Request.CDB[8]= (start_blk >>  8) & 0xff;
                  c->Request.CDB[9]= start_blk & 0xff;
                  c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
                  c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
                  c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
                  c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
                  c->Request.CDB[14] = c->Request.CDB[15] = 0;
            }
      } else if (blk_pc_request(creq)) {
            c->Request.CDBLen = creq->cmd_len;
            memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
      } else {
            printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
            BUG();
      }

      spin_lock_irq(q->queue_lock);

      addQ(&h->reqQ, c);
      h->Qdepth++;
      if (h->Qdepth > h->maxQsinceinit)
            h->maxQsinceinit = h->Qdepth;

      goto queue;
full:
      blk_stop_queue(q);
startio:
      /* We will already have the driver lock here so not need
       * to lock it.
       */
      start_io(h);
}

static inline unsigned long get_next_completion(ctlr_info_t *h)
{
      return h->access.command_completed(h);
}

static inline int interrupt_pending(ctlr_info_t *h)
{
      return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(ctlr_info_t *h)
{
      return (((h->access.intr_pending(h) == 0) ||
             (h->interrupts_enabled == 0)));
}

static irqreturn_t do_cciss_intr(int irq, void *dev_id)
{
      ctlr_info_t *h = dev_id;
      CommandList_struct *c;
      unsigned long flags;
      __u32 a, a1, a2;

      if (interrupt_not_for_us(h))
            return IRQ_NONE;
      /*
       * If there are completed commands in the completion queue,
       * we had better do something about it.
       */
      spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
      while (interrupt_pending(h)) {
            while ((a = get_next_completion(h)) != FIFO_EMPTY) {
                  a1 = a;
                  if ((a & 0x04)) {
                        a2 = (a >> 3);
                        if (a2 >= h->nr_cmds) {
                              printk(KERN_WARNING
                                     "cciss: controller cciss%d failed, stopping.\n",
                                     h->ctlr);
                              fail_all_cmds(h->ctlr);
                              return IRQ_HANDLED;
                        }

                        c = h->cmd_pool + a2;
                        a = c->busaddr;

                  } else {
                        struct hlist_node *tmp;

                        a &= ~3;
                        c = NULL;
                        hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
                              if (c->busaddr == a)
                                    break;
                        }
                  }
                  /*
                   * If we've found the command, take it off the
                   * completion Q and free it
                   */
                  if (c && c->busaddr == a) {
                        removeQ(c);
                        if (c->cmd_type == CMD_RWREQ) {
                              complete_command(h, c, 0);
                        } else if (c->cmd_type == CMD_IOCTL_PEND) {
                              complete(c->waiting);
                        }
#                       ifdef CONFIG_CISS_SCSI_TAPE
                        else if (c->cmd_type == CMD_SCSI)
                              complete_scsi_command(c, 0, a1);
#                       endif
                        continue;
                  }
            }
      }

      spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
      return IRQ_HANDLED;
}

static int scan_thread(void *data)
{
      ctlr_info_t *h = data;
      int rc;
      DECLARE_COMPLETION_ONSTACK(wait);
      h->rescan_wait = &wait;

      for (;;) {
            rc = wait_for_completion_interruptible(&wait);
            if (kthread_should_stop())
                  break;
            if (!rc)
                  rebuild_lun_table(h, 0);
      }
      return 0;
}

static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
{
      if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
            return 0;

      switch (c->err_info->SenseInfo[12]) {
      case STATE_CHANGED:
            printk(KERN_WARNING "cciss%d: a state change "
                  "detected, command retried\n", h->ctlr);
            return 1;
      break;
      case LUN_FAILED:
            printk(KERN_WARNING "cciss%d: LUN failure "
                  "detected, action required\n", h->ctlr);
            return 1;
      break;
      case REPORT_LUNS_CHANGED:
            printk(KERN_WARNING "cciss%d: report LUN data "
                  "changed\n", h->ctlr);
            if (h->rescan_wait)
                  complete(h->rescan_wait);
            return 1;
      break;
      case POWER_OR_RESET:
            printk(KERN_WARNING "cciss%d: a power on "
                  "or device reset detected\n", h->ctlr);
            return 1;
      break;
      case UNIT_ATTENTION_CLEARED:
            printk(KERN_WARNING "cciss%d: unit attention "
                "cleared by another initiator\n", h->ctlr);
            return 1;
      break;
      default:
            printk(KERN_WARNING "cciss%d: unknown "
                  "unit attention detected\n", h->ctlr);
                        return 1;
      }
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
#ifdef CCISS_DEBUG
static void print_cfg_table(CfgTable_struct *tb)
{
      int i;
      char temp_name[17];

