Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

security.h

/*
 * Linux Security plug
 *
 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    Due to this file being licensed under the GPL there is controversy over
 *    whether this permits you to write a module that #includes this file
 *    without placing your module under the GPL.  Please consult a lawyer for
 *    advice before doing this.
 *
 */

#ifndef __LINUX_SECURITY_H
#define __LINUX_SECURITY_H

#include <linux/fs.h>
#include <linux/binfmts.h>
#include <linux/signal.h>
#include <linux/resource.h>
#include <linux/sem.h>
#include <linux/shm.h>
#include <linux/mm.h> /* PAGE_ALIGN */
#include <linux/msg.h>
#include <linux/sched.h>
#include <linux/key.h>
#include <linux/xfrm.h>
#include <linux/gfp.h>
#include <net/flow.h>

/* Maximum number of letters for an LSM name string */
#define SECURITY_NAME_MAX     10

/* If capable should audit the security request */
#define SECURITY_CAP_NOAUDIT 0
#define SECURITY_CAP_AUDIT 1

struct ctl_table;
struct audit_krule;

/*
 * These functions are in security/capability.c and are used
 * as the default capabilities functions
 */
extern int cap_capable(struct task_struct *tsk, const struct cred *cred,
                   int cap, int audit);
extern int cap_settime(struct timespec *ts, struct timezone *tz);
extern int cap_ptrace_may_access(struct task_struct *child, unsigned int mode);
extern int cap_ptrace_traceme(struct task_struct *parent);
extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
extern int cap_capset(struct cred *new, const struct cred *old,
                  const kernel_cap_t *effective,
                  const kernel_cap_t *inheritable,
                  const kernel_cap_t *permitted);
extern int cap_bprm_set_creds(struct linux_binprm *bprm);
extern int cap_bprm_secureexec(struct linux_binprm *bprm);
extern int cap_inode_setxattr(struct dentry *dentry, const char *name,
                        const void *value, size_t size, int flags);
extern int cap_inode_removexattr(struct dentry *dentry, const char *name);
extern int cap_inode_need_killpriv(struct dentry *dentry);
extern int cap_inode_killpriv(struct dentry *dentry);
extern int cap_file_mmap(struct file *file, unsigned long reqprot,
                   unsigned long prot, unsigned long flags,
                   unsigned long addr, unsigned long addr_only);
extern int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags);
extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
                    unsigned long arg4, unsigned long arg5);
extern int cap_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp);
extern int cap_task_setioprio(struct task_struct *p, int ioprio);
extern int cap_task_setnice(struct task_struct *p, int nice);
extern int cap_syslog(int type);
extern int cap_vm_enough_memory(struct mm_struct *mm, long pages);

struct msghdr;
struct sk_buff;
struct sock;
struct sockaddr;
struct socket;
struct flowi;
struct dst_entry;
struct xfrm_selector;
struct xfrm_policy;
struct xfrm_state;
struct xfrm_user_sec_ctx;
struct seq_file;

extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
extern int cap_netlink_recv(struct sk_buff *skb, int cap);

extern unsigned long mmap_min_addr;
extern unsigned long dac_mmap_min_addr;
/*
 * Values used in the task_security_ops calls
 */
/* setuid or setgid, id0 == uid or gid */
#define LSM_SETID_ID    1

/* setreuid or setregid, id0 == real, id1 == eff */
#define LSM_SETID_RE    2

/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
#define LSM_SETID_RES   4

/* setfsuid or setfsgid, id0 == fsuid or fsgid */
#define LSM_SETID_FS    8

/* forward declares to avoid warnings */
struct sched_param;
struct request_sock;

/* bprm->unsafe reasons */
#define LSM_UNSAFE_SHARE      1
#define LSM_UNSAFE_PTRACE     2
#define LSM_UNSAFE_PTRACE_CAP 4

/*
 * If a hint addr is less than mmap_min_addr change hint to be as
 * low as possible but still greater than mmap_min_addr
 */
static inline unsigned long round_hint_to_min(unsigned long hint)
{
      hint &= PAGE_MASK;
      if (((void *)hint != NULL) &&
          (hint < mmap_min_addr))
            return PAGE_ALIGN(mmap_min_addr);
      return hint;
}
extern int mmap_min_addr_handler(struct ctl_table *table, int write, struct file *filp,
                         void __user *buffer, size_t *lenp, loff_t *ppos);

#ifdef CONFIG_SECURITY

struct security_mnt_opts {
      char **mnt_opts;
      int *mnt_opts_flags;
      int num_mnt_opts;
};

static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
{
      opts->mnt_opts = NULL;
      opts->mnt_opts_flags = NULL;
      opts->num_mnt_opts = 0;
}

static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
{
      int i;
      if (opts->mnt_opts)
            for (i = 0; i < opts->num_mnt_opts; i++)
                  kfree(opts->mnt_opts[i]);
      kfree(opts->mnt_opts);
      opts->mnt_opts = NULL;
      kfree(opts->mnt_opts_flags);
      opts->mnt_opts_flags = NULL;
      opts->num_mnt_opts = 0;
}

