Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

ipmi_msghandler.c

/*
 * ipmi_msghandler.c
 *
 * Incoming and outgoing message routing for an IPMI interface.
 *
 * Author: MontaVista Software, Inc.
 *         Corey Minyard <minyard@mvista.com>
 *         source@mvista.com
 *
 * Copyright 2002 MontaVista Software Inc.
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; either version 2 of the License, or (at your
 *  option) any later version.
 *
 *
 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/errno.h>
#include <asm/system.h>
#include <linux/poll.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/ipmi.h>
#include <linux/ipmi_smi.h>
#include <linux/notifier.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>

#define PFX "IPMI message handler: "

#define IPMI_DRIVER_VERSION "39.2"

static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
static int ipmi_init_msghandler(void);

static int initialized;

#ifdef CONFIG_PROC_FS
static struct proc_dir_entry *proc_ipmi_root;
#endif /* CONFIG_PROC_FS */

/* Remain in auto-maintenance mode for this amount of time (in ms). */
#define IPMI_MAINTENANCE_MODE_TIMEOUT 30000

#define MAX_EVENTS_IN_QUEUE   25

/*
 * Don't let a message sit in a queue forever, always time it with at lest
 * the max message timer.  This is in milliseconds.
 */
#define MAX_MSG_TIMEOUT       60000

/*
 * The main "user" data structure.
 */
00075 struct ipmi_user {
      struct list_head link;

      /* Set to "0" when the user is destroyed. */
      int valid;

      struct kref refcount;

      /* The upper layer that handles receive messages. */
      struct ipmi_user_hndl *handler;
      void             *handler_data;

      /* The interface this user is bound to. */
      ipmi_smi_t intf;

      /* Does this interface receive IPMI events? */
      int gets_events;
};

00094 struct cmd_rcvr {
      struct list_head link;

      ipmi_user_t   user;
      unsigned char netfn;
      unsigned char cmd;
      unsigned int  chans;

      /*
       * This is used to form a linked lised during mass deletion.
       * Since this is in an RCU list, we cannot use the link above
       * or change any data until the RCU period completes.  So we
       * use this next variable during mass deletion so we can have
       * a list and don't have to wait and restart the search on
       * every individual deletion of a command.
       */
      struct cmd_rcvr *next;
};

00113 struct seq_table {
      unsigned int         inuse : 1;
      unsigned int         broadcast : 1;

      unsigned long        timeout;
      unsigned long        orig_timeout;
      unsigned int         retries_left;

      /*
       * To verify on an incoming send message response that this is
       * the message that the response is for, we keep a sequence id
       * and increment it every time we send a message.
       */
      long                 seqid;

      /*
       * This is held so we can properly respond to the message on a
       * timeout, and it is used to hold the temporary data for
       * retransmission, too.
       */
      struct ipmi_recv_msg *recv_msg;
};

/*
 * Store the information in a msgid (long) to allow us to find a
 * sequence table entry from the msgid.
 */
#define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))

#define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
      do {                                            \
            seq = ((msgid >> 26) & 0x3f);                   \
            seqid = (msgid & 0x3fffff);                     \
      } while (0)

#define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)

00150 struct ipmi_channel {
      unsigned char medium;
      unsigned char protocol;

      /*
       * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
       * but may be changed by the user.
       */
      unsigned char address;

      /*
       * My LUN.  This should generally stay the SMS LUN, but just in
       * case...
       */
      unsigned char lun;
};

#ifdef CONFIG_PROC_FS
struct ipmi_proc_entry {
      char                   *name;
      struct ipmi_proc_entry *next;
};
#endif

00174 struct bmc_device {
      struct platform_device *dev;
      struct ipmi_device_id  id;
      unsigned char          guid[16];
      int                    guid_set;

      struct kref        refcount;

      /* bmc device attributes */
      struct device_attribute device_id_attr;
      struct device_attribute provides_dev_sdrs_attr;
      struct device_attribute revision_attr;
      struct device_attribute firmware_rev_attr;
      struct device_attribute version_attr;
      struct device_attribute add_dev_support_attr;
      struct device_attribute manufacturer_id_attr;
      struct device_attribute product_id_attr;
      struct device_attribute guid_attr;
      struct device_attribute aux_firmware_rev_attr;
};

/*
 * Various statistics for IPMI, these index stats[] in the ipmi_smi
 * structure.
 */
enum ipmi_stat_indexes {
      /* Commands we got from the user that were invalid. */
      IPMI_STAT_sent_invalid_commands = 0,

      /* Commands we sent to the MC. */
      IPMI_STAT_sent_local_commands,

      /* Responses from the MC that were delivered to a user. */
      IPMI_STAT_handled_local_responses,

      /* Responses from the MC that were not delivered to a user. */
      IPMI_STAT_unhandled_local_responses,

      /* Commands we sent out to the IPMB bus. */
      IPMI_STAT_sent_ipmb_commands,

      /* Commands sent on the IPMB that had errors on the SEND CMD */
      IPMI_STAT_sent_ipmb_command_errs,

      /* Each retransmit increments this count. */
      IPMI_STAT_retransmitted_ipmb_commands,

      /*
       * When a message times out (runs out of retransmits) this is
       * incremented.
       */
      IPMI_STAT_timed_out_ipmb_commands,

      /*
       * This is like above, but for broadcasts.  Broadcasts are
       * *not* included in the above count (they are expected to
       * time out).
       */
      IPMI_STAT_timed_out_ipmb_broadcasts,

      /* Responses I have sent to the IPMB bus. */
      IPMI_STAT_sent_ipmb_responses,

      /* The response was delivered to the user. */
      IPMI_STAT_handled_ipmb_responses,

      /* The response had invalid data in it. */
      IPMI_STAT_invalid_ipmb_responses,

      /* The response didn't have anyone waiting for it. */
      IPMI_STAT_unhandled_ipmb_responses,

      /* Commands we sent out to the IPMB bus. */
      IPMI_STAT_sent_lan_commands,

      /* Commands sent on the IPMB that had errors on the SEND CMD */
      IPMI_STAT_sent_lan_command_errs,

      /* Each retransmit increments this count. */
      IPMI_STAT_retransmitted_lan_commands,

      /*
       * When a message times out (runs out of retransmits) this is
       * incremented.
       */
      IPMI_STAT_timed_out_lan_commands,

      /* Responses I have sent to the IPMB bus. */
      IPMI_STAT_sent_lan_responses,

      /* The response was delivered to the user. */
      IPMI_STAT_handled_lan_responses,

      /* The response had invalid data in it. */
      IPMI_STAT_invalid_lan_responses,

      /* The response didn't have anyone waiting for it. */
      IPMI_STAT_unhandled_lan_responses,

      /* The command was delivered to the user. */
      IPMI_STAT_handled_commands,

      /* The command had invalid data in it. */
      IPMI_STAT_invalid_commands,

      /* The command didn't have anyone waiting for it. */
      IPMI_STAT_unhandled_commands,

      /* Invalid data in an event. */
      IPMI_STAT_invalid_events,

      /* Events that were received with the proper format. */
      IPMI_STAT_events,

      /* Retransmissions on IPMB that failed. */
      IPMI_STAT_dropped_rexmit_ipmb_commands,

      /* Retransmissions on LAN that failed. */
      IPMI_STAT_dropped_rexmit_lan_commands,

      /* This *must* remain last, add new values above this. */
      IPMI_NUM_STATS
};


#define IPMI_IPMB_NUM_SEQ     64
#define IPMI_MAX_CHANNELS       16
00301 struct ipmi_smi {
      /* What interface number are we? */
      int intf_num;

      struct kref refcount;

      /* Used for a list of interfaces. */
      struct list_head link;

      /*
       * The list of upper layers that are using me.  seq_lock
       * protects this.
       */
      struct list_head users;

      /* Information to supply to users. */
      unsigned char ipmi_version_major;
      unsigned char ipmi_version_minor;

      /* Used for wake ups at startup. */
      wait_queue_head_t waitq;

      struct bmc_device *bmc;
      char *my_dev_name;
      char *sysfs_name;

      /*
       * This is the lower-layer's sender routine.  Note that you
       * must either be holding the ipmi_interfaces_mutex or be in
       * an umpreemptible region to use this.  You must fetch the
       * value into a local variable and make sure it is not NULL.
       */
      struct ipmi_smi_handlers *handlers;
      void                     *send_info;

#ifdef CONFIG_PROC_FS
      /* A list of proc entries for this interface. */
      struct mutex           proc_entry_lock;
      struct ipmi_proc_entry *proc_entries;
#endif

      /* Driver-model device for the system interface. */
      struct device          *si_dev;

      /*
       * A table of sequence numbers for this interface.  We use the
       * sequence numbers for IPMB messages that go out of the
       * interface to match them up with their responses.  A routine
       * is called periodically to time the items in this list.
       */
      spinlock_t       seq_lock;
      struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
      int curr_seq;

      /*
       * Messages that were delayed for some reason (out of memory,
       * for instance), will go in here to be processed later in a
       * periodic timer interrupt.
       */
      spinlock_t       waiting_msgs_lock;
      struct list_head waiting_msgs;

      /*
       * The list of command receivers that are registered for commands
       * on this interface.
       */
      struct mutex     cmd_rcvrs_mutex;
      struct list_head cmd_rcvrs;

      /*
       * Events that were queues because no one was there to receive
       * them.
       */
      spinlock_t       events_lock; /* For dealing with event stuff. */
      struct list_head waiting_events;
      unsigned int     waiting_events_count; /* How many events in queue? */
      char             delivering_events;
      char             event_msg_printed;

      /*
       * The event receiver for my BMC, only really used at panic
       * shutdown as a place to store this.
       */
      unsigned char event_receiver;
      unsigned char event_receiver_lun;
      unsigned char local_sel_device;
      unsigned char local_event_generator;

      /* For handling of maintenance mode. */
      int maintenance_mode;
      int maintenance_mode_enable;
      int auto_maintenance_timeout;
      spinlock_t maintenance_mode_lock; /* Used in a timer... */

      /*
       * A cheap hack, if this is non-null and a message to an
       * interface comes in with a NULL user, call this routine with
       * it.  Note that the message will still be freed by the
       * caller.  This only works on the system interface.
       */
      void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);

      /*
       * When we are scanning the channels for an SMI, this will
       * tell which channel we are scanning.
       */
      int curr_channel;

      /* Channel information */
      struct ipmi_channel channels[IPMI_MAX_CHANNELS];

      /* Proc FS stuff. */
      struct proc_dir_entry *proc_dir;
      char                  proc_dir_name[10];

      atomic_t stats[IPMI_NUM_STATS];

      /*
       * run_to_completion duplicate of smb_info, smi_info
       * and ipmi_serial_info structures. Used to decrease numbers of
       * parameters passed by "low" level IPMI code.
       */
      int run_to_completion;
};
#define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)

/**
 * The driver model view of the IPMI messaging driver.
 */
static struct platform_driver ipmidriver = {
      .driver = {
            .name = "ipmi",
            .bus = &platform_bus_type
      }
};
static DEFINE_MUTEX(ipmidriver_mutex);

static LIST_HEAD(ipmi_interfaces);
static DEFINE_MUTEX(ipmi_interfaces_mutex);

/*
 * List of watchers that want to know when smi's are added and deleted.
 */
static LIST_HEAD(smi_watchers);
static DEFINE_MUTEX(smi_watchers_mutex);


#define ipmi_inc_stat(intf, stat) \
      atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
#define ipmi_get_stat(intf, stat) \
      ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))

static int is_lan_addr(struct ipmi_addr *addr)
{
      return addr->addr_type == IPMI_LAN_ADDR_TYPE;
}

static int is_ipmb_addr(struct ipmi_addr *addr)
{
      return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
}

static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
{
      return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
}

static void free_recv_msg_list(struct list_head *q)
{
      struct ipmi_recv_msg *msg, *msg2;

      list_for_each_entry_safe(msg, msg2, q, link) {
            list_del(&msg->link);
            ipmi_free_recv_msg(msg);
      }
}

static void free_smi_msg_list(struct list_head *q)
{
      struct ipmi_smi_msg *msg, *msg2;

      list_for_each_entry_safe(msg, msg2, q, link) {
            list_del(&msg->link);
            ipmi_free_smi_msg(msg);
      }
}

static void clean_up_interface_data(ipmi_smi_t intf)
{
      int              i;
      struct cmd_rcvr  *rcvr, *rcvr2;
      struct list_head list;

      free_smi_msg_list(&intf->waiting_msgs);
      free_recv_msg_list(&intf->waiting_events);