      printk("Controller Configuration information\n");
      printk("------------------------------------\n");
      for (i = 0; i < 4; i++)
            temp_name[i] = readb(&(tb->Signature[i]));
      temp_name[4] = '\0';
      printk("   Signature = %s\n", temp_name);
      printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
      printk("   Transport methods supported = 0x%x\n",
             readl(&(tb->TransportSupport)));
      printk("   Transport methods active = 0x%x\n",
             readl(&(tb->TransportActive)));
      printk("   Requested transport Method = 0x%x\n",
             readl(&(tb->HostWrite.TransportRequest)));
      printk("   Coalesce Interrupt Delay = 0x%x\n",
             readl(&(tb->HostWrite.CoalIntDelay)));
      printk("   Coalesce Interrupt Count = 0x%x\n",
             readl(&(tb->HostWrite.CoalIntCount)));
      printk("   Max outstanding commands = 0x%d\n",
             readl(&(tb->CmdsOutMax)));
      printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
      for (i = 0; i < 16; i++)
            temp_name[i] = readb(&(tb->ServerName[i]));
      temp_name[16] = '\0';
      printk("   Server Name = %s\n", temp_name);
      printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
}
#endif                        /* CCISS_DEBUG */

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
      int i, offset, mem_type, bar_type;
      if (pci_bar_addr == PCI_BASE_ADDRESS_0)   /* looking for BAR zero? */
            return 0;
      offset = 0;
      for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
            bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
            if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
                  offset += 4;
            else {
                  mem_type = pci_resource_flags(pdev, i) &
                      PCI_BASE_ADDRESS_MEM_TYPE_MASK;
                  switch (mem_type) {
                  case PCI_BASE_ADDRESS_MEM_TYPE_32:
                  case PCI_BASE_ADDRESS_MEM_TYPE_1M:
                        offset += 4;      /* 32 bit */
                        break;
                  case PCI_BASE_ADDRESS_MEM_TYPE_64:
                        offset += 8;
                        break;
                  default:    /* reserved in PCI 2.2 */
                        printk(KERN_WARNING
                               "Base address is invalid\n");
                        return -1;
                        break;
                  }
            }
            if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
                  return i + 1;
      }
      return -1;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
 * controllers that are capable. If not, we use IO-APIC mode.
 */

static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
                                 struct pci_dev *pdev, __u32 board_id)
{
#ifdef CONFIG_PCI_MSI
      int err;
      struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
      {0, 2}, {0, 3}
      };

      /* Some boards advertise MSI but don't really support it */
      if ((board_id == 0x40700E11) ||
          (board_id == 0x40800E11) ||
          (board_id == 0x40820E11) || (board_id == 0x40830E11))
            goto default_int_mode;

      if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
            err = pci_enable_msix(pdev, cciss_msix_entries, 4);
            if (!err) {
                  c->intr[0] = cciss_msix_entries[0].vector;
                  c->intr[1] = cciss_msix_entries[1].vector;
                  c->intr[2] = cciss_msix_entries[2].vector;
                  c->intr[3] = cciss_msix_entries[3].vector;
                  c->msix_vector = 1;
                  return;
            }
            if (err > 0) {
                  printk(KERN_WARNING "cciss: only %d MSI-X vectors "
                         "available\n", err);
                  goto default_int_mode;
            } else {
                  printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
                         err);
                  goto default_int_mode;
            }
      }
      if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
            if (!pci_enable_msi(pdev)) {
                  c->msi_vector = 1;
            } else {
                  printk(KERN_WARNING "cciss: MSI init failed\n");
            }
      }
default_int_mode:
#endif                        /* CONFIG_PCI_MSI */
      /* if we get here we're going to use the default interrupt mode */
      c->intr[SIMPLE_MODE_INT] = pdev->irq;
      return;
}

static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
{
      ushort subsystem_vendor_id, subsystem_device_id, command;
      __u32 board_id, scratchpad = 0;
      __u64 cfg_offset;
      __u32 cfg_base_addr;
      __u64 cfg_base_addr_index;
      int i, err;