/**
 * struct security_operations - main security structure
 *
 * Security module identifier.
 *
 * @name:
 *    A string that acts as a unique identifeir for the LSM with max number
 *    of characters = SECURITY_NAME_MAX.
 *
 * Security hooks for program execution operations.
 *
 * @bprm_set_creds:
 *    Save security information in the bprm->security field, typically based
 *    on information about the bprm->file, for later use by the apply_creds
 *    hook.  This hook may also optionally check permissions (e.g. for
 *    transitions between security domains).
 *    This hook may be called multiple times during a single execve, e.g. for
 *    interpreters.  The hook can tell whether it has already been called by
 *    checking to see if @bprm->security is non-NULL.  If so, then the hook
 *    may decide either to retain the security information saved earlier or
 *    to replace it.
 *    @bprm contains the linux_binprm structure.
 *    Return 0 if the hook is successful and permission is granted.
 * @bprm_check_security:
 *    This hook mediates the point when a search for a binary handler will
 *    begin.  It allows a check the @bprm->security value which is set in the
 *    preceding set_creds call.  The primary difference from set_creds is
 *    that the argv list and envp list are reliably available in @bprm.  This
 *    hook may be called multiple times during a single execve; and in each
 *    pass set_creds is called first.
 *    @bprm contains the linux_binprm structure.
 *    Return 0 if the hook is successful and permission is granted.
 * @bprm_committing_creds:
 *    Prepare to install the new security attributes of a process being
 *    transformed by an execve operation, based on the old credentials
 *    pointed to by @current->cred and the information set in @bprm->cred by
 *    the bprm_set_creds hook.  @bprm points to the linux_binprm structure.
 *    This hook is a good place to perform state changes on the process such
 *    as closing open file descriptors to which access will no longer be
 *    granted when the attributes are changed.  This is called immediately
 *    before commit_creds().
 * @bprm_committed_creds:
 *    Tidy up after the installation of the new security attributes of a
 *    process being transformed by an execve operation.  The new credentials
 *    have, by this point, been set to @current->cred.  @bprm points to the
 *    linux_binprm structure.  This hook is a good place to perform state
 *    changes on the process such as clearing out non-inheritable signal
 *    state.  This is called immediately after commit_creds().
 * @bprm_secureexec:
 *    Return a boolean value (0 or 1) indicating whether a "secure exec"
 *    is required.  The flag is passed in the auxiliary table
 *    on the initial stack to the ELF interpreter to indicate whether libc
 *    should enable secure mode.
 *    @bprm contains the linux_binprm structure.
 *
 * Security hooks for filesystem operations.
 *
 * @sb_alloc_security:
 *    Allocate and attach a security structure to the sb->s_security field.
 *    The s_security field is initialized to NULL when the structure is
 *    allocated.
 *    @sb contains the super_block structure to be modified.
 *    Return 0 if operation was successful.
 * @sb_free_security:
 *    Deallocate and clear the sb->s_security field.
 *    @sb contains the super_block structure to be modified.
 * @sb_statfs:
 *    Check permission before obtaining filesystem statistics for the @mnt
 *    mountpoint.
 *    @dentry is a handle on the superblock for the filesystem.
 *    Return 0 if permission is granted.
 * @sb_mount:
 *    Check permission before an object specified by @dev_name is mounted on
 *    the mount point named by @nd.  For an ordinary mount, @dev_name
 *    identifies a device if the file system type requires a device.  For a
 *    remount (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a
 *    loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
 *    pathname of the object being mounted.
 *    @dev_name contains the name for object being mounted.
 *    @path contains the path for mount point object.
 *    @type contains the filesystem type.
 *    @flags contains the mount flags.
 *    @data contains the filesystem-specific data.
 *    Return 0 if permission is granted.
 * @sb_copy_data:
 *    Allow mount option data to be copied prior to parsing by the filesystem,
 *    so that the security module can extract security-specific mount
 *    options cleanly (a filesystem may modify the data e.g. with strsep()).
 *    This also allows the original mount data to be stripped of security-
 *    specific options to avoid having to make filesystems aware of them.
 *    @type the type of filesystem being mounted.
 *    @orig the original mount data copied from userspace.
 *    @copy copied data which will be passed to the security module.
 *    Returns 0 if the copy was successful.
 * @sb_check_sb:
 *    Check permission before the device with superblock @mnt->sb is mounted
 *    on the mount point named by @nd.
 *    @mnt contains the vfsmount for device being mounted.
 *    @path contains the path for the mount point.
 *    Return 0 if permission is granted.
 * @sb_umount:
 *    Check permission before the @mnt file system is unmounted.
 *    @mnt contains the mounted file system.
 *    @flags contains the unmount flags, e.g. MNT_FORCE.
 *    Return 0 if permission is granted.
 * @sb_umount_close:
 *    Close any files in the @mnt mounted filesystem that are held open by
 *    the security module.  This hook is called during an umount operation
 *    prior to checking whether the filesystem is still busy.
 *    @mnt contains the mounted filesystem.
 * @sb_umount_busy:
 *    Handle a failed umount of the @mnt mounted filesystem, e.g.  re-opening
 *    any files that were closed by umount_close.  This hook is called during
 *    an umount operation if the umount fails after a call to the
 *    umount_close hook.
 *    @mnt contains the mounted filesystem.
 * @sb_post_remount:
 *    Update the security module's state when a filesystem is remounted.
 *    This hook is only called if the remount was successful.
 *    @mnt contains the mounted file system.
 *    @flags contains the new filesystem flags.
 *    @data contains the filesystem-specific data.
 * @sb_post_addmount:
 *    Update the security module's state when a filesystem is mounted.
 *    This hook is called any time a mount is successfully grafetd to
 *    the tree.
 *    @mnt contains the mounted filesystem.
 *    @mountpoint contains the path for the mount point.
 * @sb_pivotroot:
 *    Check permission before pivoting the root filesystem.
 *    @old_path contains the path for the new location of the current root (put_old).
 *    @new_path contains the path for the new root (new_root).
 *    Return 0 if permission is granted.
 * @sb_post_pivotroot:
 *    Update module state after a successful pivot.
 *    @old_path contains the path for the old root.
 *    @new_path contains the path for the new root.
 * @sb_set_mnt_opts:
 *    Set the security relevant mount options used for a superblock
 *    @sb the superblock to set security mount options for
 *    @opts binary data structure containing all lsm mount data
 * @sb_clone_mnt_opts:
 *    Copy all security options from a given superblock to another
 *    @oldsb old superblock which contain information to clone
 *    @newsb new superblock which needs filled in
 * @sb_parse_opts_str:
 *    Parse a string of security data filling in the opts structure
 *    @options string containing all mount options known by the LSM
 *    @opts binary data structure usable by the LSM
 *
 * Security hooks for inode operations.
 *
 * @inode_alloc_security:
 *    Allocate and attach a security structure to @inode->i_security.  The
 *    i_security field is initialized to NULL when the inode structure is
 *    allocated.
 *    @inode contains the inode structure.
 *    Return 0 if operation was successful.
 * @inode_free_security:
 *    @inode contains the inode structure.
 *    Deallocate the inode security structure and set @inode->i_security to
 *    NULL.
 * @inode_init_security:
 *    Obtain the security attribute name suffix and value to set on a newly
 *    created inode and set up the incore security field for the new inode.
 *    This hook is called by the fs code as part of the inode creation
 *    transaction and provides for atomic labeling of the inode, unlike
 *    the post_create/mkdir/... hooks called by the VFS.  The hook function
 *    is expected to allocate the name and value via kmalloc, with the caller
 *    being responsible for calling kfree after using them.
 *    If the security module does not use security attributes or does
 *    not wish to put a security attribute on this particular inode,
 *    then it should return -EOPNOTSUPP to skip this processing.
 *    @inode contains the inode structure of the newly created inode.
 *    @dir contains the inode structure of the parent directory.
 *    @name will be set to the allocated name suffix (e.g. selinux).
 *    @value will be set to the allocated attribute value.
 *    @len will be set to the length of the value.
 *    Returns 0 if @name and @value have been successfully set,
 *          -EOPNOTSUPP if no security attribute is needed, or
 *          -ENOMEM on memory allocation failure.
 * @inode_create:
 *    Check permission to create a regular file.
 *    @dir contains inode structure of the parent of the new file.
 *    @dentry contains the dentry structure for the file to be created.
 *    @mode contains the file mode of the file to be created.
 *    Return 0 if permission is granted.
 * @inode_link:
 *    Check permission before creating a new hard link to a file.
 *    @old_dentry contains the dentry structure for an existing link to the file.
 *    @dir contains the inode structure of the parent directory of the new link.
 *    @new_dentry contains the dentry structure for the new link.
 *    Return 0 if permission is granted.
 * @path_link:
 *    Check permission before creating a new hard link to a file.
 *    @old_dentry contains the dentry structure for an existing link
 *    to the file.
 *    @new_dir contains the path structure of the parent directory of
 *    the new link.
 *    @new_dentry contains the dentry structure for the new link.
 *    Return 0 if permission is granted.
 * @inode_unlink:
 *    Check the permission to remove a hard link to a file.
 *    @dir contains the inode structure of parent directory of the file.
 *    @dentry contains the dentry structure for file to be unlinked.
 *    Return 0 if permission is granted.
 * @path_unlink:
 *    Check the permission to remove a hard link to a file.
 *    @dir contains the path structure of parent directory of the file.
 *    @dentry contains the dentry structure for file to be unlinked.
 *    Return 0 if permission is granted.
 * @inode_symlink:
 *    Check the permission to create a symbolic link to a file.
 *    @dir contains the inode structure of parent directory of the symbolic link.
 *    @dentry contains the dentry structure of the symbolic link.
 *    @old_name contains the pathname of file.
 *    Return 0 if permission is granted.
 * @path_symlink:
 *    Check the permission to create a symbolic link to a file.
 *    @dir contains the path structure of parent directory of
 *    the symbolic link.
 *    @dentry contains the dentry structure of the symbolic link.
 *    @old_name contains the pathname of file.
 *    Return 0 if permission is granted.
 * @inode_mkdir:
 *    Check permissions to create a new directory in the existing directory
 *    associated with inode strcture @dir.
 *    @dir containst the inode structure of parent of the directory to be created.
 *    @dentry contains the dentry structure of new directory.
 *    @mode contains the mode of new directory.
 *    Return 0 if permission is granted.
 * @path_mkdir:
 *    Check permissions to create a new directory in the existing directory
 *    associated with path strcture @path.
 *    @dir containst the path structure of parent of the directory
 *    to be created.
 *    @dentry contains the dentry structure of new directory.
 *    @mode contains the mode of new directory.
 *    Return 0 if permission is granted.
 * @inode_rmdir:
 *    Check the permission to remove a directory.
 *    @dir contains the inode structure of parent of the directory to be removed.
 *    @dentry contains the dentry structure of directory to be removed.
 *    Return 0 if permission is granted.
 * @path_rmdir:
 *    Check the permission to remove a directory.
 *    @dir contains the path structure of parent of the directory to be
 *    removed.
 *    @dentry contains the dentry structure of directory to be removed.
 *    Return 0 if permission is granted.
 * @inode_mknod:
 *    Check permissions when creating a special file (or a socket or a fifo
 *    file created via the mknod system call).  Note that if mknod operation
 *    is being done for a regular file, then the create hook will be called
 *    and not this hook.
 *    @dir contains the inode structure of parent of the new file.
 *    @dentry contains the dentry structure of the new file.
 *    @mode contains the mode of the new file.
 *    @dev contains the device number.
 *    Return 0 if permission is granted.
 * @path_mknod:
 *    Check permissions when creating a file. Note that this hook is called
 *    even if mknod operation is being done for a regular file.
 *    @dir contains the path structure of parent of the new file.
 *    @dentry contains the dentry structure of the new file.
 *    @mode contains the mode of the new file.
 *    @dev contains the undecoded device number. Use new_decode_dev() to get
 *    the decoded device number.
 *    Return 0 if permission is granted.
 * @inode_rename:
 *    Check for permission to rename a file or directory.
 *    @old_dir contains the inode structure for parent of the old link.
 *    @old_dentry contains the dentry structure of the old link.
 *    @new_dir contains the inode structure for parent of the new link.
 *    @new_dentry contains the dentry structure of the new link.
 *    Return 0 if permission is granted.
 * @path_rename:
 *    Check for permission to rename a file or directory.
 *    @old_dir contains the path structure for parent of the old link.
 *    @old_dentry contains the dentry structure of the old link.
 *    @new_dir contains the path structure for parent of the new link.
 *    @new_dentry contains the dentry structure of the new link.
 *    Return 0 if permission is granted.
 * @inode_readlink:
 *    Check the permission to read the symbolic link.
 *    @dentry contains the dentry structure for the file link.
 *    Return 0 if permission is granted.
 * @inode_follow_link:
 *    Check permission to follow a symbolic link when looking up a pathname.
 *    @dentry contains the dentry structure for the link.
 *    @nd contains the nameidata structure for the parent directory.
 *    Return 0 if permission is granted.
 * @inode_permission:
 *    Check permission before accessing an inode.  This hook is called by the
 *    existing Linux permission function, so a security module can use it to
 *    provide additional checking for existing Linux permission checks.
 *    Notice that this hook is called when a file is opened (as well as many
 *    other operations), whereas the file_security_ops permission hook is
 *    called when the actual read/write operations are performed.
 *    @inode contains the inode structure to check.
 *    @mask contains the permission mask.
 *    @nd contains the nameidata (may be NULL).
 *    Return 0 if permission is granted.
 * @inode_setattr:
 *    Check permission before setting file attributes.  Note that the kernel
 *    call to notify_change is performed from several locations, whenever
 *    file attributes change (such as when a file is truncated, chown/chmod
 *    operations, transferring disk quotas, etc).
 *    @dentry contains the dentry structure for the file.
 *    @attr is the iattr structure containing the new file attributes.
 *    Return 0 if permission is granted.
 * @path_truncate:
 *    Check permission before truncating a file.
 *    @path contains the path structure for the file.
 *    @length is the new length of the file.
 *    @time_attrs is the flags passed to do_truncate().
 *    Return 0 if permission is granted.
 * @inode_getattr:
 *    Check permission before obtaining file attributes.
 *    @mnt is the vfsmount where the dentry was looked up
 *    @dentry contains the dentry structure for the file.
 *    Return 0 if permission is granted.
 * @inode_delete:
 *    @inode contains the inode structure for deleted inode.
 *    This hook is called when a deleted inode is released (i.e. an inode
 *    with no hard links has its use count drop to zero).  A security module
 *    can use this hook to release any persistent label associated with the
 *    inode.
 * @inode_setxattr:
 *    Check permission before setting the extended attributes
 *    @value identified by @name for @dentry.
 *    Return 0 if permission is granted.
 * @inode_post_setxattr:
 *    Update inode security field after successful setxattr operation.
 *    @value identified by @name for @dentry.
 * @inode_getxattr:
 *    Check permission before obtaining the extended attributes
 *    identified by @name for @dentry.
 *    Return 0 if permission is granted.
 * @inode_listxattr:
 *    Check permission before obtaining the list of extended attribute
 *    names for @dentry.
 *    Return 0 if permission is granted.
 * @inode_removexattr:
 *    Check permission before removing the extended attribute
 *    identified by @name for @dentry.
 *    Return 0 if permission is granted.
 * @inode_getsecurity:
 *    Retrieve a copy of the extended attribute representation of the
 *    security label associated with @name for @inode via @buffer.  Note that
 *    @name is the remainder of the attribute name after the security prefix
 *    has been removed. @alloc is used to specify of the call should return a
 *    value via the buffer or just the value length Return size of buffer on
 *    success.
 * @inode_setsecurity:
 *    Set the security label associated with @name for @inode from the
 *    extended attribute value @value.  @size indicates the size of the
 *    @value in bytes.  @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
 *    Note that @name is the remainder of the attribute name after the
 *    security. prefix has been removed.
 *    Return 0 on success.
 * @inode_listsecurity:
 *    Copy the extended attribute names for the security labels
 *    associated with @inode into @buffer.  The maximum size of @buffer
 *    is specified by @buffer_size.  @buffer may be NULL to request
 *    the size of the buffer required.
 *    Returns number of bytes used/required on success.
 * @inode_need_killpriv:
 *    Called when an inode has been changed.
 *    @dentry is the dentry being changed.
 *    Return <0 on error to abort the inode change operation.
 *    Return 0 if inode_killpriv does not need to be called.
 *    Return >0 if inode_killpriv does need to be called.
 * @inode_killpriv:
 *    The setuid bit is being removed.  Remove similar security labels.
 *    Called with the dentry->d_inode->i_mutex held.
 *    @dentry is the dentry being changed.
 *    Return 0 on success.  If error is returned, then the operation
 *    causing setuid bit removal is failed.
 * @inode_getsecid:
 *    Get the secid associated with the node.
 *    @inode contains a pointer to the inode.
 *    @secid contains a pointer to the location where result will be saved.
 *    In case of failure, @secid will be set to zero.
 *
 * Security hooks for file operations
 *
 * @file_permission:
 *    Check file permissions before accessing an open file.  This hook is
 *    called by various operations that read or write files.  A security
 *    module can use this hook to perform additional checking on these
 *    operations, e.g.  to revalidate permissions on use to support privilege
 *    bracketing or policy changes.  Notice that this hook is used when the
 *    actual read/write operations are performed, whereas the
 *    inode_security_ops hook is called when a file is opened (as well as
 *    many other operations).
 *    Caveat:  Although this hook can be used to revalidate permissions for
 *    various system call operations that read or write files, it does not
 *    address the revalidation of permissions for memory-mapped files.
 *    Security modules must handle this separately if they need such
 *    revalidation.
 *    @file contains the file structure being accessed.
 *    @mask contains the requested permissions.
 *    Return 0 if permission is granted.
 * @file_alloc_security:
 *    Allocate and attach a security structure to the file->f_security field.
 *    The security field is initialized to NULL when the structure is first
 *    created.
 *    @file contains the file structure to secure.
 *    Return 0 if the hook is successful and permission is granted.
 * @file_free_security:
 *    Deallocate and free any security structures stored in file->f_security.
 *    @file contains the file structure being modified.
 * @file_ioctl:
 *    @file contains the file structure.
 *    @cmd contains the operation to perform.
 *    @arg contains the operational arguments.
 *    Check permission for an ioctl operation on @file.  Note that @arg can
 *    sometimes represents a user space pointer; in other cases, it may be a
 *    simple integer value.  When @arg represents a user space pointer, it
 *    should never be used by the security module.
 *    Return 0 if permission is granted.
 * @file_mmap :
 *    Check permissions for a mmap operation.  The @file may be NULL, e.g.
 *    if mapping anonymous memory.
 *    @file contains the file structure for file to map (may be NULL).
 *    @reqprot contains the protection requested by the application.
 *    @prot contains the protection that will be applied by the kernel.
 *    @flags contains the operational flags.
 *    Return 0 if permission is granted.
 * @file_mprotect:
 *    Check permissions before changing memory access permissions.
 *    @vma contains the memory region to modify.
 *    @reqprot contains the protection requested by the application.
 *    @prot contains the protection that will be applied by the kernel.
 *    Return 0 if permission is granted.
 * @file_lock:
 *    Check permission before performing file locking operations.
 *    Note: this hook mediates both flock and fcntl style locks.
 *    @file contains the file structure.
 *    @cmd contains the posix-translated lock operation to perform
 *    (e.g. F_RDLCK, F_WRLCK).
 *    Return 0 if permission is granted.
 * @file_fcntl:
 *    Check permission before allowing the file operation specified by @cmd
 *    from being performed on the file @file.  Note that @arg can sometimes
 *    represents a user space pointer; in other cases, it may be a simple
 *    integer value.  When @arg represents a user space pointer, it should
 *    never be used by the security module.
 *    @file contains the file structure.
 *    @cmd contains the operation to be performed.
 *    @arg contains the operational arguments.
 *    Return 0 if permission is granted.
 * @file_set_fowner:
 *    Save owner security information (typically from current->security) in
 *    file->f_security for later use by the send_sigiotask hook.
 *    @file contains the file structure to update.
 *    Return 0 on success.
 * @file_send_sigiotask:
 *    Check permission for the file owner @fown to send SIGIO or SIGURG to the
 *    process @tsk.  Note that this hook is sometimes called from interrupt.
 *    Note that the fown_struct, @fown, is never outside the context of a
 *    struct file, so the file structure (and associated security information)
 *    can always be obtained:
 *          container_of(fown, struct file, f_owner)
 *    @tsk contains the structure of task receiving signal.
 *    @fown contains the file owner information.
 *    @sig is the signal that will be sent.  When 0, kernel sends SIGIO.
 *    Return 0 if permission is granted.
 * @file_receive:
 *    This hook allows security modules to control the ability of a process
 *    to receive an open file descriptor via socket IPC.
 *    @file contains the file structure being received.
 *    Return 0 if permission is granted.
 *
 * Security hook for dentry
 *
 * @dentry_open
 *    Save open-time permission checking state for later use upon
 *    file_permission, and recheck access if anything has changed
 *    since inode_permission.
 *
 * Security hooks for task operations.
 *
 * @task_create:
 *    Check permission before creating a child process.  See the clone(2)
 *    manual page for definitions of the @clone_flags.
 *    @clone_flags contains the flags indicating what should be shared.
 *    Return 0 if permission is granted.
 * @cred_free:
 *    @cred points to the credentials.
 *    Deallocate and clear the cred->security field in a set of credentials.
 * @cred_prepare:
 *    @new points to the new credentials.
 *    @old points to the original credentials.
 *    @gfp indicates the atomicity of any memory allocations.
 *    Prepare a new set of credentials by copying the data from the old set.
 * @cred_commit:
 *    @new points to the new credentials.
 *    @old points to the original credentials.
 *    Install a new set of credentials.
 * @kernel_act_as:
 *    Set the credentials for a kernel service to act as (subjective context).
 *    @new points to the credentials to be modified.
 *    @secid specifies the security ID to be set
 *    The current task must be the one that nominated @secid.
 *    Return 0 if successful.
 * @kernel_create_files_as:
 *    Set the file creation context in a set of credentials to be the same as
 *    the objective context of the specified inode.
 *    @new points to the credentials to be modified.
 *    @inode points to the inode to use as a reference.
 *    The current task must be the one that nominated @inode.
 *    Return 0 if successful.
 * @task_setuid:
 *    Check permission before setting one or more of the user identity
 *    attributes of the current process.  The @flags parameter indicates
 *    which of the set*uid system calls invoked this hook and how to
 *    interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
 *    definitions at the beginning of this file for the @flags values and
 *    their meanings.
 *    @id0 contains a uid.
 *    @id1 contains a uid.
 *    @id2 contains a uid.
 *    @flags contains one of the LSM_SETID_* values.
 *    Return 0 if permission is granted.
 * @task_fix_setuid:
 *    Update the module's state after setting one or more of the user
 *    identity attributes of the current process.  The @flags parameter
 *    indicates which of the set*uid system calls invoked this hook.  If
 *    @new is the set of credentials that will be installed.  Modifications
 *    should be made to this rather than to @current->cred.
 *    @old is the set of credentials that are being replaces
 *    @flags contains one of the LSM_SETID_* values.
 *    Return 0 on success.
 * @task_setgid:
 *    Check permission before setting one or more of the group identity
 *    attributes of the current process.  The @flags parameter indicates
 *    which of the set*gid system calls invoked this hook and how to
 *    interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
 *    definitions at the beginning of this file for the @flags values and
 *    their meanings.
 *    @id0 contains a gid.
 *    @id1 contains a gid.
 *    @id2 contains a gid.
 *    @flags contains one of the LSM_SETID_* values.
 *    Return 0 if permission is granted.
 * @task_setpgid:
 *    Check permission before setting the process group identifier of the
 *    process @p to @pgid.
 *    @p contains the task_struct for process being modified.
 *    @pgid contains the new pgid.
 *    Return 0 if permission is granted.
 * @task_getpgid:
 *    Check permission before getting the process group identifier of the
 *    process @p.
 *    @p contains the task_struct for the process.
 *    Return 0 if permission is granted.
 * @task_getsid:
 *    Check permission before getting the session identifier of the process
 *    @p.
 *    @p contains the task_struct for the process.
 *    Return 0 if permission is granted.
 * @task_getsecid:
 *    Retrieve the security identifier of the process @p.
 *    @p contains the task_struct for the process and place is into @secid.
 *    In case of failure, @secid will be set to zero.
 *
 * @task_setgroups:
 *    Check permission before setting the supplementary group set of the
 *    current process.
 *    @group_info contains the new group information.
 *    Return 0 if permission is granted.
 * @task_setnice:
 *    Check permission before setting the nice value of @p to @nice.
 *    @p contains the task_struct of process.
 *    @nice contains the new nice value.
 *    Return 0 if permission is granted.
 * @task_setioprio
 *    Check permission before setting the ioprio value of @p to @ioprio.
 *    @p contains the task_struct of process.