      /*
       * Wholesale remove all the entries from the list in the
       * interface and wait for RCU to know that none are in use.
       */
      mutex_lock(&intf->cmd_rcvrs_mutex);
      INIT_LIST_HEAD(&list);
      list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
      mutex_unlock(&intf->cmd_rcvrs_mutex);

      list_for_each_entry_safe(rcvr, rcvr2, &list, link)
            kfree(rcvr);

      for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
            if ((intf->seq_table[i].inuse)
                              && (intf->seq_table[i].recv_msg))
                  ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
      }
}

static void intf_free(struct kref *ref)
{
      ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);

      clean_up_interface_data(intf);
      kfree(intf);
}

00524 struct watcher_entry {
      int              intf_num;
      ipmi_smi_t       intf;
      struct list_head link;
};

int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
{
      ipmi_smi_t intf;
      LIST_HEAD(to_deliver);
      struct watcher_entry *e, *e2;

      mutex_lock(&smi_watchers_mutex);

      mutex_lock(&ipmi_interfaces_mutex);

      /* Build a list of things to deliver. */
      list_for_each_entry(intf, &ipmi_interfaces, link) {
            if (intf->intf_num == -1)
                  continue;
            e = kmalloc(sizeof(*e), GFP_KERNEL);
            if (!e)
                  goto out_err;
            kref_get(&intf->refcount);
            e->intf = intf;
            e->intf_num = intf->intf_num;
            list_add_tail(&e->link, &to_deliver);
      }

      /* We will succeed, so add it to the list. */
      list_add(&watcher->link, &smi_watchers);

      mutex_unlock(&ipmi_interfaces_mutex);

      list_for_each_entry_safe(e, e2, &to_deliver, link) {
            list_del(&e->link);
            watcher->new_smi(e->intf_num, e->intf->si_dev);
            kref_put(&e->intf->refcount, intf_free);
            kfree(e);
      }

      mutex_unlock(&smi_watchers_mutex);

      return 0;

 out_err:
      mutex_unlock(&ipmi_interfaces_mutex);
      mutex_unlock(&smi_watchers_mutex);
      list_for_each_entry_safe(e, e2, &to_deliver, link) {
            list_del(&e->link);
            kref_put(&e->intf->refcount, intf_free);
            kfree(e);
      }
      return -ENOMEM;
}
EXPORT_SYMBOL(ipmi_smi_watcher_register);

int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
{
      mutex_lock(&smi_watchers_mutex);
      list_del(&(watcher->link));
      mutex_unlock(&smi_watchers_mutex);
      return 0;
}
EXPORT_SYMBOL(ipmi_smi_watcher_unregister);

/*
 * Must be called with smi_watchers_mutex held.
 */
static void
call_smi_watchers(int i, struct device *dev)
{
      struct ipmi_smi_watcher *w;

      list_for_each_entry(w, &smi_watchers, link) {
            if (try_module_get(w->owner)) {
                  w->new_smi(i, dev);
                  module_put(w->owner);
            }
      }
}

static int
ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
{
      if (addr1->addr_type != addr2->addr_type)
            return 0;

      if (addr1->channel != addr2->channel)
            return 0;

      if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
            struct ipmi_system_interface_addr *smi_addr1
                = (struct ipmi_system_interface_addr *) addr1;
            struct ipmi_system_interface_addr *smi_addr2
                = (struct ipmi_system_interface_addr *) addr2;
            return (smi_addr1->lun == smi_addr2->lun);
      }

      if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
            struct ipmi_ipmb_addr *ipmb_addr1
                = (struct ipmi_ipmb_addr *) addr1;
            struct ipmi_ipmb_addr *ipmb_addr2
                = (struct ipmi_ipmb_addr *) addr2;

            return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
                  && (ipmb_addr1->lun == ipmb_addr2->lun));
      }

      if (is_lan_addr(addr1)) {
            struct ipmi_lan_addr *lan_addr1
                  = (struct ipmi_lan_addr *) addr1;
            struct ipmi_lan_addr *lan_addr2
                = (struct ipmi_lan_addr *) addr2;

            return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
                  && (lan_addr1->local_SWID == lan_addr2->local_SWID)
                  && (lan_addr1->session_handle
                      == lan_addr2->session_handle)
                  && (lan_addr1->lun == lan_addr2->lun));
      }

      return 1;
}

int ipmi_validate_addr(struct ipmi_addr *addr, int len)
{
      if (len < sizeof(struct ipmi_system_interface_addr))
            return -EINVAL;

      if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
            if (addr->channel != IPMI_BMC_CHANNEL)
                  return -EINVAL;
            return 0;
      }

      if ((addr->channel == IPMI_BMC_CHANNEL)
          || (addr->channel >= IPMI_MAX_CHANNELS)
          || (addr->channel < 0))
            return -EINVAL;

      if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
            if (len < sizeof(struct ipmi_ipmb_addr))
                  return -EINVAL;
            return 0;
      }

      if (is_lan_addr(addr)) {
            if (len < sizeof(struct ipmi_lan_addr))
                  return -EINVAL;
            return 0;
      }

      return -EINVAL;
}
EXPORT_SYMBOL(ipmi_validate_addr);

unsigned int ipmi_addr_length(int addr_type)
{
      if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
            return sizeof(struct ipmi_system_interface_addr);

      if ((addr_type == IPMI_IPMB_ADDR_TYPE)
                  || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
            return sizeof(struct ipmi_ipmb_addr);

      if (addr_type == IPMI_LAN_ADDR_TYPE)
            return sizeof(struct ipmi_lan_addr);

      return 0;
}
EXPORT_SYMBOL(ipmi_addr_length);

static void deliver_response(struct ipmi_recv_msg *msg)
{
      if (!msg->user) {
            ipmi_smi_t    intf = msg->user_msg_data;

            /* Special handling for NULL users. */
            if (intf->null_user_handler) {
                  intf->null_user_handler(intf, msg);
                  ipmi_inc_stat(intf, handled_local_responses);
            } else {
                  /* No handler, so give up. */
                  ipmi_inc_stat(intf, unhandled_local_responses);
            }
            ipmi_free_recv_msg(msg);
      } else {
            ipmi_user_t user = msg->user;
            user->handler->ipmi_recv_hndl(msg, user->handler_data);
      }
}

static void
deliver_err_response(struct ipmi_recv_msg *msg, int err)
{
      msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
      msg->msg_data[0] = err;
      msg->msg.netfn |= 1; /* Convert to a response. */
      msg->msg.data_len = 1;
      msg->msg.data = msg->msg_data;
      deliver_response(msg);
}

/*
 * Find the next sequence number not being used and add the given
 * message with the given timeout to the sequence table.  This must be
 * called with the interface's seq_lock held.
 */
static int intf_next_seq(ipmi_smi_t           intf,
                   struct ipmi_recv_msg *recv_msg,
                   unsigned long        timeout,
                   int                  retries,
                   int                  broadcast,
                   unsigned char        *seq,
                   long                 *seqid)
{
      int          rv = 0;
      unsigned int i;

      for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
                              i = (i+1)%IPMI_IPMB_NUM_SEQ) {
            if (!intf->seq_table[i].inuse)
                  break;
      }

      if (!intf->seq_table[i].inuse) {
            intf->seq_table[i].recv_msg = recv_msg;

            /*
             * Start with the maximum timeout, when the send response
             * comes in we will start the real timer.
             */
            intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
            intf->seq_table[i].orig_timeout = timeout;
            intf->seq_table[i].retries_left = retries;
            intf->seq_table[i].broadcast = broadcast;
            intf->seq_table[i].inuse = 1;
            intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
            *seq = i;
            *seqid = intf->seq_table[i].seqid;
            intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
      } else {
            rv = -EAGAIN;
      }

      return rv;
}

/*
 * Return the receive message for the given sequence number and
 * release the sequence number so it can be reused.  Some other data
 * is passed in to be sure the message matches up correctly (to help
 * guard against message coming in after their timeout and the
 * sequence number being reused).
 */
static int intf_find_seq(ipmi_smi_t           intf,
                   unsigned char        seq,
                   short                channel,
                   unsigned char        cmd,
                   unsigned char        netfn,
                   struct ipmi_addr     *addr,
                   struct ipmi_recv_msg **recv_msg)
{
      int           rv = -ENODEV;
      unsigned long flags;

      if (seq >= IPMI_IPMB_NUM_SEQ)
            return -EINVAL;

      spin_lock_irqsave(&(intf->seq_lock), flags);
      if (intf->seq_table[seq].inuse) {
            struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;

            if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
                        && (msg->msg.netfn == netfn)
                        && (ipmi_addr_equal(addr, &(msg->addr)))) {
                  *recv_msg = msg;
                  intf->seq_table[seq].inuse = 0;
                  rv = 0;
            }
      }
      spin_unlock_irqrestore(&(intf->seq_lock), flags);

      return rv;
}


/* Start the timer for a specific sequence table entry. */
static int intf_start_seq_timer(ipmi_smi_t intf,
                        long       msgid)
{
      int           rv = -ENODEV;
      unsigned long flags;
      unsigned char seq;
      unsigned long seqid;


      GET_SEQ_FROM_MSGID(msgid, seq, seqid);

      spin_lock_irqsave(&(intf->seq_lock), flags);
      /*
       * We do this verification because the user can be deleted
       * while a message is outstanding.
       */
      if ((intf->seq_table[seq].inuse)
                        && (intf->seq_table[seq].seqid == seqid)) {
            struct seq_table *ent = &(intf->seq_table[seq]);
            ent->timeout = ent->orig_timeout;
            rv = 0;
      }
      spin_unlock_irqrestore(&(intf->seq_lock), flags);

      return rv;
}

/* Got an error for the send message for a specific sequence number. */
static int intf_err_seq(ipmi_smi_t   intf,
                  long         msgid,
                  unsigned int err)
{
      int                  rv = -ENODEV;
      unsigned long        flags;
      unsigned char        seq;
      unsigned long        seqid;
      struct ipmi_recv_msg *msg = NULL;


      GET_SEQ_FROM_MSGID(msgid, seq, seqid);

      spin_lock_irqsave(&(intf->seq_lock), flags);
      /*
       * We do this verification because the user can be deleted
       * while a message is outstanding.
       */
      if ((intf->seq_table[seq].inuse)
                        && (intf->seq_table[seq].seqid == seqid)) {
            struct seq_table *ent = &(intf->seq_table[seq]);

            ent->inuse = 0;
            msg = ent->recv_msg;
            rv = 0;
      }
      spin_unlock_irqrestore(&(intf->seq_lock), flags);

      if (msg)
            deliver_err_response(msg, err);

      return rv;
}


int ipmi_create_user(unsigned int          if_num,
                 struct ipmi_user_hndl *handler,
                 void                  *handler_data,
                 ipmi_user_t           *user)
{
      unsigned long flags;
      ipmi_user_t   new_user;
      int           rv = 0;
      ipmi_smi_t    intf;

      /*
       * There is no module usecount here, because it's not
       * required.  Since this can only be used by and called from
       * other modules, they will implicitly use this module, and
       * thus this can't be removed unless the other modules are
       * removed.
       */

      if (handler == NULL)
            return -EINVAL;

      /*
       * Make sure the driver is actually initialized, this handles
       * problems with initialization order.
       */
      if (!initialized) {
            rv = ipmi_init_msghandler();
            if (rv)
                  return rv;

            /*
             * The init code doesn't return an error if it was turned
             * off, but it won't initialize.  Check that.
             */
            if (!initialized)
                  return -ENODEV;
      }

      new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
      if (!new_user)
            return -ENOMEM;

      mutex_lock(&ipmi_interfaces_mutex);
      list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
            if (intf->intf_num == if_num)
                  goto found;
      }
      /* Not found, return an error */
      rv = -EINVAL;
      goto out_kfree;

 found:
      /* Note that each existing user holds a refcount to the interface. */
      kref_get(&intf->refcount);

      kref_init(&new_user->refcount);
      new_user->handler = handler;
      new_user->handler_data = handler_data;
      new_user->intf = intf;
      new_user->gets_events = 0;

      if (!try_module_get(intf->handlers->owner)) {
            rv = -ENODEV;
            goto out_kref;
      }

      if (intf->handlers->inc_usecount) {
            rv = intf->handlers->inc_usecount(intf->send_info);
            if (rv) {
                  module_put(intf->handlers->owner);
                  goto out_kref;
            }
      }

      /*
       * Hold the lock so intf->handlers is guaranteed to be good
       * until now
       */
      mutex_unlock(&ipmi_interfaces_mutex);

      new_user->valid = 1;
      spin_lock_irqsave(&intf->seq_lock, flags);
      list_add_rcu(&new_user->link, &intf->users);
      spin_unlock_irqrestore(&intf->seq_lock, flags);
      *user = new_user;
      return 0;

out_kref:
      kref_put(&intf->refcount, intf_free);
out_kfree:
      mutex_unlock(&ipmi_interfaces_mutex);
      kfree(new_user);
      return rv;
}
EXPORT_SYMBOL(ipmi_create_user);

static void free_user(struct kref *ref)
{
      ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
      kfree(user);
}

int ipmi_destroy_user(ipmi_user_t user)
{
      ipmi_smi_t       intf = user->intf;
      int              i;
      unsigned long    flags;
      struct cmd_rcvr  *rcvr;
      struct cmd_rcvr  *rcvrs = NULL;

      user->valid = 0;