      /* check to see if controller has been disabled */
      /* BEFORE trying to enable it */
      (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
      if (!(command & 0x02)) {
            printk(KERN_WARNING
                   "cciss: controller appears to be disabled\n");
            return -ENODEV;
      }

      err = pci_enable_device(pdev);
      if (err) {
            printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
            return err;
      }

      err = pci_request_regions(pdev, "cciss");
      if (err) {
            printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
                   "aborting\n");
            return err;
      }

      subsystem_vendor_id = pdev->subsystem_vendor;
      subsystem_device_id = pdev->subsystem_device;
      board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
                subsystem_vendor_id);

#ifdef CCISS_DEBUG
      printk("command = %x\n", command);
      printk("irq = %x\n", pdev->irq);
      printk("board_id = %x\n", board_id);
#endif                        /* CCISS_DEBUG */

/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
 * else we use the IO-APIC interrupt assigned to us by system ROM.
 */
      cciss_interrupt_mode(c, pdev, board_id);

      /* find the memory BAR */
      for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
            if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
                  break;
      }
      if (i == DEVICE_COUNT_RESOURCE) {
            printk(KERN_WARNING "cciss: No memory BAR found\n");
            err = -ENODEV;
            goto err_out_free_res;
      }

      c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
                                     * already removed
                                     */

#ifdef CCISS_DEBUG
      printk("address 0 = %lx\n", c->paddr);
#endif                        /* CCISS_DEBUG */
      c->vaddr = remap_pci_mem(c->paddr, 0x250);

      /* Wait for the board to become ready.  (PCI hotplug needs this.)
       * We poll for up to 120 secs, once per 100ms. */
      for (i = 0; i < 1200; i++) {
            scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
            if (scratchpad == CCISS_FIRMWARE_READY)
                  break;
            set_current_state(TASK_INTERRUPTIBLE);
            schedule_timeout(HZ / 10);    /* wait 100ms */
      }
      if (scratchpad != CCISS_FIRMWARE_READY) {
            printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
            err = -ENODEV;
            goto err_out_free_res;
      }

      /* get the address index number */
      cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
      cfg_base_addr &= (__u32) 0x0000ffff;
#ifdef CCISS_DEBUG
      printk("cfg base address = %x\n", cfg_base_addr);
#endif                        /* CCISS_DEBUG */
      cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
#ifdef CCISS_DEBUG
      printk("cfg base address index = %llx\n",
            (unsigned long long)cfg_base_addr_index);
#endif                        /* CCISS_DEBUG */
      if (cfg_base_addr_index == -1) {
            printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
            err = -ENODEV;
            goto err_out_free_res;
      }

      cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
#ifdef CCISS_DEBUG
      printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
#endif                        /* CCISS_DEBUG */
      c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
                                           cfg_base_addr_index) +
                            cfg_offset, sizeof(CfgTable_struct));
      c->board_id = board_id;

#ifdef CCISS_DEBUG
      print_cfg_table(c->cfgtable);
#endif                        /* CCISS_DEBUG */

      /* Some controllers support Zero Memory Raid (ZMR).
       * When configured in ZMR mode the number of supported
       * commands drops to 64. So instead of just setting an
       * arbitrary value we make the driver a little smarter.
       * We read the config table to tell us how many commands
       * are supported on the controller then subtract 4 to
       * leave a little room for ioctl calls.
       */
      c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
      for (i = 0; i < ARRAY_SIZE(products); i++) {
            if (board_id == products[i].board_id) {
                  c->product_name = products[i].product_name;
                  c->access = *(products[i].access);
                  c->nr_cmds = c->max_commands - 4;
                  break;
            }
      }
      if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
          (readb(&c->cfgtable->Signature[1]) != 'I') ||
          (readb(&c->cfgtable->Signature[2]) != 'S') ||
          (readb(&c->cfgtable->Signature[3]) != 'S')) {
            printk("Does not appear to be a valid CISS config table\n");
            err = -ENODEV;
            goto err_out_free_res;
      }
      /* We didn't find the controller in our list. We know the
       * signature is valid. If it's an HP device let's try to
       * bind to the device and fire it up. Otherwise we bail.
       */
      if (i == ARRAY_SIZE(products)) {
            if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
                  c->product_name = products[i-1].product_name;
                  c->access = *(products[i-1].access);
                  c->nr_cmds = c->max_commands - 4;
                  printk(KERN_WARNING "cciss: This is an unknown "
                        "Smart Array controller.\n"
                        "cciss: Please update to the latest driver "
                        "available from www.hp.com.\n");
            } else {
                  printk(KERN_WARNING "cciss: Sorry, I don't know how"
                        " to access the Smart Array controller %08lx\n"
                              , (unsigned long)board_id);
                  err = -ENODEV;
                  goto err_out_free_res;
            }
      }
#ifdef CONFIG_X86
      {
            /* Need to enable prefetch in the SCSI core for 6400 in x86 */
            __u32 prefetch;
            prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
            prefetch |= 0x100;
            writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
      }
#endif