 *    @ioprio contains the new ioprio value
 *    Return 0 if permission is granted.
 * @task_getioprio
 *    Check permission before getting the ioprio value of @p.
 *    @p contains the task_struct of process.
 *    Return 0 if permission is granted.
 * @task_setrlimit:
 *    Check permission before setting the resource limits of the current
 *    process for @resource to @new_rlim.  The old resource limit values can
 *    be examined by dereferencing (current->signal->rlim + resource).
 *    @resource contains the resource whose limit is being set.
 *    @new_rlim contains the new limits for @resource.
 *    Return 0 if permission is granted.
 * @task_setscheduler:
 *    Check permission before setting scheduling policy and/or parameters of
 *    process @p based on @policy and @lp.
 *    @p contains the task_struct for process.
 *    @policy contains the scheduling policy.
 *    @lp contains the scheduling parameters.
 *    Return 0 if permission is granted.
 * @task_getscheduler:
 *    Check permission before obtaining scheduling information for process
 *    @p.
 *    @p contains the task_struct for process.
 *    Return 0 if permission is granted.
 * @task_movememory
 *    Check permission before moving memory owned by process @p.
 *    @p contains the task_struct for process.
 *    Return 0 if permission is granted.
 * @task_kill:
 *    Check permission before sending signal @sig to @p.  @info can be NULL,
 *    the constant 1, or a pointer to a siginfo structure.  If @info is 1 or
 *    SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
 *    from the kernel and should typically be permitted.
 *    SIGIO signals are handled separately by the send_sigiotask hook in
 *    file_security_ops.
 *    @p contains the task_struct for process.
 *    @info contains the signal information.
 *    @sig contains the signal value.
 *    @secid contains the sid of the process where the signal originated
 *    Return 0 if permission is granted.
 * @task_wait:
 *    Check permission before allowing a process to reap a child process @p
 *    and collect its status information.
 *    @p contains the task_struct for process.
 *    Return 0 if permission is granted.
 * @task_prctl:
 *    Check permission before performing a process control operation on the
 *    current process.
 *    @option contains the operation.
 *    @arg2 contains a argument.
 *    @arg3 contains a argument.
 *    @arg4 contains a argument.
 *    @arg5 contains a argument.
 *    Return -ENOSYS if no-one wanted to handle this op, any other value to
 *    cause prctl() to return immediately with that value.
 * @task_to_inode:
 *    Set the security attributes for an inode based on an associated task's
 *    security attributes, e.g. for /proc/pid inodes.
 *    @p contains the task_struct for the task.
 *    @inode contains the inode structure for the inode.
 *
 * Security hooks for Netlink messaging.
 *
 * @netlink_send:
 *    Save security information for a netlink message so that permission
 *    checking can be performed when the message is processed.  The security
 *    information can be saved using the eff_cap field of the
 *    netlink_skb_parms structure.  Also may be used to provide fine
 *    grained control over message transmission.
 *    @sk associated sock of task sending the message.,
 *    @skb contains the sk_buff structure for the netlink message.
 *    Return 0 if the information was successfully saved and message
 *    is allowed to be transmitted.
 * @netlink_recv:
 *    Check permission before processing the received netlink message in
 *    @skb.
 *    @skb contains the sk_buff structure for the netlink message.
 *    @cap indicates the capability required
 *    Return 0 if permission is granted.
 *
 * Security hooks for Unix domain networking.
 *
 * @unix_stream_connect:
 *    Check permissions before establishing a Unix domain stream connection
 *    between @sock and @other.
 *    @sock contains the socket structure.
 *    @other contains the peer socket structure.
 *    Return 0 if permission is granted.
 * @unix_may_send:
 *    Check permissions before connecting or sending datagrams from @sock to
 *    @other.
 *    @sock contains the socket structure.
 *    @sock contains the peer socket structure.
 *    Return 0 if permission is granted.
 *
 * The @unix_stream_connect and @unix_may_send hooks were necessary because
 * Linux provides an alternative to the conventional file name space for Unix
 * domain sockets.  Whereas binding and connecting to sockets in the file name
 * space is mediated by the typical file permissions (and caught by the mknod
 * and permission hooks in inode_security_ops), binding and connecting to
 * sockets in the abstract name space is completely unmediated.  Sufficient
 * control of Unix domain sockets in the abstract name space isn't possible
 * using only the socket layer hooks, since we need to know the actual target
 * socket, which is not looked up until we are inside the af_unix code.
 *
 * Security hooks for socket operations.
 *
 * @socket_create:
 *    Check permissions prior to creating a new socket.
 *    @family contains the requested protocol family.
 *    @type contains the requested communications type.
 *    @protocol contains the requested protocol.
 *    @kern set to 1 if a kernel socket.
 *    Return 0 if permission is granted.
 * @socket_post_create:
 *    This hook allows a module to update or allocate a per-socket security
 *    structure. Note that the security field was not added directly to the
 *    socket structure, but rather, the socket security information is stored
 *    in the associated inode.  Typically, the inode alloc_security hook will
 *    allocate and and attach security information to
 *    sock->inode->i_security.  This hook may be used to update the
 *    sock->inode->i_security field with additional information that wasn't
 *    available when the inode was allocated.
 *    @sock contains the newly created socket structure.
 *    @family contains the requested protocol family.
 *    @type contains the requested communications type.
 *    @protocol contains the requested protocol.
 *    @kern set to 1 if a kernel socket.
 * @socket_bind:
 *    Check permission before socket protocol layer bind operation is
 *    performed and the socket @sock is bound to the address specified in the
 *    @address parameter.
 *    @sock contains the socket structure.
 *    @address contains the address to bind to.
 *    @addrlen contains the length of address.
 *    Return 0 if permission is granted.
 * @socket_connect:
 *    Check permission before socket protocol layer connect operation
 *    attempts to connect socket @sock to a remote address, @address.
 *    @sock contains the socket structure.
 *    @address contains the address of remote endpoint.
 *    @addrlen contains the length of address.
 *    Return 0 if permission is granted.
 * @socket_listen:
 *    Check permission before socket protocol layer listen operation.
 *    @sock contains the socket structure.
 *    @backlog contains the maximum length for the pending connection queue.
 *    Return 0 if permission is granted.
 * @socket_accept:
 *    Check permission before accepting a new connection.  Note that the new
 *    socket, @newsock, has been created and some information copied to it,
 *    but the accept operation has not actually been performed.
 *    @sock contains the listening socket structure.
 *    @newsock contains the newly created server socket for connection.
 *    Return 0 if permission is granted.
 * @socket_sendmsg:
 *    Check permission before transmitting a message to another socket.
 *    @sock contains the socket structure.
 *    @msg contains the message to be transmitted.
 *    @size contains the size of message.
 *    Return 0 if permission is granted.
 * @socket_recvmsg:
 *    Check permission before receiving a message from a socket.
 *    @sock contains the socket structure.
 *    @msg contains the message structure.
 *    @size contains the size of message structure.
 *    @flags contains the operational flags.
 *    Return 0 if permission is granted.
 * @socket_getsockname:
 *    Check permission before the local address (name) of the socket object
 *    @sock is retrieved.
 *    @sock contains the socket structure.
 *    Return 0 if permission is granted.
 * @socket_getpeername:
 *    Check permission before the remote address (name) of a socket object
 *    @sock is retrieved.
 *    @sock contains the socket structure.
 *    Return 0 if permission is granted.
 * @socket_getsockopt:
 *    Check permissions before retrieving the options associated with socket
 *    @sock.
 *    @sock contains the socket structure.
 *    @level contains the protocol level to retrieve option from.
 *    @optname contains the name of option to retrieve.
 *    Return 0 if permission is granted.
 * @socket_setsockopt:
 *    Check permissions before setting the options associated with socket
 *    @sock.
 *    @sock contains the socket structure.
 *    @level contains the protocol level to set options for.
 *    @optname contains the name of the option to set.
 *    Return 0 if permission is granted.
 * @socket_shutdown:
 *    Checks permission before all or part of a connection on the socket
 *    @sock is shut down.
 *    @sock contains the socket structure.
 *    @how contains the flag indicating how future sends and receives are handled.
 *    Return 0 if permission is granted.
 * @socket_sock_rcv_skb:
 *    Check permissions on incoming network packets.  This hook is distinct
 *    from Netfilter's IP input hooks since it is the first time that the
 *    incoming sk_buff @skb has been associated with a particular socket, @sk.
 *    @sk contains the sock (not socket) associated with the incoming sk_buff.
 *    @skb contains the incoming network data.
 * @socket_getpeersec_stream:
 *    This hook allows the security module to provide peer socket security
 *    state for unix or connected tcp sockets to userspace via getsockopt
 *    SO_GETPEERSEC.  For tcp sockets this can be meaningful if the
 *    socket is associated with an ipsec SA.
 *    @sock is the local socket.
 *    @optval userspace memory where the security state is to be copied.
 *    @optlen userspace int where the module should copy the actual length
 *    of the security state.
 *    @len as input is the maximum length to copy to userspace provided
 *    by the caller.
 *    Return 0 if all is well, otherwise, typical getsockopt return
 *    values.
 * @socket_getpeersec_dgram:
 *    This hook allows the security module to provide peer socket security
 *    state for udp sockets on a per-packet basis to userspace via
 *    getsockopt SO_GETPEERSEC.  The application must first have indicated
 *    the IP_PASSSEC option via getsockopt.  It can then retrieve the
 *    security state returned by this hook for a packet via the SCM_SECURITY
 *    ancillary message type.
 *    @skb is the skbuff for the packet being queried
 *    @secdata is a pointer to a buffer in which to copy the security data
 *    @seclen is the maximum length for @secdata
 *    Return 0 on success, error on failure.
 * @sk_alloc_security:
 *    Allocate and attach a security structure to the sk->sk_security field,
 *    which is used to copy security attributes between local stream sockets.
 * @sk_free_security:
 *    Deallocate security structure.
 * @sk_clone_security:
 *    Clone/copy security structure.
 * @sk_getsecid:
 *    Retrieve the LSM-specific secid for the sock to enable caching of network
 *    authorizations.
 * @sock_graft:
 *    Sets the socket's isec sid to the sock's sid.
 * @inet_conn_request:
 *    Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
 * @inet_csk_clone:
 *    Sets the new child socket's sid to the openreq sid.
 * @inet_conn_established:
 *    Sets the connection's peersid to the secmark on skb.
 * @req_classify_flow:
 *    Sets the flow's sid to the openreq sid.
 *
 * Security hooks for XFRM operations.
 *
 * @xfrm_policy_alloc_security:
 *    @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy
 *    Database used by the XFRM system.
 *    @sec_ctx contains the security context information being provided by
 *    the user-level policy update program (e.g., setkey).
 *    Allocate a security structure to the xp->security field; the security
 *    field is initialized to NULL when the xfrm_policy is allocated.
 *    Return 0 if operation was successful (memory to allocate, legal context)
 * @xfrm_policy_clone_security:
 *    @old_ctx contains an existing xfrm_sec_ctx.
 *    @new_ctxp contains a new xfrm_sec_ctx being cloned from old.
 *    Allocate a security structure in new_ctxp that contains the
 *    information from the old_ctx structure.
 *    Return 0 if operation was successful (memory to allocate).
 * @xfrm_policy_free_security:
 *    @ctx contains the xfrm_sec_ctx
 *    Deallocate xp->security.
 * @xfrm_policy_delete_security:
 *    @ctx contains the xfrm_sec_ctx.
 *    Authorize deletion of xp->security.
 * @xfrm_state_alloc_security:
 *    @x contains the xfrm_state being added to the Security Association
 *    Database by the XFRM system.
 *    @sec_ctx contains the security context information being provided by
 *    the user-level SA generation program (e.g., setkey or racoon).
 *    @secid contains the secid from which to take the mls portion of the context.
 *    Allocate a security structure to the x->security field; the security
 *    field is initialized to NULL when the xfrm_state is allocated. Set the
 *    context to correspond to either sec_ctx or polsec, with the mls portion
 *    taken from secid in the latter case.
 *    Return 0 if operation was successful (memory to allocate, legal context).
 * @xfrm_state_free_security:
 *    @x contains the xfrm_state.
 *    Deallocate x->security.
 * @xfrm_state_delete_security:
 *    @x contains the xfrm_state.
 *    Authorize deletion of x->security.
 * @xfrm_policy_lookup:
 *    @ctx contains the xfrm_sec_ctx for which the access control is being
 *    checked.
 *    @fl_secid contains the flow security label that is used to authorize
 *    access to the policy xp.
 *    @dir contains the direction of the flow (input or output).
 *    Check permission when a flow selects a xfrm_policy for processing
 *    XFRMs on a packet.  The hook is called when selecting either a
 *    per-socket policy or a generic xfrm policy.
 *    Return 0 if permission is granted, -ESRCH otherwise, or -errno
 *    on other errors.
 * @xfrm_state_pol_flow_match:
 *    @x contains the state to match.
 *    @xp contains the policy to check for a match.
 *    @fl contains the flow to check for a match.
 *    Return 1 if there is a match.
 * @xfrm_decode_session:
 *    @skb points to skb to decode.
 *    @secid points to the flow key secid to set.
 *    @ckall says if all xfrms used should be checked for same secid.
 *    Return 0 if ckall is zero or all xfrms used have the same secid.
 *
 * Security hooks affecting all Key Management operations
 *
 * @key_alloc:
 *    Permit allocation of a key and assign security data. Note that key does
 *    not have a serial number assigned at this point.
 *    @key points to the key.
 *    @flags is the allocation flags
 *    Return 0 if permission is granted, -ve error otherwise.
 * @key_free:
 *    Notification of destruction; free security data.
 *    @key points to the key.
 *    No return value.
 * @key_permission:
 *    See whether a specific operational right is granted to a process on a
 *    key.
 *    @key_ref refers to the key (key pointer + possession attribute bit).
 *    @cred points to the credentials to provide the context against which to
 *    evaluate the security data on the key.
 *    @perm describes the combination of permissions required of this key.
 *    Return 1 if permission granted, 0 if permission denied and -ve it the
 *    normal permissions model should be effected.
 * @key_getsecurity:
 *    Get a textual representation of the security context attached to a key
 *    for the purposes of honouring KEYCTL_GETSECURITY.  This function
 *    allocates the storage for the NUL-terminated string and the caller
 *    should free it.
 *    @key points to the key to be queried.
 *    @_buffer points to a pointer that should be set to point to the
 *     resulting string (if no label or an error occurs).
 *    Return the length of the string (including terminating NUL) or -ve if
 *      an error.
 *    May also return 0 (and a NULL buffer pointer) if there is no label.
 *
 * Security hooks affecting all System V IPC operations.
 *
 * @ipc_permission:
 *    Check permissions for access to IPC
 *    @ipcp contains the kernel IPC permission structure
 *    @flag contains the desired (requested) permission set
 *    Return 0 if permission is granted.
 * @ipc_getsecid:
 *    Get the secid associated with the ipc object.
 *    @ipcp contains the kernel IPC permission structure.
 *    @secid contains a pointer to the location where result will be saved.
 *    In case of failure, @secid will be set to zero.
 *
 * Security hooks for individual messages held in System V IPC message queues
 * @msg_msg_alloc_security:
 *    Allocate and attach a security structure to the msg->security field.
 *    The security field is initialized to NULL when the structure is first
 *    created.
 *    @msg contains the message structure to be modified.
 *    Return 0 if operation was successful and permission is granted.
 * @msg_msg_free_security:
 *    Deallocate the security structure for this message.
 *    @msg contains the message structure to be modified.
 *
 * Security hooks for System V IPC Message Queues
 *
 * @msg_queue_alloc_security:
 *    Allocate and attach a security structure to the
 *    msq->q_perm.security field. The security field is initialized to
 *    NULL when the structure is first created.
 *    @msq contains the message queue structure to be modified.
 *    Return 0 if operation was successful and permission is granted.
 * @msg_queue_free_security:
 *    Deallocate security structure for this message queue.
 *    @msq contains the message queue structure to be modified.
 * @msg_queue_associate:
 *    Check permission when a message queue is requested through the
 *    msgget system call.  This hook is only called when returning the
 *    message queue identifier for an existing message queue, not when a
 *    new message queue is created.
 *    @msq contains the message queue to act upon.
 *    @msqflg contains the operation control flags.
 *    Return 0 if permission is granted.
 * @msg_queue_msgctl:
 *    Check permission when a message control operation specified by @cmd
 *    is to be performed on the message queue @msq.
 *    The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
 *    @msq contains the message queue to act upon.  May be NULL.
 *    @cmd contains the operation to be performed.
 *    Return 0 if permission is granted.
 * @msg_queue_msgsnd:
 *    Check permission before a message, @msg, is enqueued on the message
 *    queue, @msq.
 *    @msq contains the message queue to send message to.
 *    @msg contains the message to be enqueued.
 *    @msqflg contains operational flags.
 *    Return 0 if permission is granted.
 * @msg_queue_msgrcv:
 *    Check permission before a message, @msg, is removed from the message
 *    queue, @msq.  The @target task structure contains a pointer to the
 *    process that will be receiving the message (not equal to the current
 *    process when inline receives are being performed).
 *    @msq contains the message queue to retrieve message from.
 *    @msg contains the message destination.
 *    @target contains the task structure for recipient process.
 *    @type contains the type of message requested.
 *    @mode contains the operational flags.
 *    Return 0 if permission is granted.
 *
 * Security hooks for System V Shared Memory Segments
 *
 * @shm_alloc_security:
 *    Allocate and attach a security structure to the shp->shm_perm.security
 *    field.  The security field is initialized to NULL when the structure is
 *    first created.
 *    @shp contains the shared memory structure to be modified.
 *    Return 0 if operation was successful and permission is granted.
 * @shm_free_security:
 *    Deallocate the security struct for this memory segment.
 *    @shp contains the shared memory structure to be modified.
 * @shm_associate:
 *    Check permission when a shared memory region is requested through the
 *    shmget system call.  This hook is only called when returning the shared
 *    memory region identifier for an existing region, not when a new shared
 *    memory region is created.
 *    @shp contains the shared memory structure to be modified.
 *    @shmflg contains the operation control flags.
 *    Return 0 if permission is granted.
 * @shm_shmctl:
 *    Check permission when a shared memory control operation specified by
 *    @cmd is to be performed on the shared memory region @shp.
 *    The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
 *    @shp contains shared memory structure to be modified.
 *    @cmd contains the operation to be performed.
 *    Return 0 if permission is granted.
 * @shm_shmat:
 *    Check permissions prior to allowing the shmat system call to attach the
 *    shared memory segment @shp to the data segment of the calling process.
 *    The attaching address is specified by @shmaddr.
 *    @shp contains the shared memory structure to be modified.
 *    @shmaddr contains the address to attach memory region to.
 *    @shmflg contains the operational flags.
 *    Return 0 if permission is granted.
 *
 * Security hooks for System V Semaphores
 *
 * @sem_alloc_security:
 *    Allocate and attach a security structure to the sma->sem_perm.security
 *    field.  The security field is initialized to NULL when the structure is
 *    first created.
 *    @sma contains the semaphore structure
 *    Return 0 if operation was successful and permission is granted.
 * @sem_free_security:
 *    deallocate security struct for this semaphore
 *    @sma contains the semaphore structure.
 * @sem_associate:
 *    Check permission when a semaphore is requested through the semget
 *    system call.  This hook is only called when returning the semaphore
 *    identifier for an existing semaphore, not when a new one must be
 *    created.
 *    @sma contains the semaphore structure.
 *    @semflg contains the operation control flags.
 *    Return 0 if permission is granted.
 * @sem_semctl:
 *    Check permission when a semaphore operation specified by @cmd is to be
 *    performed on the semaphore @sma.  The @sma may be NULL, e.g. for
 *    IPC_INFO or SEM_INFO.
 *    @sma contains the semaphore structure.  May be NULL.
 *    @cmd contains the operation to be performed.
 *    Return 0 if permission is granted.
 * @sem_semop
 *    Check permissions before performing operations on members of the
 *    semaphore set @sma.  If the @alter flag is nonzero, the semaphore set
 *    may be modified.
 *    @sma contains the semaphore structure.
 *    @sops contains the operations to perform.
 *    @nsops contains the number of operations to perform.
 *    @alter contains the flag indicating whether changes are to be made.
 *    Return 0 if permission is granted.
 *
 * @ptrace_may_access:
 *    Check permission before allowing the current process to trace the
 *    @child process.
 *    Security modules may also want to perform a process tracing check
 *    during an execve in the set_security or apply_creds hooks of
 *    tracing check during an execve in the bprm_set_creds hook of
 *    binprm_security_ops if the process is being traced and its security
 *    attributes would be changed by the execve.
 *    @child contains the task_struct structure for the target process.
 *    @mode contains the PTRACE_MODE flags indicating the form of access.
 *    Return 0 if permission is granted.
 * @ptrace_traceme:
 *    Check that the @parent process has sufficient permission to trace the
 *    current process before allowing the current process to present itself
 *    to the @parent process for tracing.
 *    The parent process will still have to undergo the ptrace_may_access
 *    checks before it is allowed to trace this one.
 *    @parent contains the task_struct structure for debugger process.
 *    Return 0 if permission is granted.
 * @capget:
 *    Get the @effective, @inheritable, and @permitted capability sets for
 *    the @target process.  The hook may also perform permission checking to
 *    determine if the current process is allowed to see the capability sets
 *    of the @target process.
 *    @target contains the task_struct structure for target process.
 *    @effective contains the effective capability set.
 *    @inheritable contains the inheritable capability set.
 *    @permitted contains the permitted capability set.
 *    Return 0 if the capability sets were successfully obtained.
 * @capset:
 *    Set the @effective, @inheritable, and @permitted capability sets for
 *    the current process.
 *    @new contains the new credentials structure for target process.
 *    @old contains the current credentials structure for target process.
 *    @effective contains the effective capability set.
 *    @inheritable contains the inheritable capability set.
 *    @permitted contains the permitted capability set.
 *    Return 0 and update @new if permission is granted.
 * @capable:
 *    Check whether the @tsk process has the @cap capability in the indicated
 *    credentials.
 *    @tsk contains the task_struct for the process.
 *    @cred contains the credentials to use.
 *    @cap contains the capability <include/linux/capability.h>.
 *    @audit: Whether to write an audit message or not
 *    Return 0 if the capability is granted for @tsk.
 * @acct:
 *    Check permission before enabling or disabling process accounting.  If
 *    accounting is being enabled, then @file refers to the open file used to
 *    store accounting records.  If accounting is being disabled, then @file
 *    is NULL.
 *    @file contains the file structure for the accounting file (may be NULL).
 *    Return 0 if permission is granted.
 * @sysctl:
 *    Check permission before accessing the @table sysctl variable in the
 *    manner specified by @op.
 *    @table contains the ctl_table structure for the sysctl variable.
 *    @op contains the operation (001 = search, 002 = write, 004 = read).
 *    Return 0 if permission is granted.
 * @syslog:
 *    Check permission before accessing the kernel message ring or changing
 *    logging to the console.
 *    See the syslog(2) manual page for an explanation of the @type values.
 *    @type contains the type of action.
 *    Return 0 if permission is granted.
 * @settime:
 *    Check permission to change the system time.
 *    struct timespec and timezone are defined in include/linux/time.h
 *    @ts contains new time
 *    @tz contains new timezone
 *    Return 0 if permission is granted.
 * @vm_enough_memory:
 *    Check permissions for allocating a new virtual mapping.
 *    @mm contains the mm struct it is being added to.
 *    @pages contains the number of pages.
 *    Return 0 if permission is granted.
 *
 * @secid_to_secctx:
 *    Convert secid to security context.
 *    @secid contains the security ID.
 *    @secdata contains the pointer that stores the converted security context.
 * @secctx_to_secid:
 *    Convert security context to secid.
 *    @secid contains the pointer to the generated security ID.
 *    @secdata contains the security context.
 *
 * @release_secctx:
 *    Release the security context.
 *    @secdata contains the security context.
 *    @seclen contains the length of the security context.
 *
 * Security hooks for Audit
 *
 * @audit_rule_init:
 *    Allocate and initialize an LSM audit rule structure.
 *    @field contains the required Audit action. Fields flags are defined in include/linux/audit.h
 *    @op contains the operator the rule uses.
 *    @rulestr contains the context where the rule will be applied to.
 *    @lsmrule contains a pointer to receive the result.
 *    Return 0 if @lsmrule has been successfully set,
 *    -EINVAL in case of an invalid rule.
 *
 * @audit_rule_known:
 *    Specifies whether given @rule contains any fields related to current LSM.
 *    @rule contains the audit rule of interest.
 *    Return 1 in case of relation found, 0 otherwise.
 *
 * @audit_rule_match:
 *    Determine if given @secid matches a rule previously approved
 *    by @audit_rule_known.
 *    @secid contains the security id in question.
 *    @field contains the field which relates to current LSM.
 *    @op contains the operator that will be used for matching.
 *    @rule points to the audit rule that will be checked against.
 *    @actx points to the audit context associated with the check.
 *    Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure.
 *
 * @audit_rule_free:
 *    Deallocate the LSM audit rule structure previously allocated by
 *    audit_rule_init.
 *    @rule contains the allocated rule
 *
 * This is the main security structure.
 */
struct security_operations {
      char name[SECURITY_NAME_MAX + 1];