      /* Remove the user from the interface's sequence table. */
      spin_lock_irqsave(&intf->seq_lock, flags);
      list_del_rcu(&user->link);

      for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
            if (intf->seq_table[i].inuse
                && (intf->seq_table[i].recv_msg->user == user)) {
                  intf->seq_table[i].inuse = 0;
                  ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
            }
      }
      spin_unlock_irqrestore(&intf->seq_lock, flags);

      /*
       * Remove the user from the command receiver's table.  First
       * we build a list of everything (not using the standard link,
       * since other things may be using it till we do
       * synchronize_rcu()) then free everything in that list.
       */
      mutex_lock(&intf->cmd_rcvrs_mutex);
      list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
            if (rcvr->user == user) {
                  list_del_rcu(&rcvr->link);
                  rcvr->next = rcvrs;
                  rcvrs = rcvr;
            }
      }
      mutex_unlock(&intf->cmd_rcvrs_mutex);
      synchronize_rcu();
      while (rcvrs) {
            rcvr = rcvrs;
            rcvrs = rcvr->next;
            kfree(rcvr);
      }

      mutex_lock(&ipmi_interfaces_mutex);
      if (intf->handlers) {
            module_put(intf->handlers->owner);
            if (intf->handlers->dec_usecount)
                  intf->handlers->dec_usecount(intf->send_info);
      }
      mutex_unlock(&ipmi_interfaces_mutex);

      kref_put(&intf->refcount, intf_free);

      kref_put(&user->refcount, free_user);

      return 0;
}
EXPORT_SYMBOL(ipmi_destroy_user);

void ipmi_get_version(ipmi_user_t   user,
                  unsigned char *major,
                  unsigned char *minor)
{
      *major = user->intf->ipmi_version_major;
      *minor = user->intf->ipmi_version_minor;
}
EXPORT_SYMBOL(ipmi_get_version);

int ipmi_set_my_address(ipmi_user_t   user,
                  unsigned int  channel,
                  unsigned char address)
{
      if (channel >= IPMI_MAX_CHANNELS)
            return -EINVAL;
      user->intf->channels[channel].address = address;
      return 0;
}
EXPORT_SYMBOL(ipmi_set_my_address);

int ipmi_get_my_address(ipmi_user_t   user,
                  unsigned int  channel,
                  unsigned char *address)
{
      if (channel >= IPMI_MAX_CHANNELS)
            return -EINVAL;
      *address = user->intf->channels[channel].address;
      return 0;
}
EXPORT_SYMBOL(ipmi_get_my_address);

int ipmi_set_my_LUN(ipmi_user_t   user,
                unsigned int  channel,
                unsigned char LUN)
{
      if (channel >= IPMI_MAX_CHANNELS)
            return -EINVAL;
      user->intf->channels[channel].lun = LUN & 0x3;
      return 0;
}
EXPORT_SYMBOL(ipmi_set_my_LUN);

int ipmi_get_my_LUN(ipmi_user_t   user,
                unsigned int  channel,
                unsigned char *address)
{
      if (channel >= IPMI_MAX_CHANNELS)
            return -EINVAL;
      *address = user->intf->channels[channel].lun;
      return 0;
}
EXPORT_SYMBOL(ipmi_get_my_LUN);

int ipmi_get_maintenance_mode(ipmi_user_t user)
{
      int           mode;
      unsigned long flags;

      spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
      mode = user->intf->maintenance_mode;
      spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);

      return mode;
}
EXPORT_SYMBOL(ipmi_get_maintenance_mode);

static void maintenance_mode_update(ipmi_smi_t intf)
{
      if (intf->handlers->set_maintenance_mode)
            intf->handlers->set_maintenance_mode(
                  intf->send_info, intf->maintenance_mode_enable);
}

int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
{
      int           rv = 0;
      unsigned long flags;
      ipmi_smi_t    intf = user->intf;

      spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
      if (intf->maintenance_mode != mode) {
            switch (mode) {
            case IPMI_MAINTENANCE_MODE_AUTO:
                  intf->maintenance_mode = mode;
                  intf->maintenance_mode_enable
                        = (intf->auto_maintenance_timeout > 0);
                  break;

            case IPMI_MAINTENANCE_MODE_OFF:
                  intf->maintenance_mode = mode;
                  intf->maintenance_mode_enable = 0;
                  break;

            case IPMI_MAINTENANCE_MODE_ON:
                  intf->maintenance_mode = mode;
                  intf->maintenance_mode_enable = 1;
                  break;

            default:
                  rv = -EINVAL;
                  goto out_unlock;
            }

            maintenance_mode_update(intf);
      }
 out_unlock:
      spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);

      return rv;
}
EXPORT_SYMBOL(ipmi_set_maintenance_mode);

int ipmi_set_gets_events(ipmi_user_t user, int val)
{
      unsigned long        flags;
      ipmi_smi_t           intf = user->intf;
      struct ipmi_recv_msg *msg, *msg2;
      struct list_head     msgs;

      INIT_LIST_HEAD(&msgs);

      spin_lock_irqsave(&intf->events_lock, flags);
      user->gets_events = val;

      if (intf->delivering_events)
            /*
             * Another thread is delivering events for this, so
             * let it handle any new events.
             */
            goto out;

      /* Deliver any queued events. */
      while (user->gets_events && !list_empty(&intf->waiting_events)) {
            list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
                  list_move_tail(&msg->link, &msgs);
            intf->waiting_events_count = 0;
            if (intf->event_msg_printed) {
                  printk(KERN_WARNING PFX "Event queue no longer"
                         " full\n");
                  intf->event_msg_printed = 0;
            }

            intf->delivering_events = 1;
            spin_unlock_irqrestore(&intf->events_lock, flags);

            list_for_each_entry_safe(msg, msg2, &msgs, link) {
                  msg->user = user;
                  kref_get(&user->refcount);
                  deliver_response(msg);
            }

            spin_lock_irqsave(&intf->events_lock, flags);
            intf->delivering_events = 0;
      }

 out:
      spin_unlock_irqrestore(&intf->events_lock, flags);

      return 0;
}
EXPORT_SYMBOL(ipmi_set_gets_events);

static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
                              unsigned char netfn,
                              unsigned char cmd,
                              unsigned char chan)
{
      struct cmd_rcvr *rcvr;

      list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
            if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
                              && (rcvr->chans & (1 << chan)))
                  return rcvr;
      }
      return NULL;
}

static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
                         unsigned char netfn,
                         unsigned char cmd,
                         unsigned int  chans)
{
      struct cmd_rcvr *rcvr;

      list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
            if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
                              && (rcvr->chans & chans))
                  return 0;
      }
      return 1;
}

int ipmi_register_for_cmd(ipmi_user_t   user,
                    unsigned char netfn,
                    unsigned char cmd,
                    unsigned int  chans)
{
      ipmi_smi_t      intf = user->intf;
      struct cmd_rcvr *rcvr;
      int             rv = 0;


      rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
      if (!rcvr)
            return -ENOMEM;
      rcvr->cmd = cmd;
      rcvr->netfn = netfn;
      rcvr->chans = chans;
      rcvr->user = user;

      mutex_lock(&intf->cmd_rcvrs_mutex);
      /* Make sure the command/netfn is not already registered. */
      if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
            rv = -EBUSY;
            goto out_unlock;
      }

      list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);

 out_unlock:
      mutex_unlock(&intf->cmd_rcvrs_mutex);
      if (rv)
            kfree(rcvr);

      return rv;
}
EXPORT_SYMBOL(ipmi_register_for_cmd);

int ipmi_unregister_for_cmd(ipmi_user_t   user,
                      unsigned char netfn,
                      unsigned char cmd,
                      unsigned int  chans)
{
      ipmi_smi_t      intf = user->intf;
      struct cmd_rcvr *rcvr;
      struct cmd_rcvr *rcvrs = NULL;
      int i, rv = -ENOENT;

      mutex_lock(&intf->cmd_rcvrs_mutex);
      for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
            if (((1 << i) & chans) == 0)
                  continue;
            rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
            if (rcvr == NULL)
                  continue;
            if (rcvr->user == user) {
                  rv = 0;
                  rcvr->chans &= ~chans;
                  if (rcvr->chans == 0) {
                        list_del_rcu(&rcvr->link);
                        rcvr->next = rcvrs;
                        rcvrs = rcvr;
                  }
            }
      }
      mutex_unlock(&intf->cmd_rcvrs_mutex);
      synchronize_rcu();
      while (rcvrs) {
            rcvr = rcvrs;
            rcvrs = rcvr->next;
            kfree(rcvr);
      }
      return rv;
}
EXPORT_SYMBOL(ipmi_unregister_for_cmd);

static unsigned char
ipmb_checksum(unsigned char *data, int size)
{
      unsigned char csum = 0;

      for (; size > 0; size--, data++)
            csum += *data;

      return -csum;
}

static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
                           struct kernel_ipmi_msg *msg,
                           struct ipmi_ipmb_addr *ipmb_addr,
                           long                  msgid,
                           unsigned char         ipmb_seq,
                           int                   broadcast,
                           unsigned char         source_address,
                           unsigned char         source_lun)
{
      int i = broadcast;

      /* Format the IPMB header data. */
      smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
      smi_msg->data[1] = IPMI_SEND_MSG_CMD;
      smi_msg->data[2] = ipmb_addr->channel;
      if (broadcast)
            smi_msg->data[3] = 0;
      smi_msg->data[i+3] = ipmb_addr->slave_addr;
      smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
      smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
      smi_msg->data[i+6] = source_address;
      smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
      smi_msg->data[i+8] = msg->cmd;

      /* Now tack on the data to the message. */
      if (msg->data_len > 0)
            memcpy(&(smi_msg->data[i+9]), msg->data,
                   msg->data_len);
      smi_msg->data_size = msg->data_len + 9;

      /* Now calculate the checksum and tack it on. */
      smi_msg->data[i+smi_msg->data_size]
            = ipmb_checksum(&(smi_msg->data[i+6]),
                        smi_msg->data_size-6);

      /*
       * Add on the checksum size and the offset from the
       * broadcast.
       */
      smi_msg->data_size += 1 + i;

      smi_msg->msgid = msgid;
}

static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
                          struct kernel_ipmi_msg *msg,
                          struct ipmi_lan_addr  *lan_addr,
                          long                  msgid,
                          unsigned char         ipmb_seq,
                          unsigned char         source_lun)
{
      /* Format the IPMB header data. */
      smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
      smi_msg->data[1] = IPMI_SEND_MSG_CMD;
      smi_msg->data[2] = lan_addr->channel;
      smi_msg->data[3] = lan_addr->session_handle;
      smi_msg->data[4] = lan_addr->remote_SWID;
      smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
      smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
      smi_msg->data[7] = lan_addr->local_SWID;
      smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
      smi_msg->data[9] = msg->cmd;

      /* Now tack on the data to the message. */
      if (msg->data_len > 0)
            memcpy(&(smi_msg->data[10]), msg->data,
                   msg->data_len);
      smi_msg->data_size = msg->data_len + 10;

      /* Now calculate the checksum and tack it on. */
      smi_msg->data[smi_msg->data_size]
            = ipmb_checksum(&(smi_msg->data[7]),
                        smi_msg->data_size-7);