      /* Disabling DMA prefetch and refetch for the P600.
       * An ASIC bug may result in accesses to invalid memory addresses.
       * We've disabled prefetch for some time now. Testing with XEN
       * kernels revealed a bug in the refetch if dom0 resides on a P600.
       */
      if(board_id == 0x3225103C) {
            __u32 dma_prefetch;
            __u32 dma_refetch;
            dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
            dma_prefetch |= 0x8000;
            writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
            pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
            dma_refetch |= 0x1;
            pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
      }

#ifdef CCISS_DEBUG
      printk("Trying to put board into Simple mode\n");
#endif                        /* CCISS_DEBUG */
      c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
      /* Update the field, and then ring the doorbell */
      writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
      writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);

      /* under certain very rare conditions, this can take awhile.
       * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
       * as we enter this code.) */
      for (i = 0; i < MAX_CONFIG_WAIT; i++) {
            if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
                  break;
            /* delay and try again */
            set_current_state(TASK_INTERRUPTIBLE);
            schedule_timeout(10);
      }

#ifdef CCISS_DEBUG
      printk(KERN_DEBUG "I counter got to %d %x\n", i,
             readl(c->vaddr + SA5_DOORBELL));
#endif                        /* CCISS_DEBUG */
#ifdef CCISS_DEBUG
      print_cfg_table(c->cfgtable);
#endif                        /* CCISS_DEBUG */

      if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
            printk(KERN_WARNING "cciss: unable to get board into"
                   " simple mode\n");
            err = -ENODEV;
            goto err_out_free_res;
      }
      return 0;

err_out_free_res:
      /*
       * Deliberately omit pci_disable_device(): it does something nasty to
       * Smart Array controllers that pci_enable_device does not undo
       */
      pci_release_regions(pdev);
      return err;
}

/* Function to find the first free pointer into our hba[] array
 * Returns -1 if no free entries are left.
 */
static int alloc_cciss_hba(void)
{
      int i;

      for (i = 0; i < MAX_CTLR; i++) {
            if (!hba[i]) {
                  ctlr_info_t *p;

                  p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
                  if (!p)
                        goto Enomem;
                  hba[i] = p;
                  return i;
            }
      }
      printk(KERN_WARNING "cciss: This driver supports a maximum"
             " of %d controllers.\n", MAX_CTLR);
      return -1;
Enomem:
      printk(KERN_ERR "cciss: out of memory.\n");
      return -1;
}

static void free_hba(int i)
{
      ctlr_info_t *p = hba[i];
      int n;

      hba[i] = NULL;
      for (n = 0; n < CISS_MAX_LUN; n++)
            put_disk(p->gendisk[n]);
      kfree(p);
}

/* Send a message CDB to the firmware. */
static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
{
      typedef struct {
            CommandListHeader_struct CommandHeader;
            RequestBlock_struct Request;
            ErrDescriptor_struct ErrorDescriptor;
      } Command;
      static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
      Command *cmd;
      dma_addr_t paddr64;
      uint32_t paddr32, tag;
      void __iomem *vaddr;
      int i, err;

      vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
      if (vaddr == NULL)
            return -ENOMEM;

      /* The Inbound Post Queue only accepts 32-bit physical addresses for the
         CCISS commands, so they must be allocated from the lower 4GiB of
         memory. */
      err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
      if (err) {
            iounmap(vaddr);
            return -ENOMEM;
      }

      cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
      if (cmd == NULL) {
            iounmap(vaddr);
            return -ENOMEM;
      }