      int (*ptrace_may_access) (struct task_struct *child, unsigned int mode);
      int (*ptrace_traceme) (struct task_struct *parent);
      int (*capget) (struct task_struct *target,
                   kernel_cap_t *effective,
                   kernel_cap_t *inheritable, kernel_cap_t *permitted);
      int (*capset) (struct cred *new,
                   const struct cred *old,
                   const kernel_cap_t *effective,
                   const kernel_cap_t *inheritable,
                   const kernel_cap_t *permitted);
      int (*capable) (struct task_struct *tsk, const struct cred *cred,
                  int cap, int audit);
      int (*acct) (struct file *file);
      int (*sysctl) (struct ctl_table *table, int op);
      int (*quotactl) (int cmds, int type, int id, struct super_block *sb);
      int (*quota_on) (struct dentry *dentry);
      int (*syslog) (int type);
      int (*settime) (struct timespec *ts, struct timezone *tz);
      int (*vm_enough_memory) (struct mm_struct *mm, long pages);

      int (*bprm_set_creds) (struct linux_binprm *bprm);
      int (*bprm_check_security) (struct linux_binprm *bprm);
      int (*bprm_secureexec) (struct linux_binprm *bprm);
      void (*bprm_committing_creds) (struct linux_binprm *bprm);
      void (*bprm_committed_creds) (struct linux_binprm *bprm);