      /*
       * Add on the checksum size and the offset from the
       * broadcast.
       */
      smi_msg->data_size += 1;

      smi_msg->msgid = msgid;
}

/*
 * Separate from ipmi_request so that the user does not have to be
 * supplied in certain circumstances (mainly at panic time).  If
 * messages are supplied, they will be freed, even if an error
 * occurs.
 */
static int i_ipmi_request(ipmi_user_t          user,
                    ipmi_smi_t           intf,
                    struct ipmi_addr     *addr,
                    long                 msgid,
                    struct kernel_ipmi_msg *msg,
                    void                 *user_msg_data,
                    void                 *supplied_smi,
                    struct ipmi_recv_msg *supplied_recv,
                    int                  priority,
                    unsigned char        source_address,
                    unsigned char        source_lun,
                    int                  retries,
                    unsigned int         retry_time_ms)
{
      int                      rv = 0;
      struct ipmi_smi_msg      *smi_msg;
      struct ipmi_recv_msg     *recv_msg;
      unsigned long            flags;
      struct ipmi_smi_handlers *handlers;


      if (supplied_recv)
            recv_msg = supplied_recv;
      else {
            recv_msg = ipmi_alloc_recv_msg();
            if (recv_msg == NULL)
                  return -ENOMEM;
      }
      recv_msg->user_msg_data = user_msg_data;

      if (supplied_smi)
            smi_msg = (struct ipmi_smi_msg *) supplied_smi;
      else {
            smi_msg = ipmi_alloc_smi_msg();
            if (smi_msg == NULL) {
                  ipmi_free_recv_msg(recv_msg);
                  return -ENOMEM;
            }
      }

      rcu_read_lock();
      handlers = intf->handlers;
      if (!handlers) {
            rv = -ENODEV;
            goto out_err;
      }

      recv_msg->user = user;
      if (user)
            kref_get(&user->refcount);
      recv_msg->msgid = msgid;
      /*
       * Store the message to send in the receive message so timeout
       * responses can get the proper response data.
       */
      recv_msg->msg = *msg;

      if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
            struct ipmi_system_interface_addr *smi_addr;

            if (msg->netfn & 1) {
                  /* Responses are not allowed to the SMI. */
                  rv = -EINVAL;
                  goto out_err;
            }

            smi_addr = (struct ipmi_system_interface_addr *) addr;
            if (smi_addr->lun > 3) {
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EINVAL;
                  goto out_err;
            }

            memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));

            if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
                && ((msg->cmd == IPMI_SEND_MSG_CMD)
                  || (msg->cmd == IPMI_GET_MSG_CMD)
                  || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
                  /*
                   * We don't let the user do these, since we manage
                   * the sequence numbers.
                   */
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EINVAL;
                  goto out_err;
            }

            if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
                  && ((msg->cmd == IPMI_COLD_RESET_CMD)
                    || (msg->cmd == IPMI_WARM_RESET_CMD)))
                 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
                  spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
                  intf->auto_maintenance_timeout
                        = IPMI_MAINTENANCE_MODE_TIMEOUT;
                  if (!intf->maintenance_mode
                      && !intf->maintenance_mode_enable) {
                        intf->maintenance_mode_enable = 1;
                        maintenance_mode_update(intf);
                  }
                  spin_unlock_irqrestore(&intf->maintenance_mode_lock,
                                     flags);
            }

            if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EMSGSIZE;
                  goto out_err;
            }

            smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
            smi_msg->data[1] = msg->cmd;
            smi_msg->msgid = msgid;
            smi_msg->user_data = recv_msg;
            if (msg->data_len > 0)
                  memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
            smi_msg->data_size = msg->data_len + 2;
            ipmi_inc_stat(intf, sent_local_commands);
      } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
            struct ipmi_ipmb_addr *ipmb_addr;
            unsigned char         ipmb_seq;
            long                  seqid;
            int                   broadcast = 0;

            if (addr->channel >= IPMI_MAX_CHANNELS) {
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EINVAL;
                  goto out_err;
            }

            if (intf->channels[addr->channel].medium
                              != IPMI_CHANNEL_MEDIUM_IPMB) {
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EINVAL;
                  goto out_err;
            }

            if (retries < 0) {
                if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
                  retries = 0; /* Don't retry broadcasts. */
                else
                  retries = 4;
            }
            if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
                /*
                 * Broadcasts add a zero at the beginning of the
                 * message, but otherwise is the same as an IPMB
                 * address.
                 */
                addr->addr_type = IPMI_IPMB_ADDR_TYPE;
                broadcast = 1;
            }


            /* Default to 1 second retries. */
            if (retry_time_ms == 0)
                retry_time_ms = 1000;

            /*
             * 9 for the header and 1 for the checksum, plus
             * possibly one for the broadcast.
             */
            if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EMSGSIZE;
                  goto out_err;
            }

            ipmb_addr = (struct ipmi_ipmb_addr *) addr;
            if (ipmb_addr->lun > 3) {
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EINVAL;
                  goto out_err;
            }

            memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));

            if (recv_msg->msg.netfn & 0x1) {
                  /*
                   * It's a response, so use the user's sequence
                   * from msgid.
                   */
                  ipmi_inc_stat(intf, sent_ipmb_responses);
                  format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
                              msgid, broadcast,
                              source_address, source_lun);

                  /*
                   * Save the receive message so we can use it
                   * to deliver the response.
                   */
                  smi_msg->user_data = recv_msg;
            } else {
                  /* It's a command, so get a sequence for it. */

                  spin_lock_irqsave(&(intf->seq_lock), flags);

                  /*
                   * Create a sequence number with a 1 second
                   * timeout and 4 retries.
                   */
                  rv = intf_next_seq(intf,
                                 recv_msg,
                                 retry_time_ms,
                                 retries,
                                 broadcast,
                                 &ipmb_seq,
                                 &seqid);
                  if (rv) {
                        /*
                         * We have used up all the sequence numbers,
                         * probably, so abort.
                         */
                        spin_unlock_irqrestore(&(intf->seq_lock),
                                           flags);
                        goto out_err;
                  }

                  ipmi_inc_stat(intf, sent_ipmb_commands);

                  /*
                   * Store the sequence number in the message,
                   * so that when the send message response
                   * comes back we can start the timer.
                   */
                  format_ipmb_msg(smi_msg, msg, ipmb_addr,
                              STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
                              ipmb_seq, broadcast,
                              source_address, source_lun);

                  /*
                   * Copy the message into the recv message data, so we
                   * can retransmit it later if necessary.
                   */
                  memcpy(recv_msg->msg_data, smi_msg->data,
                         smi_msg->data_size);
                  recv_msg->msg.data = recv_msg->msg_data;
                  recv_msg->msg.data_len = smi_msg->data_size;

                  /*
                   * We don't unlock until here, because we need
                   * to copy the completed message into the
                   * recv_msg before we release the lock.
                   * Otherwise, race conditions may bite us.  I
                   * know that's pretty paranoid, but I prefer
                   * to be correct.
                   */
                  spin_unlock_irqrestore(&(intf->seq_lock), flags);
            }
      } else if (is_lan_addr(addr)) {
            struct ipmi_lan_addr  *lan_addr;
            unsigned char         ipmb_seq;
            long                  seqid;

            if (addr->channel >= IPMI_MAX_CHANNELS) {
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EINVAL;
                  goto out_err;
            }

            if ((intf->channels[addr->channel].medium
                        != IPMI_CHANNEL_MEDIUM_8023LAN)
                && (intf->channels[addr->channel].medium
                        != IPMI_CHANNEL_MEDIUM_ASYNC)) {
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EINVAL;
                  goto out_err;
            }

            retries = 4;

            /* Default to 1 second retries. */
            if (retry_time_ms == 0)
                retry_time_ms = 1000;

            /* 11 for the header and 1 for the checksum. */
            if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EMSGSIZE;
                  goto out_err;
            }

            lan_addr = (struct ipmi_lan_addr *) addr;
            if (lan_addr->lun > 3) {
                  ipmi_inc_stat(intf, sent_invalid_commands);
                  rv = -EINVAL;
                  goto out_err;
            }

            memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));

            if (recv_msg->msg.netfn & 0x1) {
                  /*
                   * It's a response, so use the user's sequence
                   * from msgid.
                   */
                  ipmi_inc_stat(intf, sent_lan_responses);
                  format_lan_msg(smi_msg, msg, lan_addr, msgid,
                               msgid, source_lun);

                  /*
                   * Save the receive message so we can use it
                   * to deliver the response.
                   */
                  smi_msg->user_data = recv_msg;
            } else {
                  /* It's a command, so get a sequence for it. */

                  spin_lock_irqsave(&(intf->seq_lock), flags);

                  /*
                   * Create a sequence number with a 1 second
                   * timeout and 4 retries.
                   */
                  rv = intf_next_seq(intf,
                                 recv_msg,
                                 retry_time_ms,
                                 retries,
                                 0,
                                 &ipmb_seq,
                                 &seqid);
                  if (rv) {
                        /*
                         * We have used up all the sequence numbers,
                         * probably, so abort.
                         */
                        spin_unlock_irqrestore(&(intf->seq_lock),
                                           flags);
                        goto out_err;
                  }

                  ipmi_inc_stat(intf, sent_lan_commands);

                  /*
                   * Store the sequence number in the message,
                   * so that when the send message response
                   * comes back we can start the timer.
                   */
                  format_lan_msg(smi_msg, msg, lan_addr,
                               STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
                               ipmb_seq, source_lun);

                  /*
                   * Copy the message into the recv message data, so we
                   * can retransmit it later if necessary.
                   */
                  memcpy(recv_msg->msg_data, smi_msg->data,
                         smi_msg->data_size);
                  recv_msg->msg.data = recv_msg->msg_data;
                  recv_msg->msg.data_len = smi_msg->data_size;

                  /*
                   * We don't unlock until here, because we need
                   * to copy the completed message into the
                   * recv_msg before we release the lock.
                   * Otherwise, race conditions may bite us.  I
                   * know that's pretty paranoid, but I prefer
                   * to be correct.
                   */
                  spin_unlock_irqrestore(&(intf->seq_lock), flags);
            }
      } else {
          /* Unknown address type. */
            ipmi_inc_stat(intf, sent_invalid_commands);
            rv = -EINVAL;
            goto out_err;
      }

#ifdef DEBUG_MSGING
      {
            int m;
            for (m = 0; m < smi_msg->data_size; m++)
                  printk(" %2.2x", smi_msg->data[m]);
            printk("\n");
      }
#endif

      handlers->sender(intf->send_info, smi_msg, priority);
      rcu_read_unlock();

      return 0;

 out_err:
      rcu_read_unlock();
      ipmi_free_smi_msg(smi_msg);
      ipmi_free_recv_msg(recv_msg);
      return rv;
}

static int check_addr(ipmi_smi_t       intf,
                  struct ipmi_addr *addr,
                  unsigned char    *saddr,
                  unsigned char    *lun)
{
      if (addr->channel >= IPMI_MAX_CHANNELS)
            return -EINVAL;
      *lun = intf->channels[addr->channel].lun;
      *saddr = intf->channels[addr->channel].address;
      return 0;
}

int ipmi_request_settime(ipmi_user_t      user,
                   struct ipmi_addr *addr,
                   long             msgid,
                   struct kernel_ipmi_msg  *msg,
                   void             *user_msg_data,
                   int              priority,
                   int              retries,
                   unsigned int     retry_time_ms)
{
      unsigned char saddr, lun;
      int           rv;

      if (!user)
            return -EINVAL;
      rv = check_addr(user->intf, addr, &saddr, &lun);
      if (rv)
            return rv;
      return i_ipmi_request(user,
                        user->intf,
                        addr,
                        msgid,
                        msg,
                        user_msg_data,
                        NULL, NULL,
                        priority,
                        saddr,
                        lun,
                        retries,
                        retry_time_ms);
}
EXPORT_SYMBOL(ipmi_request_settime);

int ipmi_request_supply_msgs(ipmi_user_t          user,
                       struct ipmi_addr     *addr,
                       long                 msgid,
                       struct kernel_ipmi_msg *msg,
                       void                 *user_msg_data,
                       void                 *supplied_smi,
                       struct ipmi_recv_msg *supplied_recv,
                       int                  priority)
{
      unsigned char saddr, lun;
      int           rv;

      if (!user)
            return -EINVAL;
      rv = check_addr(user->intf, addr, &saddr, &lun);
      if (rv)
            return rv;
      return i_ipmi_request(user,
                        user->intf,
                        addr,
                        msgid,
                        msg,
                        user_msg_data,
                        supplied_smi,
                        supplied_recv,
                        priority,
                        saddr,
                        lun,
                        -1, 0);
}
EXPORT_SYMBOL(ipmi_request_supply_msgs);