      /* This must fit, because of the 32-bit consistent DMA mask.  Also,
         although there's no guarantee, we assume that the address is at
         least 4-byte aligned (most likely, it's page-aligned). */
      paddr32 = paddr64;

      cmd->CommandHeader.ReplyQueue = 0;
      cmd->CommandHeader.SGList = 0;
      cmd->CommandHeader.SGTotal = 0;
      cmd->CommandHeader.Tag.lower = paddr32;
      cmd->CommandHeader.Tag.upper = 0;
      memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

      cmd->Request.CDBLen = 16;
      cmd->Request.Type.Type = TYPE_MSG;
      cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
      cmd->Request.Type.Direction = XFER_NONE;
      cmd->Request.Timeout = 0; /* Don't time out */
      cmd->Request.CDB[0] = opcode;
      cmd->Request.CDB[1] = type;
      memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */

      cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
      cmd->ErrorDescriptor.Addr.upper = 0;
      cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);

      writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);

      for (i = 0; i < 10; i++) {
            tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
            if ((tag & ~3) == paddr32)
                  break;
            schedule_timeout_uninterruptible(HZ);
      }

      iounmap(vaddr);

      /* we leak the DMA buffer here ... no choice since the controller could
         still complete the command. */
      if (i == 10) {
            printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
                  opcode, type);
            return -ETIMEDOUT;
      }

      pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

      if (tag & 2) {
            printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
                  opcode, type);
            return -EIO;
      }

      printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
            opcode, type);
      return 0;
}

#define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
#define cciss_noop(p) cciss_message(p, 3, 0)

static __devinit int cciss_reset_msi(struct pci_dev *pdev)
{
/* the #defines are stolen from drivers/pci/msi.h. */
#define msi_control_reg(base)       (base + PCI_MSI_FLAGS)
#define PCI_MSIX_FLAGS_ENABLE       (1 << 15)

      int pos;
      u16 control = 0;

      pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
      if (pos) {
            pci_read_config_word(pdev, msi_control_reg(pos), &control);
            if (control & PCI_MSI_FLAGS_ENABLE) {
                  printk(KERN_INFO "cciss: resetting MSI\n");
                  pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
            }
      }

      pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
      if (pos) {
            pci_read_config_word(pdev, msi_control_reg(pos), &control);
            if (control & PCI_MSIX_FLAGS_ENABLE) {
                  printk(KERN_INFO "cciss: resetting MSI-X\n");
                  pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
            }
      }

      return 0;
}

/* This does a hard reset of the controller using PCI power management
 * states. */
static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
{
      u16 pmcsr, saved_config_space[32];
      int i, pos;

      printk(KERN_INFO "cciss: using PCI PM to reset controller\n");

      /* This is very nearly the same thing as

         pci_save_state(pci_dev);
         pci_set_power_state(pci_dev, PCI_D3hot);
         pci_set_power_state(pci_dev, PCI_D0);
         pci_restore_state(pci_dev);

         but we can't use these nice canned kernel routines on
         kexec, because they also check the MSI/MSI-X state in PCI
         configuration space and do the wrong thing when it is
         set/cleared.  Also, the pci_save/restore_state functions
         violate the ordering requirements for restoring the
         configuration space from the CCISS document (see the
         comment below).  So we roll our own .... */

      for (i = 0; i < 32; i++)
            pci_read_config_word(pdev, 2*i, &saved_config_space[i]);

      pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
      if (pos == 0) {
            printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
            return -ENODEV;
      }

      /* Quoting from the Open CISS Specification: "The Power
       * Management Control/Status Register (CSR) controls the power
       * state of the device.  The normal operating state is D0,
       * CSR=00h.  The software off state is D3, CSR=03h.  To reset
       * the controller, place the interface device in D3 then to
       * D0, this causes a secondary PCI reset which will reset the
       * controller." */

      /* enter the D3hot power management state */
      pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
      pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
      pmcsr |= PCI_D3hot;
      pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);

      schedule_timeout_uninterruptible(HZ >> 1);

      /* enter the D0 power management state */
      pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
      pmcsr |= PCI_D0;
      pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);

      schedule_timeout_uninterruptible(HZ >> 1);