      int (*sb_alloc_security) (struct super_block *sb);
      void (*sb_free_security) (struct super_block *sb);
      int (*sb_copy_data) (char *orig, char *copy);
      int (*sb_kern_mount) (struct super_block *sb, int flags, void *data);
      int (*sb_show_options) (struct seq_file *m, struct super_block *sb);
      int (*sb_statfs) (struct dentry *dentry);
      int (*sb_mount) (char *dev_name, struct path *path,
                   char *type, unsigned long flags, void *data);
      int (*sb_check_sb) (struct vfsmount *mnt, struct path *path);
      int (*sb_umount) (struct vfsmount *mnt, int flags);
      void (*sb_umount_close) (struct vfsmount *mnt);
      void (*sb_umount_busy) (struct vfsmount *mnt);
      void (*sb_post_remount) (struct vfsmount *mnt,
                         unsigned long flags, void *data);
      void (*sb_post_addmount) (struct vfsmount *mnt,
                          struct path *mountpoint);
      int (*sb_pivotroot) (struct path *old_path,
                       struct path *new_path);
      void (*sb_post_pivotroot) (struct path *old_path,
                           struct path *new_path);
      int (*sb_set_mnt_opts) (struct super_block *sb,
                        struct security_mnt_opts *opts);
      void (*sb_clone_mnt_opts) (const struct super_block *oldsb,
                           struct super_block *newsb);
      int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts);

#ifdef CONFIG_SECURITY_PATH
      int (*path_unlink) (struct path *dir, struct dentry *dentry);
      int (*path_mkdir) (struct path *dir, struct dentry *dentry, int mode);
      int (*path_rmdir) (struct path *dir, struct dentry *dentry);
      int (*path_mknod) (struct path *dir, struct dentry *dentry, int mode,
                     unsigned int dev);
      int (*path_truncate) (struct path *path, loff_t length,
                        unsigned int time_attrs);
      int (*path_symlink) (struct path *dir, struct dentry *dentry,
                       const char *old_name);
      int (*path_link) (struct dentry *old_dentry, struct path *new_dir,
                    struct dentry *new_dentry);
      int (*path_rename) (struct path *old_dir, struct dentry *old_dentry,
                      struct path *new_dir, struct dentry *new_dentry);
#endif

      int (*inode_alloc_security) (struct inode *inode);
      void (*inode_free_security) (struct inode *inode);
      int (*inode_init_security) (struct inode *inode, struct inode *dir,
                            char **name, void **value, size_t *len);
      int (*inode_create) (struct inode *dir,
                       struct dentry *dentry, int mode);
      int (*inode_link) (struct dentry *old_dentry,
                     struct inode *dir, struct dentry *new_dentry);
      int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
      int (*inode_symlink) (struct inode *dir,
                        struct dentry *dentry, const char *old_name);
      int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
      int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
      int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
                      int mode, dev_t dev);
      int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
                       struct inode *new_dir, struct dentry *new_dentry);
      int (*inode_readlink) (struct dentry *dentry);
      int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
      int (*inode_permission) (struct inode *inode, int mask);
      int (*inode_setattr)    (struct dentry *dentry, struct iattr *attr);
      int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
      void (*inode_delete) (struct inode *inode);
      int (*inode_setxattr) (struct dentry *dentry, const char *name,
                         const void *value, size_t size, int flags);
      void (*inode_post_setxattr) (struct dentry *dentry, const char *name,
                             const void *value, size_t size, int flags);
      int (*inode_getxattr) (struct dentry *dentry, const char *name);
      int (*inode_listxattr) (struct dentry *dentry);
      int (*inode_removexattr) (struct dentry *dentry, const char *name);
      int (*inode_need_killpriv) (struct dentry *dentry);
      int (*inode_killpriv) (struct dentry *dentry);
      int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc);
      int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags);
      int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size);
      void (*inode_getsecid) (const struct inode *inode, u32 *secid);

      int (*file_permission) (struct file *file, int mask);
      int (*file_alloc_security) (struct file *file);
      void (*file_free_security) (struct file *file);
      int (*file_ioctl) (struct file *file, unsigned int cmd,
                     unsigned long arg);
      int (*file_mmap) (struct file *file,
                    unsigned long reqprot, unsigned long prot,
                    unsigned long flags, unsigned long addr,
                    unsigned long addr_only);
      int (*file_mprotect) (struct vm_area_struct *vma,
                        unsigned long reqprot,
                        unsigned long prot);
      int (*file_lock) (struct file *file, unsigned int cmd);
      int (*file_fcntl) (struct file *file, unsigned int cmd,
                     unsigned long arg);
      int (*file_set_fowner) (struct file *file);
      int (*file_send_sigiotask) (struct task_struct *tsk,
                            struct fown_struct *fown, int sig);
      int (*file_receive) (struct file *file);
      int (*dentry_open) (struct file *file, const struct cred *cred);

      int (*task_create) (unsigned long clone_flags);
      void (*cred_free) (struct cred *cred);
      int (*cred_prepare)(struct cred *new, const struct cred *old,
                      gfp_t gfp);
      void (*cred_commit)(struct cred *new, const struct cred *old);
      int (*kernel_act_as)(struct cred *new, u32 secid);
      int (*kernel_create_files_as)(struct cred *new, struct inode *inode);
      int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
      int (*task_fix_setuid) (struct cred *new, const struct cred *old,
                        int flags);
      int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
      int (*task_setpgid) (struct task_struct *p, pid_t pgid);
      int (*task_getpgid) (struct task_struct *p);
      int (*task_getsid) (struct task_struct *p);
      void (*task_getsecid) (struct task_struct *p, u32 *secid);
      int (*task_setgroups) (struct group_info *group_info);
      int (*task_setnice) (struct task_struct *p, int nice);
      int (*task_setioprio) (struct task_struct *p, int ioprio);
      int (*task_getioprio) (struct task_struct *p);
      int (*task_setrlimit) (unsigned int resource, struct rlimit *new_rlim);
      int (*task_setscheduler) (struct task_struct *p, int policy,
                          struct sched_param *lp);
      int (*task_getscheduler) (struct task_struct *p);
      int (*task_movememory) (struct task_struct *p);
      int (*task_kill) (struct task_struct *p,
                    struct siginfo *info, int sig, u32 secid);
      int (*task_wait) (struct task_struct *p);
      int (*task_prctl) (int option, unsigned long arg2,
                     unsigned long arg3, unsigned long arg4,
                     unsigned long arg5);
      void (*task_to_inode) (struct task_struct *p, struct inode *inode);