#ifdef CONFIG_PROC_FS
static int ipmb_file_read_proc(char *page, char **start, off_t off,
                         int count, int *eof, void *data)
{
      char       *out = (char *) page;
      ipmi_smi_t intf = data;
      int        i;
      int        rv = 0;

      for (i = 0; i < IPMI_MAX_CHANNELS; i++)
            rv += sprintf(out+rv, "%x ", intf->channels[i].address);
      out[rv-1] = '\n'; /* Replace the final space with a newline */
      out[rv] = '\0';
      rv++;
      return rv;
}

static int version_file_read_proc(char *page, char **start, off_t off,
                          int count, int *eof, void *data)
{
      char       *out = (char *) page;
      ipmi_smi_t intf = data;

      return sprintf(out, "%u.%u\n",
                   ipmi_version_major(&intf->bmc->id),
                   ipmi_version_minor(&intf->bmc->id));
}

static int stat_file_read_proc(char *page, char **start, off_t off,
                         int count, int *eof, void *data)
{
      char       *out = (char *) page;
      ipmi_smi_t intf = data;

      out += sprintf(out, "sent_invalid_commands:       %u\n",
                   ipmi_get_stat(intf, sent_invalid_commands));
      out += sprintf(out, "sent_local_commands:         %u\n",
                   ipmi_get_stat(intf, sent_local_commands));
      out += sprintf(out, "handled_local_responses:     %u\n",
                   ipmi_get_stat(intf, handled_local_responses));
      out += sprintf(out, "unhandled_local_responses:   %u\n",
                   ipmi_get_stat(intf, unhandled_local_responses));
      out += sprintf(out, "sent_ipmb_commands:          %u\n",
                   ipmi_get_stat(intf, sent_ipmb_commands));
      out += sprintf(out, "sent_ipmb_command_errs:      %u\n",
                   ipmi_get_stat(intf, sent_ipmb_command_errs));
      out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
                   ipmi_get_stat(intf, retransmitted_ipmb_commands));
      out += sprintf(out, "timed_out_ipmb_commands:     %u\n",
                   ipmi_get_stat(intf, timed_out_ipmb_commands));
      out += sprintf(out, "timed_out_ipmb_broadcasts:   %u\n",
                   ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
      out += sprintf(out, "sent_ipmb_responses:         %u\n",
                   ipmi_get_stat(intf, sent_ipmb_responses));
      out += sprintf(out, "handled_ipmb_responses:      %u\n",
                   ipmi_get_stat(intf, handled_ipmb_responses));
      out += sprintf(out, "invalid_ipmb_responses:      %u\n",
                   ipmi_get_stat(intf, invalid_ipmb_responses));
      out += sprintf(out, "unhandled_ipmb_responses:    %u\n",
                   ipmi_get_stat(intf, unhandled_ipmb_responses));
      out += sprintf(out, "sent_lan_commands:           %u\n",
                   ipmi_get_stat(intf, sent_lan_commands));
      out += sprintf(out, "sent_lan_command_errs:       %u\n",
                   ipmi_get_stat(intf, sent_lan_command_errs));
      out += sprintf(out, "retransmitted_lan_commands:  %u\n",
                   ipmi_get_stat(intf, retransmitted_lan_commands));
      out += sprintf(out, "timed_out_lan_commands:      %u\n",
                   ipmi_get_stat(intf, timed_out_lan_commands));
      out += sprintf(out, "sent_lan_responses:          %u\n",
                   ipmi_get_stat(intf, sent_lan_responses));
      out += sprintf(out, "handled_lan_responses:       %u\n",
                   ipmi_get_stat(intf, handled_lan_responses));
      out += sprintf(out, "invalid_lan_responses:       %u\n",
                   ipmi_get_stat(intf, invalid_lan_responses));
      out += sprintf(out, "unhandled_lan_responses:     %u\n",
                   ipmi_get_stat(intf, unhandled_lan_responses));
      out += sprintf(out, "handled_commands:            %u\n",
                   ipmi_get_stat(intf, handled_commands));
      out += sprintf(out, "invalid_commands:            %u\n",
                   ipmi_get_stat(intf, invalid_commands));
      out += sprintf(out, "unhandled_commands:          %u\n",
                   ipmi_get_stat(intf, unhandled_commands));
      out += sprintf(out, "invalid_events:              %u\n",
                   ipmi_get_stat(intf, invalid_events));
      out += sprintf(out, "events:                      %u\n",
                   ipmi_get_stat(intf, events));
      out += sprintf(out, "failed rexmit LAN msgs:      %u\n",
                   ipmi_get_stat(intf, dropped_rexmit_lan_commands));
      out += sprintf(out, "failed rexmit IPMB msgs:     %u\n",
                   ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));

      return (out - ((char *) page));
}
#endif /* CONFIG_PROC_FS */

int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
                      read_proc_t *read_proc,
                      void *data)
{
      int                    rv = 0;
#ifdef CONFIG_PROC_FS
      struct proc_dir_entry  *file;
      struct ipmi_proc_entry *entry;

      /* Create a list element. */
      entry = kmalloc(sizeof(*entry), GFP_KERNEL);
      if (!entry)
            return -ENOMEM;
      entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
      if (!entry->name) {
            kfree(entry);
            return -ENOMEM;
      }
      strcpy(entry->name, name);

      file = create_proc_entry(name, 0, smi->proc_dir);
      if (!file) {
            kfree(entry->name);
            kfree(entry);
            rv = -ENOMEM;
      } else {
            file->data = data;
            file->read_proc = read_proc;

            mutex_lock(&smi->proc_entry_lock);
            /* Stick it on the list. */
            entry->next = smi->proc_entries;
            smi->proc_entries = entry;
            mutex_unlock(&smi->proc_entry_lock);
      }
#endif /* CONFIG_PROC_FS */

      return rv;
}
EXPORT_SYMBOL(ipmi_smi_add_proc_entry);

static int add_proc_entries(ipmi_smi_t smi, int num)
{
      int rv = 0;

#ifdef CONFIG_PROC_FS
      sprintf(smi->proc_dir_name, "%d", num);
      smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
      if (!smi->proc_dir)
            rv = -ENOMEM;

      if (rv == 0)
            rv = ipmi_smi_add_proc_entry(smi, "stats",
                                   stat_file_read_proc,
                                   smi);

      if (rv == 0)
            rv = ipmi_smi_add_proc_entry(smi, "ipmb",
                                   ipmb_file_read_proc,
                                   smi);

      if (rv == 0)
            rv = ipmi_smi_add_proc_entry(smi, "version",
                                   version_file_read_proc,
                                   smi);
#endif /* CONFIG_PROC_FS */

      return rv;
}

static void remove_proc_entries(ipmi_smi_t smi)
{
#ifdef CONFIG_PROC_FS
      struct ipmi_proc_entry *entry;

      mutex_lock(&smi->proc_entry_lock);
      while (smi->proc_entries) {
            entry = smi->proc_entries;
            smi->proc_entries = entry->next;

            remove_proc_entry(entry->name, smi->proc_dir);
            kfree(entry->name);
            kfree(entry);
      }
      mutex_unlock(&smi->proc_entry_lock);
      remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
#endif /* CONFIG_PROC_FS */
}

static int __find_bmc_guid(struct device *dev, void *data)
{
      unsigned char *id = data;
      struct bmc_device *bmc = dev_get_drvdata(dev);
      return memcmp(bmc->guid, id, 16) == 0;
}

static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
                                   unsigned char *guid)
{
      struct device *dev;

      dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
      if (dev)
            return dev_get_drvdata(dev);
      else
            return NULL;
}

02073 struct prod_dev_id {
      unsigned int  product_id;
      unsigned char device_id;
};

static int __find_bmc_prod_dev_id(struct device *dev, void *data)
{
      struct prod_dev_id *id = data;
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return (bmc->id.product_id == id->product_id
            && bmc->id.device_id == id->device_id);
}

static struct bmc_device *ipmi_find_bmc_prod_dev_id(
      struct device_driver *drv,
      unsigned int product_id, unsigned char device_id)
{
      struct prod_dev_id id = {
            .product_id = product_id,
            .device_id = device_id,
      };
      struct device *dev;

      dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
      if (dev)
            return dev_get_drvdata(dev);
      else
            return NULL;
}

static ssize_t device_id_show(struct device *dev,
                        struct device_attribute *attr,
                        char *buf)
{
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return snprintf(buf, 10, "%u\n", bmc->id.device_id);
}

static ssize_t provides_dev_sdrs_show(struct device *dev,
                              struct device_attribute *attr,
                              char *buf)
{
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return snprintf(buf, 10, "%u\n",
                  (bmc->id.device_revision & 0x80) >> 7);
}

static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
                       char *buf)
{
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return snprintf(buf, 20, "%u\n",
                  bmc->id.device_revision & 0x0F);
}

static ssize_t firmware_rev_show(struct device *dev,
                         struct device_attribute *attr,
                         char *buf)
{
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
                  bmc->id.firmware_revision_2);
}

static ssize_t ipmi_version_show(struct device *dev,
                         struct device_attribute *attr,
                         char *buf)
{
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return snprintf(buf, 20, "%u.%u\n",
                  ipmi_version_major(&bmc->id),
                  ipmi_version_minor(&bmc->id));
}

static ssize_t add_dev_support_show(struct device *dev,
                            struct device_attribute *attr,
                            char *buf)
{
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return snprintf(buf, 10, "0x%02x\n",
                  bmc->id.additional_device_support);
}

static ssize_t manufacturer_id_show(struct device *dev,
                            struct device_attribute *attr,
                            char *buf)
{
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
}

static ssize_t product_id_show(struct device *dev,
                         struct device_attribute *attr,
                         char *buf)
{
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
}

static ssize_t aux_firmware_rev_show(struct device *dev,
                             struct device_attribute *attr,
                             char *buf)
{
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
                  bmc->id.aux_firmware_revision[3],
                  bmc->id.aux_firmware_revision[2],
                  bmc->id.aux_firmware_revision[1],
                  bmc->id.aux_firmware_revision[0]);
}

static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
                   char *buf)
{
      struct bmc_device *bmc = dev_get_drvdata(dev);

      return snprintf(buf, 100, "%Lx%Lx\n",
                  (long long) bmc->guid[0],
                  (long long) bmc->guid[8]);
}

static void remove_files(struct bmc_device *bmc)
{
      if (!bmc->dev)
            return;

      device_remove_file(&bmc->dev->dev,
                     &bmc->device_id_attr);
      device_remove_file(&bmc->dev->dev,
                     &bmc->provides_dev_sdrs_attr);
      device_remove_file(&bmc->dev->dev,
                     &bmc->revision_attr);
      device_remove_file(&bmc->dev->dev,
                     &bmc->firmware_rev_attr);
      device_remove_file(&bmc->dev->dev,
                     &bmc->version_attr);
      device_remove_file(&bmc->dev->dev,
                     &bmc->add_dev_support_attr);
      device_remove_file(&bmc->dev->dev,
                     &bmc->manufacturer_id_attr);
      device_remove_file(&bmc->dev->dev,
                     &bmc->product_id_attr);

      if (bmc->id.aux_firmware_revision_set)
            device_remove_file(&bmc->dev->dev,
                           &bmc->aux_firmware_rev_attr);
      if (bmc->guid_set)
            device_remove_file(&bmc->dev->dev,
                           &bmc->guid_attr);
}

static void
cleanup_bmc_device(struct kref *ref)
{
      struct bmc_device *bmc;

      bmc = container_of(ref, struct bmc_device, refcount);

      remove_files(bmc);
      platform_device_unregister(bmc->dev);
      kfree(bmc);
}

static void ipmi_bmc_unregister(ipmi_smi_t intf)
{
      struct bmc_device *bmc = intf->bmc;

      if (intf->sysfs_name) {
            sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
            kfree(intf->sysfs_name);
            intf->sysfs_name = NULL;
      }
      if (intf->my_dev_name) {
            sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
            kfree(intf->my_dev_name);
            intf->my_dev_name = NULL;
      }

      mutex_lock(&ipmidriver_mutex);
      kref_put(&bmc->refcount, cleanup_bmc_device);
      intf->bmc = NULL;
      mutex_unlock(&ipmidriver_mutex);
}

static int create_files(struct bmc_device *bmc)
{
      int err;

      bmc->device_id_attr.attr.name = "device_id";
      bmc->device_id_attr.attr.mode = S_IRUGO;
      bmc->device_id_attr.show = device_id_show;

      bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
      bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
      bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;

      bmc->revision_attr.attr.name = "revision";
      bmc->revision_attr.attr.mode = S_IRUGO;
      bmc->revision_attr.show = revision_show;

      bmc->firmware_rev_attr.attr.name = "firmware_revision";
      bmc->firmware_rev_attr.attr.mode = S_IRUGO;
      bmc->firmware_rev_attr.show = firmware_rev_show;

      bmc->version_attr.attr.name = "ipmi_version";
      bmc->version_attr.attr.mode = S_IRUGO;
      bmc->version_attr.show = ipmi_version_show;

      bmc->add_dev_support_attr.attr.name = "additional_device_support";
      bmc->add_dev_support_attr.attr.mode = S_IRUGO;
      bmc->add_dev_support_attr.show = add_dev_support_show;

      bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
      bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
      bmc->manufacturer_id_attr.show = manufacturer_id_show;

      bmc->product_id_attr.attr.name = "product_id";
      bmc->product_id_attr.attr.mode = S_IRUGO;
      bmc->product_id_attr.show = product_id_show;

      bmc->guid_attr.attr.name = "guid";
      bmc->guid_attr.attr.mode = S_IRUGO;
      bmc->guid_attr.show = guid_show;

      bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
      bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
      bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;

      err = device_create_file(&bmc->dev->dev,
                     &bmc->device_id_attr);
      if (err)
            goto out;
      err = device_create_file(&bmc->dev->dev,
                     &bmc->provides_dev_sdrs_attr);
      if (err)
            goto out_devid;
      err = device_create_file(&bmc->dev->dev,
                     &bmc->revision_attr);
      if (err)
            goto out_sdrs;
      err = device_create_file(&bmc->dev->dev,
                     &bmc->firmware_rev_attr);
      if (err)
            goto out_rev;
      err = device_create_file(&bmc->dev->dev,
                     &bmc->version_attr);
      if (err)
            goto out_firm;
      err = device_create_file(&bmc->dev->dev,
                     &bmc->add_dev_support_attr);
      if (err)
            goto out_version;
      err = device_create_file(&bmc->dev->dev,
                     &bmc->manufacturer_id_attr);
      if (err)
            goto out_add_dev;
      err = device_create_file(&bmc->dev->dev,
                     &bmc->product_id_attr);
      if (err)
            goto out_manu;
      if (bmc->id.aux_firmware_revision_set) {
            err = device_create_file(&bmc->dev->dev,
                           &bmc->aux_firmware_rev_attr);
            if (err)
                  goto out_prod_id;
      }
      if (bmc->guid_set) {
            err = device_create_file(&bmc->dev->dev,
                           &bmc->guid_attr);
            if (err)
                  goto out_aux_firm;
      }

      return 0;

out_aux_firm:
      if (bmc->id.aux_firmware_revision_set)
            device_remove_file(&bmc->dev->dev,
                           &bmc->aux_firmware_rev_attr);
out_prod_id:
      device_remove_file(&bmc->dev->dev,
                     &bmc->product_id_attr);
out_manu:
      device_remove_file(&bmc->dev->dev,
                     &bmc->manufacturer_id_attr);
out_add_dev:
      device_remove_file(&bmc->dev->dev,
                     &bmc->add_dev_support_attr);
out_version:
      device_remove_file(&bmc->dev->dev,
                     &bmc->version_attr);
out_firm:
      device_remove_file(&bmc->dev->dev,
                     &bmc->firmware_rev_attr);
out_rev:
      device_remove_file(&bmc->dev->dev,
                     &bmc->revision_attr);
out_sdrs:
      device_remove_file(&bmc->dev->dev,
                     &bmc->provides_dev_sdrs_attr);
out_devid:
      device_remove_file(&bmc->dev->dev,
                     &bmc->device_id_attr);
out:
      return err;
}

static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
                       const char *sysfs_name)
{
      int               rv;
      struct bmc_device *bmc = intf->bmc;
      struct bmc_device *old_bmc;
      int               size;
      char              dummy[1];

      mutex_lock(&ipmidriver_mutex);