      /* Restore the PCI configuration space.  The Open CISS
       * Specification says, "Restore the PCI Configuration
       * Registers, offsets 00h through 60h. It is important to
       * restore the command register, 16-bits at offset 04h,
       * last. Do not restore the configuration status register,
       * 16-bits at offset 06h."  Note that the offset is 2*i. */
      for (i = 0; i < 32; i++) {
            if (i == 2 || i == 3)
                  continue;
            pci_write_config_word(pdev, 2*i, saved_config_space[i]);
      }
      wmb();
      pci_write_config_word(pdev, 4, saved_config_space[2]);

      return 0;
}

/*
 *  This is it.  Find all the controllers and register them.  I really hate
 *  stealing all these major device numbers.
 *  returns the number of block devices registered.
 */
static int __devinit cciss_init_one(struct pci_dev *pdev,
                            const struct pci_device_id *ent)
{
      int i;
      int j = 0;
      int rc;
      int dac, return_code;
      InquiryData_struct *inq_buff = NULL;

      if (reset_devices) {
            /* Reset the controller with a PCI power-cycle */
            if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
                  return -ENODEV;

            /* Now try to get the controller to respond to a no-op. Some
               devices (notably the HP Smart Array 5i Controller) need
               up to 30 seconds to respond. */
            for (i=0; i<30; i++) {
                  if (cciss_noop(pdev) == 0)
                        break;

                  schedule_timeout_uninterruptible(HZ);
            }
            if (i == 30) {
                  printk(KERN_ERR "cciss: controller seems dead\n");
                  return -EBUSY;
            }
      }

      i = alloc_cciss_hba();
      if (i < 0)
            return -1;

      hba[i]->busy_initializing = 1;
      INIT_HLIST_HEAD(&hba[i]->cmpQ);
      INIT_HLIST_HEAD(&hba[i]->reqQ);

      if (cciss_pci_init(hba[i], pdev) != 0)
            goto clean0;

      sprintf(hba[i]->devname, "cciss%d", i);
      hba[i]->ctlr = i;
      hba[i]->pdev = pdev;

      if (cciss_create_hba_sysfs_entry(hba[i]))
            goto clean0;

      /* configure PCI DMA stuff */
      if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
            dac = 1;
      else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
            dac = 0;
      else {
            printk(KERN_ERR "cciss: no suitable DMA available\n");
            goto clean1;
      }

      /*
       * register with the major number, or get a dynamic major number
       * by passing 0 as argument.  This is done for greater than
       * 8 controller support.
       */
      if (i < MAX_CTLR_ORIG)
            hba[i]->major = COMPAQ_CISS_MAJOR + i;
      rc = register_blkdev(hba[i]->major, hba[i]->devname);
      if (rc == -EBUSY || rc == -EINVAL) {
            printk(KERN_ERR
                   "cciss:  Unable to get major number %d for %s "
                   "on hba %d\n", hba[i]->major, hba[i]->devname, i);
            goto clean1;
      } else {
            if (i >= MAX_CTLR_ORIG)
                  hba[i]->major = rc;
      }

      /* make sure the board interrupts are off */
      hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
      if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
                  IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
            printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
                   hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
            goto clean2;
      }

      printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
             hba[i]->devname, pdev->device, pci_name(pdev),
             hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");

      hba[i]->cmd_pool_bits =
          kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
                  * sizeof(unsigned long), GFP_KERNEL);
      hba[i]->cmd_pool = (CommandList_struct *)
          pci_alloc_consistent(hba[i]->pdev,
                hba[i]->nr_cmds * sizeof(CommandList_struct),
                &(hba[i]->cmd_pool_dhandle));
      hba[i]->errinfo_pool = (ErrorInfo_struct *)
          pci_alloc_consistent(hba[i]->pdev,
                hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
                &(hba[i]->errinfo_pool_dhandle));
      if ((hba[i]->cmd_pool_bits == NULL)
          || (hba[i]->cmd_pool == NULL)
          || (hba[i]->errinfo_pool == NULL)) {
            printk(KERN_ERR "cciss: out of memory");
            goto clean4;
      }
      spin_lock_init(&hba[i]->lock);

      /* Initialize the pdev driver private data.
         have it point to hba[i].  */
      pci_set_drvdata(pdev, hba[i]);
      /* command and error info recs zeroed out before
         they are used */
      memset(hba[i]->cmd_pool_bits, 0,
             DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
                  * sizeof(unsigned long));

      hba[i]->num_luns = 0;
      hba[i]->highest_lun = -1;
      for (j = 0; j < CISS_MAX_LUN; j++) {
            hba[i]->drv[j].raid_level = -1;
            hba[i]->drv[j].queue = NULL;
            hba[i]->gendisk[j] = NULL;
      }

      cciss_scsi_setup(i);