      int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag);
      void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid);

      int (*msg_msg_alloc_security) (struct msg_msg *msg);
      void (*msg_msg_free_security) (struct msg_msg *msg);

      int (*msg_queue_alloc_security) (struct msg_queue *msq);
      void (*msg_queue_free_security) (struct msg_queue *msq);
      int (*msg_queue_associate) (struct msg_queue *msq, int msqflg);
      int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd);
      int (*msg_queue_msgsnd) (struct msg_queue *msq,
                         struct msg_msg *msg, int msqflg);
      int (*msg_queue_msgrcv) (struct msg_queue *msq,
                         struct msg_msg *msg,
                         struct task_struct *target,
                         long type, int mode);

      int (*shm_alloc_security) (struct shmid_kernel *shp);
      void (*shm_free_security) (struct shmid_kernel *shp);
      int (*shm_associate) (struct shmid_kernel *shp, int shmflg);
      int (*shm_shmctl) (struct shmid_kernel *shp, int cmd);
      int (*shm_shmat) (struct shmid_kernel *shp,
                    char __user *shmaddr, int shmflg);

      int (*sem_alloc_security) (struct sem_array *sma);
      void (*sem_free_security) (struct sem_array *sma);
      int (*sem_associate) (struct sem_array *sma, int semflg);
      int (*sem_semctl) (struct sem_array *sma, int cmd);
      int (*sem_semop) (struct sem_array *sma,
                    struct sembuf *sops, unsigned nsops, int alter);

      int (*netlink_send) (struct sock *sk, struct sk_buff *skb);
      int (*netlink_recv) (struct sk_buff *skb, int cap);

      void (*d_instantiate) (struct dentry *dentry, struct inode *inode);

      int (*getprocattr) (struct task_struct *p, char *name, char **value);
      int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size);
      int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen);
      int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid);
      void (*release_secctx) (char *secdata, u32 seclen);

#ifdef CONFIG_SECURITY_NETWORK
      int (*unix_stream_connect) (struct socket *sock,
                            struct socket *other, struct sock *newsk);
      int (*unix_may_send) (struct socket *sock, struct socket *other);

      int (*socket_create) (int family, int type, int protocol, int kern);
      int (*socket_post_create) (struct socket *sock, int family,
                           int type, int protocol, int kern);
      int (*socket_bind) (struct socket *sock,
                      struct sockaddr *address, int addrlen);
      int (*socket_connect) (struct socket *sock,
                         struct sockaddr *address, int addrlen);
      int (*socket_listen) (struct socket *sock, int backlog);
      int (*socket_accept) (struct socket *sock, struct socket *newsock);
      int (*socket_sendmsg) (struct socket *sock,
                         struct msghdr *msg, int size);
      int (*socket_recvmsg) (struct socket *sock,
                         struct msghdr *msg, int size, int flags);
      int (*socket_getsockname) (struct socket *sock);
      int (*socket_getpeername) (struct socket *sock);
      int (*socket_getsockopt) (struct socket *sock, int level, int optname);
      int (*socket_setsockopt) (struct socket *sock, int level, int optname);
      int (*socket_shutdown) (struct socket *sock, int how);
      int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb);
      int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
      int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
      int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
      void (*sk_free_security) (struct sock *sk);
      void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
      void (*sk_getsecid) (struct sock *sk, u32 *secid);
      void (*sock_graft) (struct sock *sk, struct socket *parent);
      int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb,
                          struct request_sock *req);
      void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req);
      void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb);
      void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl);
#endif      /* CONFIG_SECURITY_NETWORK */

#ifdef CONFIG_SECURITY_NETWORK_XFRM
      int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp,
                  struct xfrm_user_sec_ctx *sec_ctx);
      int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx);
      void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx);
      int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx);
      int (*xfrm_state_alloc_security) (struct xfrm_state *x,
            struct xfrm_user_sec_ctx *sec_ctx,
            u32 secid);
      void (*xfrm_state_free_security) (struct xfrm_state *x);
      int (*xfrm_state_delete_security) (struct xfrm_state *x);
      int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
      int (*xfrm_state_pol_flow_match) (struct xfrm_state *x,
                                struct xfrm_policy *xp,
                                struct flowi *fl);
      int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall);
#endif      /* CONFIG_SECURITY_NETWORK_XFRM */

      /* key management security hooks */
#ifdef CONFIG_KEYS
      int (*key_alloc) (struct key *key, const struct cred *cred, unsigned long flags);
      void (*key_free) (struct key *key);
      int (*key_permission) (key_ref_t key_ref,
                         const struct cred *cred,
                         key_perm_t perm);
      int (*key_getsecurity)(struct key *key, char **_buffer);
#endif      /* CONFIG_KEYS */

#ifdef CONFIG_AUDIT
      int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule);
      int (*audit_rule_known) (struct audit_krule *krule);
      int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule,
                         struct audit_context *actx);
      void (*audit_rule_free) (void *lsmrule);
#endif /* CONFIG_AUDIT */
};

/* prototypes */
extern int security_init(void);
extern int security_module_enable(struct security_operations *ops);
extern int register_security(struct security_operations *ops);

/* Security operations */
int security_ptrace_may_access(struct task_struct *child, unsigned int mode);
int security_ptrace_traceme(struct task_struct *parent);
int security_capget(struct task_struct *target,
                kernel_cap_t *effective,
                kernel_cap_t *inheritable,
                kernel_cap_t *permitted);
int security_capset(struct cred *new, const struct cred *old,
                const kernel_cap_t *effective,
                const kernel_cap_t *inheritable,
                const kernel_cap_t *permitted);
int security_capable(int cap);
int security_real_capable(struct task_struct *tsk, int cap);
int security_real_capable_noaudit(struct task_struct *tsk, int cap);
int security_acct(struct file *file);
int security_sysctl(struct ctl_table *table, int op);
int security_quotactl(int cmds, int type, int id, struct super_block *sb);
int security_quota_on(struct dentry *dentry);
int security_syslog(int type);
int security_settime(struct timespec *ts, struct timezone *tz);
int security_vm_enough_memory(long pages);
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages);
int security_vm_enough_memory_kern(long pages);
int security_bprm_set_creds(struct linux_binprm *bprm);
int security_bprm_check(struct linux_binprm *bprm);
void security_bprm_committing_creds(struct linux_binprm *bprm);
void security_bprm_committed_creds(struct linux_binprm *bprm);
int security_bprm_secureexec(struct linux_binprm *bprm);
int security_sb_alloc(struct super_block *sb);
void security_sb_free(struct super_block *sb);
int security_sb_copy_data(char *orig, char *copy);
int security_sb_kern_mount(struct super_block *sb, int flags, void *data);
int security_sb_show_options(struct seq_file *m, struct super_block *sb);
int security_sb_statfs(struct dentry *dentry);
int security_sb_mount(char *dev_name, struct path *path,
                  char *type, unsigned long flags, void *data);
int security_sb_check_sb(struct vfsmount *mnt, struct path *path);
int security_sb_umount(struct vfsmount *mnt, int flags);
void security_sb_umount_close(struct vfsmount *mnt);
void security_sb_umount_busy(struct vfsmount *mnt);
void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data);
void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint);
int security_sb_pivotroot(struct path *old_path, struct path *new_path);
void security_sb_post_pivotroot(struct path *old_path, struct path *new_path);
int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts);
void security_sb_clone_mnt_opts(const struct super_block *oldsb,
                        struct super_block *newsb);
int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts);

int security_inode_alloc(struct inode *inode);
void security_inode_free(struct inode *inode);
int security_inode_init_security(struct inode *inode, struct inode *dir,
                          char **name, void **value, size_t *len);
int security_inode_create(struct inode *dir, struct dentry *dentry, int mode);
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
                   struct dentry *new_dentry);
int security_inode_unlink(struct inode *dir, struct dentry *dentry);
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
                     const char *old_name);
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode);
int security_inode_rmdir(struct inode *dir, struct dentry *dentry);
int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev);
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
                    struct inode *new_dir, struct dentry *new_dentry);
int security_inode_readlink(struct dentry *dentry);
int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd);
int security_inode_permission(struct inode *inode, int mask);
int security_inode_setattr(struct dentry *dentry, struct iattr *attr);
int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry);
void security_inode_delete(struct inode *inode);
int security_inode_setxattr(struct dentry *dentry, const char *name,
                      const void *value, size_t size, int flags);
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
                          const void *value, size_t size, int flags);
int security_inode_getxattr(struct dentry *dentry, const char *name);
int security_inode_listxattr(struct dentry *dentry);
int security_inode_removexattr(struct dentry *dentry, const char *name);
int security_inode_need_killpriv(struct dentry *dentry);
int security_inode_killpriv(struct dentry *dentry);
int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc);
int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags);
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size);
void security_inode_getsecid(const struct inode *inode, u32 *secid);
int security_file_permission(struct file *file, int mask);
int security_file_alloc(struct file *file);
void security_file_free(struct file *file);
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
int security_file_mmap(struct file *file, unsigned long reqprot,
                  unsigned long prot, unsigned long flags,
                  unsigned long addr, unsigned long addr_only);
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
                     unsigned long prot);
int security_file_lock(struct file *file, unsigned int cmd);
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg);
int security_file_set_fowner(struct file *file);
int security_file_send_sigiotask(struct task_struct *tsk,
                         struct fown_struct *fown, int sig);
int security_file_receive(struct file *file);
int security_dentry_open(struct file *file, const struct cred *cred);
int security_task_create(unsigned long clone_flags);
void security_cred_free(struct cred *cred);
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp);
void security_commit_creds(struct cred *new, const struct cred *old);
int security_kernel_act_as(struct cred *new, u32 secid);
int security_kernel_create_files_as(struct cred *new, struct inode *inode);
int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags);
int security_task_fix_setuid(struct cred *new, const struct cred *old,
                       int flags);
int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags);
int security_task_setpgid(struct task_struct *p, pid_t pgid);
int security_task_getpgid(struct task_struct *p);
int security_task_getsid(struct task_struct *p);
void security_task_getsecid(struct task_struct *p, u32 *secid);
int security_task_setgroups(struct group_info *group_info);
int security_task_setnice(struct task_struct *p, int nice);
int security_task_setioprio(struct task_struct *p, int ioprio);
int security_task_getioprio(struct task_struct *p);
int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim);
int security_task_setscheduler(struct task_struct *p,
                        int policy, struct sched_param *lp);
int security_task_getscheduler(struct task_struct *p);
int security_task_movememory(struct task_struct *p);
int security_task_kill(struct task_struct *p, struct siginfo *info,
                  int sig, u32 secid);
int security_task_wait(struct task_struct *p);
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
                  unsigned long arg4, unsigned long arg5);
void security_task_to_inode(struct task_struct *p, struct inode *inode);
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag);
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid);
int security_msg_msg_alloc(struct msg_msg *msg);
void security_msg_msg_free(struct msg_msg *msg);
int security_msg_queue_alloc(struct msg_queue *msq);
void security_msg_queue_free(struct msg_queue *msq);
int security_msg_queue_associate(struct msg_queue *msq, int msqflg);
int security_msg_queue_msgctl(struct msg_queue *msq, int cmd);
int security_msg_queue_msgsnd(struct msg_queue *msq,
                        struct msg_msg *msg, int msqflg);
int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
                        struct task_struct *target, long type, int mode);
int security_shm_alloc(struct shmid_kernel *shp);
void security_shm_free(struct shmid_kernel *shp);
int security_shm_associate(struct shmid_kernel *shp, int shmflg);
int security_shm_shmctl(struct shmid_kernel *shp, int cmd);
int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg);
int security_sem_alloc(struct sem_array *sma);
void security_sem_free(struct sem_array *sma);
int security_sem_associate(struct sem_array *sma, int semflg);
int security_sem_semctl(struct sem_array *sma, int cmd);
int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
                  unsigned nsops, int alter);
void security_d_instantiate(struct dentry *dentry, struct inode *inode);
int security_getprocattr(struct task_struct *p, char *name, char **value);
int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size);
int security_netlink_send(struct sock *sk, struct sk_buff *skb);
int security_netlink_recv(struct sk_buff *skb, int cap);
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen);
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid);
void security_release_secctx(char *secdata, u32 seclen);