      /*
       * Try to find if there is an bmc_device struct
       * representing the interfaced BMC already
       */
      if (bmc->guid_set)
            old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
      else
            old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
                                        bmc->id.product_id,
                                        bmc->id.device_id);

      /*
       * If there is already an bmc_device, free the new one,
       * otherwise register the new BMC device
       */
      if (old_bmc) {
            kfree(bmc);
            intf->bmc = old_bmc;
            bmc = old_bmc;

            kref_get(&bmc->refcount);
            mutex_unlock(&ipmidriver_mutex);

            printk(KERN_INFO
                   "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
                   " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
                   bmc->id.manufacturer_id,
                   bmc->id.product_id,
                   bmc->id.device_id);
      } else {
            char name[14];
            unsigned char orig_dev_id = bmc->id.device_id;
            int warn_printed = 0;

            snprintf(name, sizeof(name),
                   "ipmi_bmc.%4.4x", bmc->id.product_id);

            while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
                                     bmc->id.product_id,
                                     bmc->id.device_id)) {
                  if (!warn_printed) {
                        printk(KERN_WARNING PFX
                               "This machine has two different BMCs"
                               " with the same product id and device"
                               " id.  This is an error in the"
                               " firmware, but incrementing the"
                               " device id to work around the problem."
                               " Prod ID = 0x%x, Dev ID = 0x%x\n",
                               bmc->id.product_id, bmc->id.device_id);
                        warn_printed = 1;
                  }
                  bmc->id.device_id++; /* Wraps at 255 */
                  if (bmc->id.device_id == orig_dev_id) {
                        printk(KERN_ERR PFX
                               "Out of device ids!\n");
                        break;
                  }
            }

            bmc->dev = platform_device_alloc(name, bmc->id.device_id);
            if (!bmc->dev) {
                  mutex_unlock(&ipmidriver_mutex);
                  printk(KERN_ERR
                         "ipmi_msghandler:"
                         " Unable to allocate platform device\n");
                  return -ENOMEM;
            }
            bmc->dev->dev.driver = &ipmidriver.driver;
            dev_set_drvdata(&bmc->dev->dev, bmc);
            kref_init(&bmc->refcount);

            rv = platform_device_add(bmc->dev);
            mutex_unlock(&ipmidriver_mutex);
            if (rv) {
                  platform_device_put(bmc->dev);
                  bmc->dev = NULL;
                  printk(KERN_ERR
                         "ipmi_msghandler:"
                         " Unable to register bmc device: %d\n",
                         rv);
                  /*
                   * Don't go to out_err, you can only do that if
                   * the device is registered already.
                   */
                  return rv;
            }

            rv = create_files(bmc);
            if (rv) {
                  mutex_lock(&ipmidriver_mutex);
                  platform_device_unregister(bmc->dev);
                  mutex_unlock(&ipmidriver_mutex);

                  return rv;
            }

            printk(KERN_INFO
                   "ipmi: Found new BMC (man_id: 0x%6.6x, "
                   " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
                   bmc->id.manufacturer_id,
                   bmc->id.product_id,
                   bmc->id.device_id);
      }

      /*
       * create symlink from system interface device to bmc device
       * and back.
       */
      intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
      if (!intf->sysfs_name) {
            rv = -ENOMEM;
            printk(KERN_ERR
                   "ipmi_msghandler: allocate link to BMC: %d\n",
                   rv);
            goto out_err;
      }

      rv = sysfs_create_link(&intf->si_dev->kobj,
                         &bmc->dev->dev.kobj, intf->sysfs_name);
      if (rv) {
            kfree(intf->sysfs_name);
            intf->sysfs_name = NULL;
            printk(KERN_ERR
                   "ipmi_msghandler: Unable to create bmc symlink: %d\n",
                   rv);
            goto out_err;
      }

      size = snprintf(dummy, 0, "ipmi%d", ifnum);
      intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
      if (!intf->my_dev_name) {
            kfree(intf->sysfs_name);
            intf->sysfs_name = NULL;
            rv = -ENOMEM;
            printk(KERN_ERR
                   "ipmi_msghandler: allocate link from BMC: %d\n",
                   rv);
            goto out_err;
      }
      snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);

      rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
                         intf->my_dev_name);
      if (rv) {
            kfree(intf->sysfs_name);
            intf->sysfs_name = NULL;
            kfree(intf->my_dev_name);
            intf->my_dev_name = NULL;
            printk(KERN_ERR
                   "ipmi_msghandler:"
                   " Unable to create symlink to bmc: %d\n",
                   rv);
            goto out_err;
      }

      return 0;

out_err:
      ipmi_bmc_unregister(intf);
      return rv;
}

static int
send_guid_cmd(ipmi_smi_t intf, int chan)
{
      struct kernel_ipmi_msg            msg;
      struct ipmi_system_interface_addr si;

      si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
      si.channel = IPMI_BMC_CHANNEL;
      si.lun = 0;

      msg.netfn = IPMI_NETFN_APP_REQUEST;
      msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
      msg.data = NULL;
      msg.data_len = 0;
      return i_ipmi_request(NULL,
                        intf,
                        (struct ipmi_addr *) &si,
                        0,
                        &msg,
                        intf,
                        NULL,
                        NULL,
                        0,
                        intf->channels[0].address,
                        intf->channels[0].lun,
                        -1, 0);
}

static void
guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
      if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
          || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
          || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
            /* Not for me */
            return;

      if (msg->msg.data[0] != 0) {
            /* Error from getting the GUID, the BMC doesn't have one. */
            intf->bmc->guid_set = 0;
            goto out;
      }

      if (msg->msg.data_len < 17) {
            intf->bmc->guid_set = 0;
            printk(KERN_WARNING PFX
                   "guid_handler: The GUID response from the BMC was too"
                   " short, it was %d but should have been 17.  Assuming"
                   " GUID is not available.\n",
                   msg->msg.data_len);
            goto out;
      }

      memcpy(intf->bmc->guid, msg->msg.data, 16);
      intf->bmc->guid_set = 1;
 out:
      wake_up(&intf->waitq);
}

static void
get_guid(ipmi_smi_t intf)
{
      int rv;

      intf->bmc->guid_set = 0x2;
      intf->null_user_handler = guid_handler;
      rv = send_guid_cmd(intf, 0);
      if (rv)
            /* Send failed, no GUID available. */
            intf->bmc->guid_set = 0;
      wait_event(intf->waitq, intf->bmc->guid_set != 2);
      intf->null_user_handler = NULL;
}

static int
send_channel_info_cmd(ipmi_smi_t intf, int chan)
{
      struct kernel_ipmi_msg            msg;
      unsigned char                     data[1];
      struct ipmi_system_interface_addr si;

      si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
      si.channel = IPMI_BMC_CHANNEL;
      si.lun = 0;

      msg.netfn = IPMI_NETFN_APP_REQUEST;
      msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
      msg.data = data;
      msg.data_len = 1;
      data[0] = chan;
      return i_ipmi_request(NULL,
                        intf,
                        (struct ipmi_addr *) &si,
                        0,
                        &msg,
                        intf,
                        NULL,
                        NULL,
                        0,
                        intf->channels[0].address,
                        intf->channels[0].lun,
                        -1, 0);
}

static void
channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
      int rv = 0;
      int chan;

      if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
          && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
          && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
            /* It's the one we want */
            if (msg->msg.data[0] != 0) {
                  /* Got an error from the channel, just go on. */

                  if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
                        /*
                         * If the MC does not support this
                         * command, that is legal.  We just
                         * assume it has one IPMB at channel
                         * zero.
                         */
                        intf->channels[0].medium
                              = IPMI_CHANNEL_MEDIUM_IPMB;
                        intf->channels[0].protocol
                              = IPMI_CHANNEL_PROTOCOL_IPMB;
                        rv = -ENOSYS;

                        intf->curr_channel = IPMI_MAX_CHANNELS;
                        wake_up(&intf->waitq);
                        goto out;
                  }
                  goto next_channel;
            }
            if (msg->msg.data_len < 4) {
                  /* Message not big enough, just go on. */
                  goto next_channel;
            }
            chan = intf->curr_channel;
            intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
            intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;

 next_channel:
            intf->curr_channel++;
            if (intf->curr_channel >= IPMI_MAX_CHANNELS)
                  wake_up(&intf->waitq);
            else
                  rv = send_channel_info_cmd(intf, intf->curr_channel);

            if (rv) {
                  /* Got an error somehow, just give up. */
                  intf->curr_channel = IPMI_MAX_CHANNELS;
                  wake_up(&intf->waitq);

                  printk(KERN_WARNING PFX
                         "Error sending channel information: %d\n",
                         rv);
            }
      }
 out:
      return;
}

void ipmi_poll_interface(ipmi_user_t user)
{
      ipmi_smi_t intf = user->intf;

      if (intf->handlers->poll)
            intf->handlers->poll(intf->send_info);
}
EXPORT_SYMBOL(ipmi_poll_interface);

int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
                  void               *send_info,
                  struct ipmi_device_id    *device_id,
                  struct device            *si_dev,
                  const char               *sysfs_name,
                  unsigned char            slave_addr)
{
      int              i, j;
      int              rv;
      ipmi_smi_t       intf;
      ipmi_smi_t       tintf;
      struct list_head *link;

      /*
       * Make sure the driver is actually initialized, this handles
       * problems with initialization order.
       */
      if (!initialized) {
            rv = ipmi_init_msghandler();
            if (rv)
                  return rv;
            /*
             * The init code doesn't return an error if it was turned
             * off, but it won't initialize.  Check that.
             */
            if (!initialized)
                  return -ENODEV;
      }

      intf = kzalloc(sizeof(*intf), GFP_KERNEL);
      if (!intf)
            return -ENOMEM;

      intf->ipmi_version_major = ipmi_version_major(device_id);
      intf->ipmi_version_minor = ipmi_version_minor(device_id);

      intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
      if (!intf->bmc) {
            kfree(intf);
            return -ENOMEM;
      }
      intf->intf_num = -1; /* Mark it invalid for now. */
      kref_init(&intf->refcount);
      intf->bmc->id = *device_id;
      intf->si_dev = si_dev;
      for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
            intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
            intf->channels[j].lun = 2;
      }
      if (slave_addr != 0)
            intf->channels[0].address = slave_addr;
      INIT_LIST_HEAD(&intf->users);
      intf->handlers = handlers;
      intf->send_info = send_info;
      spin_lock_init(&intf->seq_lock);
      for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
            intf->seq_table[j].inuse = 0;
            intf->seq_table[j].seqid = 0;
      }
      intf->curr_seq = 0;
#ifdef CONFIG_PROC_FS
      mutex_init(&intf->proc_entry_lock);
#endif
      spin_lock_init(&intf->waiting_msgs_lock);
      INIT_LIST_HEAD(&intf->waiting_msgs);
      spin_lock_init(&intf->events_lock);
      INIT_LIST_HEAD(&intf->waiting_events);
      intf->waiting_events_count = 0;
      mutex_init(&intf->cmd_rcvrs_mutex);
      spin_lock_init(&intf->maintenance_mode_lock);
      INIT_LIST_HEAD(&intf->cmd_rcvrs);
      init_waitqueue_head(&intf->waitq);
      for (i = 0; i < IPMI_NUM_STATS; i++)
            atomic_set(&intf->stats[i], 0);

      intf->proc_dir = NULL;

      mutex_lock(&smi_watchers_mutex);
      mutex_lock(&ipmi_interfaces_mutex);
      /* Look for a hole in the numbers. */
      i = 0;
      link = &ipmi_interfaces;
      list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
            if (tintf->intf_num != i) {
                  link = &tintf->link;
                  break;
            }
            i++;
      }
      /* Add the new interface in numeric order. */
      if (i == 0)
            list_add_rcu(&intf->link, &ipmi_interfaces);
      else
            list_add_tail_rcu(&intf->link, link);

      rv = handlers->start_processing(send_info, intf);
      if (rv)
            goto out;

      get_guid(intf);

      if ((intf->ipmi_version_major > 1)
                  || ((intf->ipmi_version_major == 1)
                      && (intf->ipmi_version_minor >= 5))) {
            /*
             * Start scanning the channels to see what is
             * available.
             */
            intf->null_user_handler = channel_handler;
            intf->curr_channel = 0;
            rv = send_channel_info_cmd(intf, 0);
            if (rv)
                  goto out;