      /* Turn the interrupts on so we can service requests */
      hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);

      /* Get the firmware version */
      inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
      if (inq_buff == NULL) {
            printk(KERN_ERR "cciss: out of memory\n");
            goto clean4;
      }

      return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
            sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
      if (return_code == IO_OK) {
            hba[i]->firm_ver[0] = inq_buff->data_byte[32];
            hba[i]->firm_ver[1] = inq_buff->data_byte[33];
            hba[i]->firm_ver[2] = inq_buff->data_byte[34];
            hba[i]->firm_ver[3] = inq_buff->data_byte[35];
      } else {     /* send command failed */
            printk(KERN_WARNING "cciss: unable to determine firmware"
                  " version of controller\n");
      }

      cciss_procinit(i);

      hba[i]->cciss_max_sectors = 2048;

      hba[i]->busy_initializing = 0;

      rebuild_lun_table(hba[i], 1);
      hba[i]->cciss_scan_thread = kthread_run(scan_thread, hba[i],
                        "cciss_scan%02d", i);
      if (IS_ERR(hba[i]->cciss_scan_thread))
            return PTR_ERR(hba[i]->cciss_scan_thread);

      return 1;

clean4:
      kfree(inq_buff);
      kfree(hba[i]->cmd_pool_bits);
      if (hba[i]->cmd_pool)
            pci_free_consistent(hba[i]->pdev,
                            hba[i]->nr_cmds * sizeof(CommandList_struct),
                            hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
      if (hba[i]->errinfo_pool)
            pci_free_consistent(hba[i]->pdev,
                            hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
                            hba[i]->errinfo_pool,
                            hba[i]->errinfo_pool_dhandle);
      free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
clean2:
      unregister_blkdev(hba[i]->major, hba[i]->devname);
clean1:
      cciss_destroy_hba_sysfs_entry(hba[i]);
clean0:
      hba[i]->busy_initializing = 0;
      /* cleanup any queues that may have been initialized */
      for (j=0; j <= hba[i]->highest_lun; j++){
            drive_info_struct *drv = &(hba[i]->drv[j]);
            if (drv->queue)
                  blk_cleanup_queue(drv->queue);
      }
      /*
       * Deliberately omit pci_disable_device(): it does something nasty to
       * Smart Array controllers that pci_enable_device does not undo
       */
      pci_release_regions(pdev);
      pci_set_drvdata(pdev, NULL);
      free_hba(i);
      return -1;
}

static void cciss_shutdown(struct pci_dev *pdev)
{
      ctlr_info_t *tmp_ptr;
      int i;
      char flush_buf[4];
      int return_code;

      tmp_ptr = pci_get_drvdata(pdev);
      if (tmp_ptr == NULL)
            return;
      i = tmp_ptr->ctlr;
      if (hba[i] == NULL)
            return;

      /* Turn board interrupts off  and send the flush cache command */
      /* sendcmd will turn off interrupt, and send the flush...
       * To write all data in the battery backed cache to disks */
      memset(flush_buf, 0, 4);
      return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
            CTLR_LUNID, TYPE_CMD);
      if (return_code == IO_OK) {
            printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
      } else {
            printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
      }
      free_irq(hba[i]->intr[2], hba[i]);
}

static void __devexit cciss_remove_one(struct pci_dev *pdev)
{
      ctlr_info_t *tmp_ptr;
      int i, j;

      if (pci_get_drvdata(pdev) == NULL) {
            printk(KERN_ERR "cciss: Unable to remove device \n");
            return;
      }

      tmp_ptr = pci_get_drvdata(pdev);
      i = tmp_ptr->ctlr;
      if (hba[i] == NULL) {
            printk(KERN_ERR "cciss: device appears to "
                   "already be removed \n");
            return;
      }

      kthread_stop(hba[i]->cciss_scan_thread);

      remove_proc_entry(hba[i]->devname, proc_cciss);
      unregister_blkdev(hba[i]->major, hba[i]->devname);