#else /* CONFIG_SECURITY */
01800 struct security_mnt_opts {
};

static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
{
}

static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
{
}

/*
 * This is the default capabilities functionality.  Most of these functions
 * are just stubbed out, but a few must call the proper capable code.
 */

static inline int security_init(void)
{
      return 0;
}

static inline int security_ptrace_may_access(struct task_struct *child,
                                   unsigned int mode)
{
      return cap_ptrace_may_access(child, mode);
}

static inline int security_ptrace_traceme(struct task_struct *parent)
{
      return cap_ptrace_traceme(parent);
}

static inline int security_capget(struct task_struct *target,
                           kernel_cap_t *effective,
                           kernel_cap_t *inheritable,
                           kernel_cap_t *permitted)
{
      return cap_capget(target, effective, inheritable, permitted);
}

static inline int security_capset(struct cred *new,
                           const struct cred *old,
                           const kernel_cap_t *effective,
                           const kernel_cap_t *inheritable,
                           const kernel_cap_t *permitted)
{
      return cap_capset(new, old, effective, inheritable, permitted);
}

static inline int security_capable(int cap)
{
      return cap_capable(current, current_cred(), cap, SECURITY_CAP_AUDIT);
}

static inline int security_real_capable(struct task_struct *tsk, int cap)
{
      int ret;

      rcu_read_lock();
      ret = cap_capable(tsk, __task_cred(tsk), cap, SECURITY_CAP_AUDIT);
      rcu_read_unlock();
      return ret;
}

static inline
int security_real_capable_noaudit(struct task_struct *tsk, int cap)
{
      int ret;

      rcu_read_lock();
      ret = cap_capable(tsk, __task_cred(tsk), cap,
                         SECURITY_CAP_NOAUDIT);
      rcu_read_unlock();
      return ret;
}

static inline int security_acct(struct file *file)
{
      return 0;
}

static inline int security_sysctl(struct ctl_table *table, int op)
{
      return 0;
}

static inline int security_quotactl(int cmds, int type, int id,
                             struct super_block *sb)
{
      return 0;
}

static inline int security_quota_on(struct dentry *dentry)
{
      return 0;
}

static inline int security_syslog(int type)
{
      return cap_syslog(type);
}

static inline int security_settime(struct timespec *ts, struct timezone *tz)
{
      return cap_settime(ts, tz);
}

static inline int security_vm_enough_memory(long pages)
{
      WARN_ON(current->mm == NULL);
      return cap_vm_enough_memory(current->mm, pages);
}

static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
      WARN_ON(mm == NULL);
      return cap_vm_enough_memory(mm, pages);
}

static inline int security_vm_enough_memory_kern(long pages)
{
      /* If current->mm is a kernel thread then we will pass NULL,
         for this specific case that is fine */
      return cap_vm_enough_memory(current->mm, pages);
}

static inline int security_bprm_set_creds(struct linux_binprm *bprm)
{
      return cap_bprm_set_creds(bprm);
}

static inline int security_bprm_check(struct linux_binprm *bprm)
{
      return 0;
}

static inline void security_bprm_committing_creds(struct linux_binprm *bprm)
{
}

static inline void security_bprm_committed_creds(struct linux_binprm *bprm)
{
}

static inline int security_bprm_secureexec(struct linux_binprm *bprm)
{
      return cap_bprm_secureexec(bprm);
}

static inline int security_sb_alloc(struct super_block *sb)
{
      return 0;
}

static inline void security_sb_free(struct super_block *sb)
{ }

static inline int security_sb_copy_data(char *orig, char *copy)
{
      return 0;
}

static inline int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
{
      return 0;
}

static inline int security_sb_show_options(struct seq_file *m,
                                 struct super_block *sb)
{
      return 0;
}

static inline int security_sb_statfs(struct dentry *dentry)
{
      return 0;
}

static inline int security_sb_mount(char *dev_name, struct path *path,
                            char *type, unsigned long flags,
                            void *data)
{
      return 0;
}

static inline int security_sb_check_sb(struct vfsmount *mnt,
                               struct path *path)
{
      return 0;
}

static inline int security_sb_umount(struct vfsmount *mnt, int flags)
{
      return 0;
}

static inline void security_sb_umount_close(struct vfsmount *mnt)
{ }

static inline void security_sb_umount_busy(struct vfsmount *mnt)
{ }

static inline void security_sb_post_remount(struct vfsmount *mnt,
                                   unsigned long flags, void *data)
{ }

static inline void security_sb_post_addmount(struct vfsmount *mnt,
                                   struct path *mountpoint)
{ }

static inline int security_sb_pivotroot(struct path *old_path,
                              struct path *new_path)
{
      return 0;
}

static inline void security_sb_post_pivotroot(struct path *old_path,
                                    struct path *new_path)
{ }

static inline int security_sb_set_mnt_opts(struct super_block *sb,
                                 struct security_mnt_opts *opts)
{
      return 0;
}

static inline void security_sb_clone_mnt_opts(const struct super_block *oldsb,
                                    struct super_block *newsb)
{ }

static inline int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
{
      return 0;
}

static inline int security_inode_alloc(struct inode *inode)
{
      return 0;
}

static inline void security_inode_free(struct inode *inode)
{ }

static inline int security_inode_init_security(struct inode *inode,
                                    struct inode *dir,
                                    char **name,
                                    void **value,
                                    size_t *len)
{
      return -EOPNOTSUPP;
}

static inline int security_inode_create(struct inode *dir,
                               struct dentry *dentry,
                               int mode)
{
      return 0;
}

static inline int security_inode_link(struct dentry *old_dentry,
                               struct inode *dir,
                               struct dentry *new_dentry)
{
      return 0;
}

static inline int security_inode_unlink(struct inode *dir,
                               struct dentry *dentry)
{
      return 0;
}

static inline int security_inode_symlink(struct inode *dir,
                                struct dentry *dentry,
                                const char *old_name)
{
      return 0;
}

static inline int security_inode_mkdir(struct inode *dir,
                              struct dentry *dentry,
                              int mode)
{
      return 0;
}

static inline int security_inode_rmdir(struct inode *dir,
                              struct dentry *dentry)
{
      return 0;
}

static inline int security_inode_mknod(struct inode *dir,
                              struct dentry *dentry,
                              int mode, dev_t dev)
{
      return 0;
}

static inline int security_inode_rename(struct inode *old_dir,
                               struct dentry *old_dentry,
                               struct inode *new_dir,
                               struct dentry *new_dentry)
{
      return 0;
}

static inline int security_inode_readlink(struct dentry *dentry)
{
      return 0;
}

static inline int security_inode_follow_link(struct dentry *dentry,
                                    struct nameidata *nd)
{
      return 0;
}

static inline int security_inode_permission(struct inode *inode, int mask)
{
      return 0;
}

static inline int security_inode_setattr(struct dentry *dentry,
                                struct iattr *attr)
{
      return 0;
}

static inline int security_inode_getattr(struct vfsmount *mnt,
                                struct dentry *dentry)
{
      return 0;
}

static inline void security_inode_delete(struct inode *inode)
{ }

static inline int security_inode_setxattr(struct dentry *dentry,
            const char *name, const void *value, size_t size, int flags)
{
      return cap_inode_setxattr(dentry, name, value, size, flags);
}

static inline void security_inode_post_setxattr(struct dentry *dentry,
            const char *name, const void *value, size_t size, int flags)
{ }

static inline int security_inode_getxattr(struct dentry *dentry,
                  const char *name)
{
      return 0;
}

static inline int security_inode_listxattr(struct dentry *dentry)
{
      return 0;
}

static inline int security_inode_removexattr(struct dentry *dentry,
                  const char *name)
{
      return cap_inode_removexattr(dentry, name);
}

static inline int security_inode_need_killpriv(struct dentry *dentry)
{
      return cap_inode_need_killpriv(dentry);
}

static inline int security_inode_killpriv(struct dentry *dentry)
{
      return cap_inode_killpriv(dentry);
}

static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
{
      return -EOPNOTSUPP;
}

static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
{
      return -EOPNOTSUPP;
}

static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
      return 0;
}

static inline void security_inode_getsecid(const struct inode *inode, u32 *secid)
{
      *secid = 0;
}

static inline int security_file_permission(struct file *file, int mask)
{
      return 0;
}

static inline int security_file_alloc(struct file *file)
{
      return 0;
}

static inline void security_file_free(struct file *file)
{ }

static inline int security_file_ioctl(struct file *file, unsigned int cmd,
                              unsigned long arg)
{
      return 0;
}

static inline int security_file_mmap(struct file *file, unsigned long reqprot,
                             unsigned long prot,
                             unsigned long flags,
                             unsigned long addr,
                             unsigned long addr_only)
{
      return cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
}

static inline int security_file_mprotect(struct vm_area_struct *vma,
                               unsigned long reqprot,
                               unsigned long prot)
{
      return 0;
}

static inline int security_file_lock(struct file *file, unsigned int cmd)
{
      return 0;
}

static inline int security_file_fcntl(struct file *file, unsigned int cmd,
                              unsigned long arg)
{
      return 0;
}

static inline int security_file_set_fowner(struct file *file)
{
      return 0;
}

static inline int security_file_send_sigiotask(struct task_struct *tsk,
                                     struct fown_struct *fown,
                                     int sig)
{
      return 0;
}

static inline int security_file_receive(struct file *file)
{
      return 0;
}

static inline int security_dentry_open(struct file *file,
                               const struct cred *cred)
{
      return 0;
}

static inline int security_task_create(unsigned long clone_flags)
{
      return 0;
}

static inline void security_cred_free(struct cred *cred)
{ }

static inline int security_prepare_creds(struct cred *new,
                               const struct cred *old,
                               gfp_t gfp)
{
      return 0;
}

static inline void security_commit_creds(struct cred *new,
                               const struct cred *old)
{
}

static inline int security_kernel_act_as(struct cred *cred, u32 secid)
{
      return 0;
}

static inline int security_kernel_create_files_as(struct cred *cred,
                                      struct inode *inode)
{
      return 0;
}

static inline int security_task_setuid(uid_t id0, uid_t id1, uid_t id2,
                               int flags)
{
      return 0;
}

static inline int security_task_fix_setuid(struct cred *new,
                                 const struct cred *old,
                                 int flags)
{
      return cap_task_fix_setuid(new, old, flags);
}

static inline int security_task_setgid(gid_t id0, gid_t id1, gid_t id2,
                               int flags)
{
      return 0;
}

static inline int security_task_setpgid(struct task_struct *p, pid_t pgid)
{
      return 0;
}

static inline int security_task_getpgid(struct task_struct *p)
{
      return 0;
}

static inline int security_task_getsid(struct task_struct *p)
{
      return 0;
}

static inline void security_task_getsecid(struct task_struct *p, u32 *secid)
{
      *secid = 0;
}

static inline int security_task_setgroups(struct group_info *group_info)
{
      return 0;
}

static inline int security_task_setnice(struct task_struct *p, int nice)
{
      return cap_task_setnice(p, nice);
}

static inline int security_task_setioprio(struct task_struct *p, int ioprio)
{
      return cap_task_setioprio(p, ioprio);
}

static inline int security_task_getioprio(struct task_struct *p)
{
      return 0;
}

static inline int security_task_setrlimit(unsigned int resource,
                                struct rlimit *new_rlim)
{
      return 0;
}

static inline int security_task_setscheduler(struct task_struct *p,
                                   int policy,
                                   struct sched_param *lp)
{
      return cap_task_setscheduler(p, policy, lp);
}

static inline int security_task_getscheduler(struct task_struct *p)
{
      return 0;
}

static inline int security_task_movememory(struct task_struct *p)
{
      return 0;
}

static inline int security_task_kill(struct task_struct *p,
                             struct siginfo *info, int sig,
                             u32 secid)
{
      return 0;
}

static inline int security_task_wait(struct task_struct *p)
{
      return 0;
}

static inline int security_task_prctl(int option, unsigned long arg2,
                              unsigned long arg3,
                              unsigned long arg4,
                              unsigned long arg5)
{
      return cap_task_prctl(option, arg2, arg3, arg3, arg5);
}