            /* Wait for the channel info to be read. */
            wait_event(intf->waitq,
                     intf->curr_channel >= IPMI_MAX_CHANNELS);
            intf->null_user_handler = NULL;
      } else {
            /* Assume a single IPMB channel at zero. */
            intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
            intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
            intf->curr_channel = IPMI_MAX_CHANNELS;
      }

      if (rv == 0)
            rv = add_proc_entries(intf, i);

      rv = ipmi_bmc_register(intf, i, sysfs_name);

 out:
      if (rv) {
            if (intf->proc_dir)
                  remove_proc_entries(intf);
            intf->handlers = NULL;
            list_del_rcu(&intf->link);
            mutex_unlock(&ipmi_interfaces_mutex);
            mutex_unlock(&smi_watchers_mutex);
            synchronize_rcu();
            kref_put(&intf->refcount, intf_free);
      } else {
            /*
             * Keep memory order straight for RCU readers.  Make
             * sure everything else is committed to memory before
             * setting intf_num to mark the interface valid.
             */
            smp_wmb();
            intf->intf_num = i;
            mutex_unlock(&ipmi_interfaces_mutex);
            /* After this point the interface is legal to use. */
            call_smi_watchers(i, intf->si_dev);
            mutex_unlock(&smi_watchers_mutex);
      }

      return rv;
}
EXPORT_SYMBOL(ipmi_register_smi);

static void cleanup_smi_msgs(ipmi_smi_t intf)
{
      int              i;
      struct seq_table *ent;

      /* No need for locks, the interface is down. */
      for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
            ent = &(intf->seq_table[i]);
            if (!ent->inuse)
                  continue;
            deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
      }
}

int ipmi_unregister_smi(ipmi_smi_t intf)
{
      struct ipmi_smi_watcher *w;
      int    intf_num = intf->intf_num;

      ipmi_bmc_unregister(intf);

      mutex_lock(&smi_watchers_mutex);
      mutex_lock(&ipmi_interfaces_mutex);
      intf->intf_num = -1;
      intf->handlers = NULL;
      list_del_rcu(&intf->link);
      mutex_unlock(&ipmi_interfaces_mutex);
      synchronize_rcu();

      cleanup_smi_msgs(intf);

      remove_proc_entries(intf);

      /*
       * Call all the watcher interfaces to tell them that
       * an interface is gone.
       */
      list_for_each_entry(w, &smi_watchers, link)
            w->smi_gone(intf_num);
      mutex_unlock(&smi_watchers_mutex);

      kref_put(&intf->refcount, intf_free);
      return 0;
}
EXPORT_SYMBOL(ipmi_unregister_smi);

static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
                           struct ipmi_smi_msg *msg)
{
      struct ipmi_ipmb_addr ipmb_addr;
      struct ipmi_recv_msg  *recv_msg;

      /*
       * This is 11, not 10, because the response must contain a
       * completion code.
       */
      if (msg->rsp_size < 11) {
            /* Message not big enough, just ignore it. */
            ipmi_inc_stat(intf, invalid_ipmb_responses);
            return 0;
      }

      if (msg->rsp[2] != 0) {
            /* An error getting the response, just ignore it. */
            return 0;
      }

      ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
      ipmb_addr.slave_addr = msg->rsp[6];
      ipmb_addr.channel = msg->rsp[3] & 0x0f;
      ipmb_addr.lun = msg->rsp[7] & 3;

      /*
       * It's a response from a remote entity.  Look up the sequence
       * number and handle the response.
       */
      if (intf_find_seq(intf,
                    msg->rsp[7] >> 2,
                    msg->rsp[3] & 0x0f,
                    msg->rsp[8],
                    (msg->rsp[4] >> 2) & (~1),
                    (struct ipmi_addr *) &(ipmb_addr),
                    &recv_msg)) {
            /*
             * We were unable to find the sequence number,
             * so just nuke the message.
             */
            ipmi_inc_stat(intf, unhandled_ipmb_responses);
            return 0;
      }

      memcpy(recv_msg->msg_data,
             &(msg->rsp[9]),
             msg->rsp_size - 9);
      /*
       * The other fields matched, so no need to set them, except
       * for netfn, which needs to be the response that was
       * returned, not the request value.
       */
      recv_msg->msg.netfn = msg->rsp[4] >> 2;
      recv_msg->msg.data = recv_msg->msg_data;
      recv_msg->msg.data_len = msg->rsp_size - 10;
      recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
      ipmi_inc_stat(intf, handled_ipmb_responses);
      deliver_response(recv_msg);

      return 0;
}

static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
                           struct ipmi_smi_msg *msg)
{
      struct cmd_rcvr          *rcvr;
      int                      rv = 0;
      unsigned char            netfn;
      unsigned char            cmd;
      unsigned char            chan;
      ipmi_user_t              user = NULL;
      struct ipmi_ipmb_addr    *ipmb_addr;
      struct ipmi_recv_msg     *recv_msg;
      struct ipmi_smi_handlers *handlers;

      if (msg->rsp_size < 10) {
            /* Message not big enough, just ignore it. */
            ipmi_inc_stat(intf, invalid_commands);
            return 0;
      }

      if (msg->rsp[2] != 0) {
            /* An error getting the response, just ignore it. */
            return 0;
      }

      netfn = msg->rsp[4] >> 2;
      cmd = msg->rsp[8];
      chan = msg->rsp[3] & 0xf;

      rcu_read_lock();
      rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
      if (rcvr) {
            user = rcvr->user;
            kref_get(&user->refcount);
      } else
            user = NULL;
      rcu_read_unlock();

      if (user == NULL) {
            /* We didn't find a user, deliver an error response. */
            ipmi_inc_stat(intf, unhandled_commands);

            msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
            msg->data[1] = IPMI_SEND_MSG_CMD;
            msg->data[2] = msg->rsp[3];
            msg->data[3] = msg->rsp[6];
            msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
            msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
            msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
            /* rqseq/lun */
            msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
            msg->data[8] = msg->rsp[8]; /* cmd */
            msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
            msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
            msg->data_size = 11;

#ifdef DEBUG_MSGING
      {
            int m;
            printk("Invalid command:");
            for (m = 0; m < msg->data_size; m++)
                  printk(" %2.2x", msg->data[m]);
            printk("\n");
      }
#endif
            rcu_read_lock();
            handlers = intf->handlers;
            if (handlers) {
                  handlers->sender(intf->send_info, msg, 0);
                  /*
                   * We used the message, so return the value
                   * that causes it to not be freed or
                   * queued.
                   */
                  rv = -1;
            }
            rcu_read_unlock();
      } else {
            /* Deliver the message to the user. */
            ipmi_inc_stat(intf, handled_commands);

            recv_msg = ipmi_alloc_recv_msg();
            if (!recv_msg) {
                  /*
                   * We couldn't allocate memory for the
                   * message, so requeue it for handling
                   * later.
                   */
                  rv = 1;
                  kref_put(&user->refcount, free_user);
            } else {
                  /* Extract the source address from the data. */
                  ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
                  ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
                  ipmb_addr->slave_addr = msg->rsp[6];
                  ipmb_addr->lun = msg->rsp[7] & 3;
                  ipmb_addr->channel = msg->rsp[3] & 0xf;

                  /*
                   * Extract the rest of the message information
                   * from the IPMB header.
                   */
                  recv_msg->user = user;
                  recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
                  recv_msg->msgid = msg->rsp[7] >> 2;
                  recv_msg->msg.netfn = msg->rsp[4] >> 2;
                  recv_msg->msg.cmd = msg->rsp[8];
                  recv_msg->msg.data = recv_msg->msg_data;

                  /*
                   * We chop off 10, not 9 bytes because the checksum
                   * at the end also needs to be removed.
                   */
                  recv_msg->msg.data_len = msg->rsp_size - 10;
                  memcpy(recv_msg->msg_data,
                         &(msg->rsp[9]),
                         msg->rsp_size - 10);
                  deliver_response(recv_msg);
            }
      }

      return rv;
}

static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
                          struct ipmi_smi_msg *msg)
{
      struct ipmi_lan_addr  lan_addr;
      struct ipmi_recv_msg  *recv_msg;


      /*
       * This is 13, not 12, because the response must contain a
       * completion code.
       */
      if (msg->rsp_size < 13) {
            /* Message not big enough, just ignore it. */
            ipmi_inc_stat(intf, invalid_lan_responses);
            return 0;
      }

      if (msg->rsp[2] != 0) {
            /* An error getting the response, just ignore it. */
            return 0;
      }

      lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
      lan_addr.session_handle = msg->rsp[4];
      lan_addr.remote_SWID = msg->rsp[8];
      lan_addr.local_SWID = msg->rsp[5];
      lan_addr.channel = msg->rsp[3] & 0x0f;
      lan_addr.privilege = msg->rsp[3] >> 4;
      lan_addr.lun = msg->rsp[9] & 3;

      /*
       * It's a response from a remote entity.  Look up the sequence
       * number and handle the response.
       */
      if (intf_find_seq(intf,
                    msg->rsp[9] >> 2,
                    msg->rsp[3] & 0x0f,
                    msg->rsp[10],
                    (msg->rsp[6] >> 2) & (~1),
                    (struct ipmi_addr *) &(lan_addr),
                    &recv_msg)) {
            /*
             * We were unable to find the sequence number,
             * so just nuke the message.
             */
            ipmi_inc_stat(intf, unhandled_lan_responses);
            return 0;
      }

      memcpy(recv_msg->msg_data,
             &(msg->rsp[11]),
             msg->rsp_size - 11);
      /*
       * The other fields matched, so no need to set them, except
       * for netfn, which needs to be the response that was
       * returned, not the request value.
       */
      recv_msg->msg.netfn = msg->rsp[6] >> 2;
      recv_msg->msg.data = recv_msg->msg_data;
      recv_msg->msg.data_len = msg->rsp_size - 12;
      recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
      ipmi_inc_stat(intf, handled_lan_responses);
      deliver_response(recv_msg);

      return 0;
}

static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
                          struct ipmi_smi_msg *msg)
{
      struct cmd_rcvr          *rcvr;
      int                      rv = 0;
      unsigned char            netfn;
      unsigned char            cmd;
      unsigned char            chan;
      ipmi_user_t              user = NULL;
      struct ipmi_lan_addr     *lan_addr;
      struct ipmi_recv_msg     *recv_msg;

      if (msg->rsp_size < 12) {
            /* Message not big enough, just ignore it. */
            ipmi_inc_stat(intf, invalid_commands);
            return 0;
      }

      if (msg->rsp[2] != 0) {
            /* An error getting the response, just ignore it. */
            return 0;
      }

      netfn = msg->rsp[6] >> 2;
      cmd = msg->rsp[10];
      chan = msg->rsp[3] & 0xf;

      rcu_read_lock();
      rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
      if (rcvr) {
            user = rcvr->user;
            kref_get(&user->refcount);
      } else
            user = NULL;
      rcu_read_unlock();

      if (user == NULL) {
            /* We didn't find a user, just give up. */
            ipmi_inc_stat(intf, unhandled_commands);

            /*
             * Don't do anything with these messages, just allow
             * them to be freed.
             */
            rv = 0;
      } else {
            /* Deliver the message to the user. */
            ipmi_inc_stat(intf, handled_commands);

            recv_msg = ipmi_alloc_recv_msg();
            if (!recv_msg) {
                  /*
                   * We couldn't allocate memory for the
                   * message, so requeue it for handling later.
                   */
                  rv = 1;
                  kref_put(&user->refcount, free_user);
            } else {
                  /* Extract the source address from the data. */
                  lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
                  lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
                  lan_addr->session_handle = msg->rsp[4];
                  lan_addr->remote_SWID = msg->rsp[8];
                  lan_addr->local_SWID = msg->rsp[5];
                  lan_addr->lun = msg->rsp[9] & 3;
                  lan_addr->channel = msg->rsp[3] & 0xf;
                  lan_addr->privilege = msg->rsp[3] >> 4;