      /* remove it from the disk list */
      for (j = 0; j < CISS_MAX_LUN; j++) {
            struct gendisk *disk = hba[i]->gendisk[j];
            if (disk) {
                  struct request_queue *q = disk->queue;

                  if (disk->flags & GENHD_FL_UP)
                        del_gendisk(disk);
                  if (q)
                        blk_cleanup_queue(q);
            }
      }

#ifdef CONFIG_CISS_SCSI_TAPE
      cciss_unregister_scsi(i);     /* unhook from SCSI subsystem */
#endif

      cciss_shutdown(pdev);

#ifdef CONFIG_PCI_MSI
      if (hba[i]->msix_vector)
            pci_disable_msix(hba[i]->pdev);
      else if (hba[i]->msi_vector)
            pci_disable_msi(hba[i]->pdev);
#endif                        /* CONFIG_PCI_MSI */

      iounmap(hba[i]->vaddr);

      pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
                      hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
      pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
                      hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
      kfree(hba[i]->cmd_pool_bits);
      /*
       * Deliberately omit pci_disable_device(): it does something nasty to
       * Smart Array controllers that pci_enable_device does not undo
       */
      pci_release_regions(pdev);
      pci_set_drvdata(pdev, NULL);
      cciss_destroy_hba_sysfs_entry(hba[i]);
      free_hba(i);
}

static struct pci_driver cciss_pci_driver = {
      .name = "cciss",
      .probe = cciss_init_one,
      .remove = __devexit_p(cciss_remove_one),
      .id_table = cciss_pci_device_id,    /* id_table */
      .shutdown = cciss_shutdown,
};

/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init cciss_init(void)
{
      int err;

      /*
       * The hardware requires that commands are aligned on a 64-bit
       * boundary. Given that we use pci_alloc_consistent() to allocate an
       * array of them, the size must be a multiple of 8 bytes.
       */
      BUILD_BUG_ON(sizeof(CommandList_struct) % 8);

      printk(KERN_INFO DRIVER_NAME "\n");

      err = bus_register(&cciss_bus_type);
      if (err)
            return err;

      /* Register for our PCI devices */
      err = pci_register_driver(&cciss_pci_driver);
      if (err)
            goto err_bus_register;

      return 0;

err_bus_register:
      bus_unregister(&cciss_bus_type);
      return err;
}

static void __exit cciss_cleanup(void)
{
      int i;

      pci_unregister_driver(&cciss_pci_driver);
      /* double check that all controller entrys have been removed */
      for (i = 0; i < MAX_CTLR; i++) {
            if (hba[i] != NULL) {
                  printk(KERN_WARNING "cciss: had to remove"
                         " controller %d\n", i);
                  cciss_remove_one(hba[i]->pdev);
            }
      }
      remove_proc_entry("driver/cciss", NULL);
      bus_unregister(&cciss_bus_type);
}

static void fail_all_cmds(unsigned long ctlr)
{
      /* If we get here, the board is apparently dead. */
      ctlr_info_t *h = hba[ctlr];
      CommandList_struct *c;
      unsigned long flags;

      printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
      h->alive = 0;           /* the controller apparently died... */

      spin_lock_irqsave(CCISS_LOCK(ctlr), flags);

      pci_disable_device(h->pdev);  /* Make sure it is really dead. */

      /* move everything off the request queue onto the completed queue */
      while (!hlist_empty(&h->reqQ)) {
            c = hlist_entry(h->reqQ.first, CommandList_struct, list);
            removeQ(c);
            h->Qdepth--;
            addQ(&h->cmpQ, c);
      }

      /* Now, fail everything on the completed queue with a HW error */
      while (!hlist_empty(&h->cmpQ)) {
            c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
            removeQ(c);
            if (c->cmd_type != CMD_MSG_STALE)
                  c->err_info->CommandStatus = CMD_HARDWARE_ERR;
            if (c->cmd_type == CMD_RWREQ) {
                  complete_command(h, c, 0);
            } else if (c->cmd_type == CMD_IOCTL_PEND)
                  complete(c->waiting);
#ifdef CONFIG_CISS_SCSI_TAPE
            else if (c->cmd_type == CMD_SCSI)
                  complete_scsi_command(c, 0, 0);
#endif
      }
      spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
      return;
}

module_init(cciss_init);
module_exit(cciss_cleanup);

Generated by  Doxygen 1.6.0   Back to index