static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
{ }

static inline int security_ipc_permission(struct kern_ipc_perm *ipcp,
                                short flag)
{
      return 0;
}

static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
{
      *secid = 0;
}

static inline int security_msg_msg_alloc(struct msg_msg *msg)
{
      return 0;
}

static inline void security_msg_msg_free(struct msg_msg *msg)
{ }

static inline int security_msg_queue_alloc(struct msg_queue *msq)
{
      return 0;
}

static inline void security_msg_queue_free(struct msg_queue *msq)
{ }

static inline int security_msg_queue_associate(struct msg_queue *msq,
                                     int msqflg)
{
      return 0;
}

static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
{
      return 0;
}

static inline int security_msg_queue_msgsnd(struct msg_queue *msq,
                                  struct msg_msg *msg, int msqflg)
{
      return 0;
}

static inline int security_msg_queue_msgrcv(struct msg_queue *msq,
                                  struct msg_msg *msg,
                                  struct task_struct *target,
                                  long type, int mode)
{
      return 0;
}

static inline int security_shm_alloc(struct shmid_kernel *shp)
{
      return 0;
}

static inline void security_shm_free(struct shmid_kernel *shp)
{ }

static inline int security_shm_associate(struct shmid_kernel *shp,
                               int shmflg)
{
      return 0;
}

static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
{
      return 0;
}

static inline int security_shm_shmat(struct shmid_kernel *shp,
                             char __user *shmaddr, int shmflg)
{
      return 0;
}

static inline int security_sem_alloc(struct sem_array *sma)
{
      return 0;
}

static inline void security_sem_free(struct sem_array *sma)
{ }

static inline int security_sem_associate(struct sem_array *sma, int semflg)
{
      return 0;
}

static inline int security_sem_semctl(struct sem_array *sma, int cmd)
{
      return 0;
}

static inline int security_sem_semop(struct sem_array *sma,
                             struct sembuf *sops, unsigned nsops,
                             int alter)
{
      return 0;
}

static inline void security_d_instantiate(struct dentry *dentry, struct inode *inode)
{ }

static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
{
      return -EINVAL;
}

static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
      return -EINVAL;
}

static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb)
{
      return cap_netlink_send(sk, skb);
}

static inline int security_netlink_recv(struct sk_buff *skb, int cap)
{
      return cap_netlink_recv(skb, cap);
}

static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
      return -EOPNOTSUPP;
}

static inline int security_secctx_to_secid(const char *secdata,
                                 u32 seclen,
                                 u32 *secid)
{
      return -EOPNOTSUPP;
}

static inline void security_release_secctx(char *secdata, u32 seclen)
{
}
#endif      /* CONFIG_SECURITY */

#ifdef CONFIG_SECURITY_NETWORK

int security_unix_stream_connect(struct socket *sock, struct socket *other,
                         struct sock *newsk);
int security_unix_may_send(struct socket *sock,  struct socket *other);
int security_socket_create(int family, int type, int protocol, int kern);
int security_socket_post_create(struct socket *sock, int family,
                        int type, int protocol, int kern);
int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen);
int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen);
int security_socket_listen(struct socket *sock, int backlog);
int security_socket_accept(struct socket *sock, struct socket *newsock);
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size);
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
                      int size, int flags);
int security_socket_getsockname(struct socket *sock);
int security_socket_getpeername(struct socket *sock);
int security_socket_getsockopt(struct socket *sock, int level, int optname);
int security_socket_setsockopt(struct socket *sock, int level, int optname);
int security_socket_shutdown(struct socket *sock, int how);
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb);
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
                              int __user *optlen, unsigned len);
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid);
int security_sk_alloc(struct sock *sk, int family, gfp_t priority);
void security_sk_free(struct sock *sk);
void security_sk_clone(const struct sock *sk, struct sock *newsk);
void security_sk_classify_flow(struct sock *sk, struct flowi *fl);
void security_req_classify_flow(const struct request_sock *req, struct flowi *fl);
void security_sock_graft(struct sock*sk, struct socket *parent);
int security_inet_conn_request(struct sock *sk,
                  struct sk_buff *skb, struct request_sock *req);
void security_inet_csk_clone(struct sock *newsk,
                  const struct request_sock *req);
void security_inet_conn_established(struct sock *sk,
                  struct sk_buff *skb);

#else /* CONFIG_SECURITY_NETWORK */
static inline int security_unix_stream_connect(struct socket *sock,
                                     struct socket *other,
                                     struct sock *newsk)
{
      return 0;
}

static inline int security_unix_may_send(struct socket *sock,
                               struct socket *other)
{
      return 0;
}

static inline int security_socket_create(int family, int type,
                               int protocol, int kern)
{
      return 0;
}

static inline int security_socket_post_create(struct socket *sock,
                                    int family,
                                    int type,
                                    int protocol, int kern)
{
      return 0;
}

static inline int security_socket_bind(struct socket *sock,
                               struct sockaddr *address,
                               int addrlen)
{
      return 0;
}

static inline int security_socket_connect(struct socket *sock,
                                struct sockaddr *address,
                                int addrlen)
{
      return 0;
}

static inline int security_socket_listen(struct socket *sock, int backlog)
{
      return 0;
}

static inline int security_socket_accept(struct socket *sock,
                               struct socket *newsock)
{
      return 0;
}

static inline int security_socket_sendmsg(struct socket *sock,
                                struct msghdr *msg, int size)
{
      return 0;
}

static inline int security_socket_recvmsg(struct socket *sock,
                                struct msghdr *msg, int size,
                                int flags)
{
      return 0;
}

static inline int security_socket_getsockname(struct socket *sock)
{
      return 0;
}

static inline int security_socket_getpeername(struct socket *sock)
{
      return 0;
}

static inline int security_socket_getsockopt(struct socket *sock,
                                   int level, int optname)
{
      return 0;
}

static inline int security_socket_setsockopt(struct socket *sock,
                                   int level, int optname)
{
      return 0;
}

static inline int security_socket_shutdown(struct socket *sock, int how)
{
      return 0;
}
static inline int security_sock_rcv_skb(struct sock *sk,
                              struct sk_buff *skb)
{
      return 0;
}

static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
                                        int __user *optlen, unsigned len)
{
      return -ENOPROTOOPT;
}

static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
{
      return -ENOPROTOOPT;
}

static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
      return 0;
}

static inline void security_sk_free(struct sock *sk)
{
}

static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
}

static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
{
}

static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
{
}

static inline void security_sock_graft(struct sock *sk, struct socket *parent)
{
}

static inline int security_inet_conn_request(struct sock *sk,
                  struct sk_buff *skb, struct request_sock *req)
{
      return 0;
}

static inline void security_inet_csk_clone(struct sock *newsk,
                  const struct request_sock *req)
{
}

static inline void security_inet_conn_established(struct sock *sk,
                  struct sk_buff *skb)
{
}
#endif      /* CONFIG_SECURITY_NETWORK */

#ifdef CONFIG_SECURITY_NETWORK_XFRM

int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx);
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp);
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx);
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx);
int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
                              struct xfrm_sec_ctx *polsec, u32 secid);
int security_xfrm_state_delete(struct xfrm_state *x);
void security_xfrm_state_free(struct xfrm_state *x);
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
                               struct xfrm_policy *xp, struct flowi *fl);
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid);
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl);

#else /* CONFIG_SECURITY_NETWORK_XFRM */

static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
{
      return 0;
}

static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp)
{
      return 0;
}

static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
{
}

static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
{
      return 0;
}

static inline int security_xfrm_state_alloc(struct xfrm_state *x,
                              struct xfrm_user_sec_ctx *sec_ctx)
{
      return 0;
}

static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
                              struct xfrm_sec_ctx *polsec, u32 secid)
{
      return 0;
}

static inline void security_xfrm_state_free(struct xfrm_state *x)
{
}

static inline int security_xfrm_state_delete(struct xfrm_state *x)
{
      return 0;
}

static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
{
      return 0;
}

static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
                  struct xfrm_policy *xp, struct flowi *fl)
{
      return 1;
}

static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
      return 0;
}

static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
{
}

#endif      /* CONFIG_SECURITY_NETWORK_XFRM */

#ifdef CONFIG_SECURITY_PATH
int security_path_unlink(struct path *dir, struct dentry *dentry);
int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode);
int security_path_rmdir(struct path *dir, struct dentry *dentry);
int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
                  unsigned int dev);
int security_path_truncate(struct path *path, loff_t length,
                     unsigned int time_attrs);
int security_path_symlink(struct path *dir, struct dentry *dentry,
                    const char *old_name);
int security_path_link(struct dentry *old_dentry, struct path *new_dir,
                   struct dentry *new_dentry);
int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
                   struct path *new_dir, struct dentry *new_dentry);
#else /* CONFIG_SECURITY_PATH */
static inline int security_path_unlink(struct path *dir, struct dentry *dentry)
{
      return 0;
}

static inline int security_path_mkdir(struct path *dir, struct dentry *dentry,
                              int mode)
{
      return 0;
}

static inline int security_path_rmdir(struct path *dir, struct dentry *dentry)
{
      return 0;
}

static inline int security_path_mknod(struct path *dir, struct dentry *dentry,
                              int mode, unsigned int dev)
{
      return 0;
}

static inline int security_path_truncate(struct path *path, loff_t length,
                               unsigned int time_attrs)
{
      return 0;
}

static inline int security_path_symlink(struct path *dir, struct dentry *dentry,
                              const char *old_name)
{
      return 0;
}

static inline int security_path_link(struct dentry *old_dentry,
                             struct path *new_dir,
                             struct dentry *new_dentry)
{
      return 0;
}

static inline int security_path_rename(struct path *old_dir,
                               struct dentry *old_dentry,
                               struct path *new_dir,
                               struct dentry *new_dentry)
{
      return 0;
}
#endif      /* CONFIG_SECURITY_PATH */

#ifdef CONFIG_KEYS
#ifdef CONFIG_SECURITY

int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags);
void security_key_free(struct key *key);
int security_key_permission(key_ref_t key_ref,
                      const struct cred *cred, key_perm_t perm);
int security_key_getsecurity(struct key *key, char **_buffer);

#else

static inline int security_key_alloc(struct key *key,
                             const struct cred *cred,
                             unsigned long flags)
{
      return 0;
}

static inline void security_key_free(struct key *key)
{
}

static inline int security_key_permission(key_ref_t key_ref,
                                const struct cred *cred,
                                key_perm_t perm)
{
      return 0;
}

static inline int security_key_getsecurity(struct key *key, char **_buffer)
{
      *_buffer = NULL;
      return 0;
}

#endif
#endif /* CONFIG_KEYS */

#ifdef CONFIG_AUDIT
#ifdef CONFIG_SECURITY
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule);
int security_audit_rule_known(struct audit_krule *krule);
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
                        struct audit_context *actx);
void security_audit_rule_free(void *lsmrule);

#else

static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr,
                                 void **lsmrule)
{
      return 0;
}

static inline int security_audit_rule_known(struct audit_krule *krule)
{
      return 0;
}

static inline int security_audit_rule_match(u32 secid, u32 field, u32 op,
                           void *lsmrule, struct audit_context *actx)
{
      return 0;
}

static inline void security_audit_rule_free(void *lsmrule)
{ }

#endif /* CONFIG_SECURITY */
#endif /* CONFIG_AUDIT */

#ifdef CONFIG_SECURITYFS

extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
                                   struct dentry *parent, void *data,
                                   const struct file_operations *fops);
extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
extern void securityfs_remove(struct dentry *dentry);

#else /* CONFIG_SECURITYFS */

static inline struct dentry *securityfs_create_dir(const char *name,
                                       struct dentry *parent)
{
      return ERR_PTR(-ENODEV);
}

static inline struct dentry *securityfs_create_file(const char *name,
                                        mode_t mode,
                                        struct dentry *parent,
                                        void *data,
                                        const struct file_operations *fops)
{
      return ERR_PTR(-ENODEV);
}

static inline void securityfs_remove(struct dentry *dentry)
{}

#endif

#ifdef CONFIG_SECURITY

static inline char *alloc_secdata(void)
{
      return (char *)get_zeroed_page(GFP_KERNEL);
}

static inline void free_secdata(void *secdata)
{
      free_page((unsigned long)secdata);
}

#else

static inline char *alloc_secdata(void)
{
        return (char *)1;
}

static inline void free_secdata(void *secdata)
{ }
#endif /* CONFIG_SECURITY */

#endif /* ! __LINUX_SECURITY_H */


Generated by  Doxygen 1.6.0   Back to index