                  /*
                   * Extract the rest of the message information
                   * from the IPMB header.
                   */
                  recv_msg->user = user;
                  recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
                  recv_msg->msgid = msg->rsp[9] >> 2;
                  recv_msg->msg.netfn = msg->rsp[6] >> 2;
                  recv_msg->msg.cmd = msg->rsp[10];
                  recv_msg->msg.data = recv_msg->msg_data;

                  /*
                   * We chop off 12, not 11 bytes because the checksum
                   * at the end also needs to be removed.
                   */
                  recv_msg->msg.data_len = msg->rsp_size - 12;
                  memcpy(recv_msg->msg_data,
                         &(msg->rsp[11]),
                         msg->rsp_size - 12);
                  deliver_response(recv_msg);
            }
      }

      return rv;
}

/*
 * This routine will handle "Get Message" command responses with
 * channels that use an OEM Medium. The message format belongs to
 * the OEM.  See IPMI 2.0 specification, Chapter 6 and
 * Chapter 22, sections 22.6 and 22.24 for more details.
 */
static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
                          struct ipmi_smi_msg *msg)
{
      struct cmd_rcvr       *rcvr;
      int                   rv = 0;
      unsigned char         netfn;
      unsigned char         cmd;
      unsigned char         chan;
      ipmi_user_t           user = NULL;
      struct ipmi_system_interface_addr *smi_addr;
      struct ipmi_recv_msg  *recv_msg;

      /*
       * We expect the OEM SW to perform error checking
       * so we just do some basic sanity checks
       */
      if (msg->rsp_size < 4) {
            /* Message not big enough, just ignore it. */
            ipmi_inc_stat(intf, invalid_commands);
            return 0;
      }

      if (msg->rsp[2] != 0) {
            /* An error getting the response, just ignore it. */
            return 0;
      }

      /*
       * This is an OEM Message so the OEM needs to know how
       * handle the message. We do no interpretation.
       */
      netfn = msg->rsp[0] >> 2;
      cmd = msg->rsp[1];
      chan = msg->rsp[3] & 0xf;

      rcu_read_lock();
      rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
      if (rcvr) {
            user = rcvr->user;
            kref_get(&user->refcount);
      } else
            user = NULL;
      rcu_read_unlock();

      if (user == NULL) {
            /* We didn't find a user, just give up. */
            ipmi_inc_stat(intf, unhandled_commands);

            /*
             * Don't do anything with these messages, just allow
             * them to be freed.
             */

            rv = 0;
      } else {
            /* Deliver the message to the user. */
            ipmi_inc_stat(intf, handled_commands);

            recv_msg = ipmi_alloc_recv_msg();
            if (!recv_msg) {
                  /*
                   * We couldn't allocate memory for the
                   * message, so requeue it for handling
                   * later.
                   */
                  rv = 1;
                  kref_put(&user->refcount, free_user);
            } else {
                  /*
                   * OEM Messages are expected to be delivered via
                   * the system interface to SMS software.  We might
                   * need to visit this again depending on OEM
                   * requirements
                   */
                  smi_addr = ((struct ipmi_system_interface_addr *)
                            &(recv_msg->addr));
                  smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
                  smi_addr->channel = IPMI_BMC_CHANNEL;
                  smi_addr->lun = msg->rsp[0] & 3;

                  recv_msg->user = user;
                  recv_msg->user_msg_data = NULL;
                  recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
                  recv_msg->msg.netfn = msg->rsp[0] >> 2;
                  recv_msg->msg.cmd = msg->rsp[1];
                  recv_msg->msg.data = recv_msg->msg_data;

                  /*
                   * The message starts at byte 4 which follows the
                   * the Channel Byte in the "GET MESSAGE" command
                   */
                  recv_msg->msg.data_len = msg->rsp_size - 4;
                  memcpy(recv_msg->msg_data,
                         &(msg->rsp[4]),
                         msg->rsp_size - 4);
                  deliver_response(recv_msg);
            }
      }

      return rv;
}

static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
                             struct ipmi_smi_msg  *msg)
{
      struct ipmi_system_interface_addr *smi_addr;

      recv_msg->msgid = 0;
      smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
      smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
      smi_addr->channel = IPMI_BMC_CHANNEL;
      smi_addr->lun = msg->rsp[0] & 3;
      recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
      recv_msg->msg.netfn = msg->rsp[0] >> 2;
      recv_msg->msg.cmd = msg->rsp[1];
      memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
      recv_msg->msg.data = recv_msg->msg_data;
      recv_msg->msg.data_len = msg->rsp_size - 3;
}

static int handle_read_event_rsp(ipmi_smi_t          intf,
                         struct ipmi_smi_msg *msg)
{
      struct ipmi_recv_msg *recv_msg, *recv_msg2;
      struct list_head     msgs;
      ipmi_user_t          user;
      int                  rv = 0;
      int                  deliver_count = 0;
      unsigned long        flags;

      if (msg->rsp_size < 19) {
            /* Message is too small to be an IPMB event. */
            ipmi_inc_stat(intf, invalid_events);
            return 0;
      }

      if (msg->rsp[2] != 0) {
            /* An error getting the event, just ignore it. */
            return 0;
      }

      INIT_LIST_HEAD(&msgs);

      spin_lock_irqsave(&intf->events_lock, flags);

      ipmi_inc_stat(intf, events);

      /*
       * Allocate and fill in one message for every user that is
       * getting events.
       */
      rcu_read_lock();
      list_for_each_entry_rcu(user, &intf->users, link) {
            if (!user->gets_events)
                  continue;

            recv_msg = ipmi_alloc_recv_msg();
            if (!recv_msg) {
                  rcu_read_unlock();
                  list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
                                     link) {
                        list_del(&recv_msg->link);
                        ipmi_free_recv_msg(recv_msg);
                  }
                  /*
                   * We couldn't allocate memory for the
                   * message, so requeue it for handling
                   * later.
                   */
                  rv = 1;
                  goto out;
            }

            deliver_count++;

            copy_event_into_recv_msg(recv_msg, msg);
            recv_msg->user = user;
            kref_get(&user->refcount);
            list_add_tail(&(recv_msg->link), &msgs);
      }
      rcu_read_unlock();

      if (deliver_count) {
            /* Now deliver all the messages. */
            list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
                  list_del(&recv_msg->link);
                  deliver_response(recv_msg);
            }
      } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
            /*
             * No one to receive the message, put it in queue if there's
             * not already too many things in the queue.
             */
            recv_msg = ipmi_alloc_recv_msg();
            if (!recv_msg) {
                  /*
                   * We couldn't allocate memory for the
                   * message, so requeue it for handling
                   * later.
                   */
                  rv = 1;
                  goto out;
            }

            copy_event_into_recv_msg(recv_msg, msg);
            list_add_tail(&(recv_msg->link), &(intf->waiting_events));
            intf->waiting_events_count++;
      } else if (!intf->event_msg_printed) {
            /*
             * There's too many things in the queue, discard this
             * message.
             */
            printk(KERN_WARNING PFX "Event queue full, discarding"
                   " incoming events\n");
            intf->event_msg_printed = 1;
      }

 out:
      spin_unlock_irqrestore(&(intf->events_lock), flags);

      return rv;
}

static int handle_bmc_rsp(ipmi_smi_t          intf,
                    struct ipmi_smi_msg *msg)
{
      struct ipmi_recv_msg *recv_msg;
      struct ipmi_user     *user;

      recv_msg = (struct ipmi_recv_msg *) msg->user_data;
      if (recv_msg == NULL) {
            printk(KERN_WARNING
                   "IPMI message received with no owner. This\n"
                   "could be because of a malformed message, or\n"
                   "because of a hardware error.  Contact your\n"
                   "hardware vender for assistance\n");
            return 0;
      }

      user = recv_msg->user;
      /* Make sure the user still exists. */
      if (user && !user->valid) {
            /* The user for the message went away, so give up. */
            ipmi_inc_stat(intf, unhandled_local_responses);
            ipmi_free_recv_msg(recv_msg);
      } else {
            struct ipmi_system_interface_addr *smi_addr;

            ipmi_inc_stat(intf, handled_local_responses);
            recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
            recv_msg->msgid = msg->msgid;
            smi_addr = ((struct ipmi_system_interface_addr *)
                      &(recv_msg->addr));
            smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
            smi_addr->channel = IPMI_BMC_CHANNEL;
            smi_addr->lun = msg->rsp[0] & 3;
            recv_msg->msg.netfn = msg->rsp[0] >> 2;
            recv_msg->msg.cmd = msg->rsp[1];
            memcpy(recv_msg->msg_data,
                   &(msg->rsp[2]),
                   msg->rsp_size - 2);
            recv_msg->msg.data = recv_msg->msg_data;
            recv_msg->msg.data_len = msg->rsp_size - 2;
            deliver_response(recv_msg);
      }

      return 0;
}

/*
 * Handle a new message.  Return 1 if the message should be requeued,
 * 0 if the message should be freed, or -1 if the message should not
 * be freed or requeued.
 */
static int handle_new_recv_msg(ipmi_smi_t          intf,
                         struct ipmi_smi_msg *msg)
{
      int requeue;
      int chan;

#ifdef DEBUG_MSGING
      int m;
      printk("Recv:");
      for (m = 0; m < msg->rsp_size; m++)
            printk(" %2.2x", msg->rsp[m]);
      printk("\n");
#endif
      if (msg->rsp_size < 2) {
            /* Message is too small to be correct. */
            printk(KERN_WARNING PFX "BMC returned to small a message"
                   " for netfn %x cmd %x, got %d bytes\n",
                   (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);

            /* Generate an error response for the message. */
            msg->rsp[0] = msg->data[0] | (1 << 2);
            msg->rsp[1] = msg->data[1];
            msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
            msg->rsp_size = 3;
      } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
               || (msg->rsp[1] != msg->data[1])) {
            /*
             * The NetFN and Command in the response is not even
             * marginally correct.
             */
            printk(KERN_WARNING PFX "BMC returned incorrect response,"
                   " expected netfn %x cmd %x, got netfn %x cmd %x\n",
                   (msg->data[0] >> 2) | 1, msg->data[1],
                   msg->rsp[0] >> 2, msg->rsp[1]);

            /* Generate an error response for the message. */
            msg->rsp[0] = msg->data[0] | (1 << 2);
            msg->rsp[1] = msg->data[1];
            msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
            msg->rsp_size = 3;
      }

      if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
          && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
          && (msg->user_data != NULL)) {
            /*
             * It's a response to a response we sent.  For this we
             * deliver a send message response to the user.
             */
            struct ipmi_recv_msg     *recv_msg = msg->user_data;

            requeue = 0;
            if (msg->rsp_size < 2)
                  /* Message is too small to be correct. */
                  goto out;

            chan = msg->data[2] & 0x0f;
            if (chan >= IPMI_MAX_CHANNELS)
                  /* Invalid channel number */
                  goto out;

            if (!recv_msg)
                  goto out;

            /* Make sure the user still exists. */
            if (!recv_msg->user || !recv_msg->user->valid)
                  goto out;

            recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
            recv_msg->msg.data = recv_msg->msg_data;
            recv_msg->msg.data_len = 1;
            recv_msg->msg_data[0] = msg->rsp[2];
            deliver_response(recv_msg);
      } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
               && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
            /* It's from the receive queue. */
            chan = msg->rsp[3] & 0xf;
            if (chan >= IPMI_MAX_CHANNELS) {
                  /* Invalid channel number */
                  requeue = 0;
                  goto out;
            }

            /*
             * We need to make sure the channels have been initialized.
             * The channel_handler routine will set the "curr_channel"
             * equal to or greater than IPMI_MAX_CHANNELS when all the
             * channels for this interface have been initialized.
             */
            if (intf->curr_channel < IPMI_MAX_CHANNELS) {
                  requeue = 0; /* Throw the message away */
                  goto out;
            }

            switch (intf->channels[chan].medium) {
            case IPMI_CHANNEL_MEDIUM_IPMB:
                  if (msg->rsp[4] & 0x04) {
                        /*
                         * It's a response, so find the
                         * requesting message and send it up.
                         */
                        requeue = handle_ipmb_get_msg_rsp(intf, msg);
                  } else {
                        /*
                         * It's a command to the SMS from some other
                         * entity.  Handle that.
                         */
                        requeue = handle_ipmb_get_msg_cmd(intf, msg);
                  }
                  break;

            case IPMI_CHANNEL_MEDIUM_8023LAN:
            case IPMI_CHANNEL_MEDIUM_ASYNC:
                  if (msg->rsp[6] & 0x04) {
                        /*
                         * It's a response, so find the
                         * requesting message and send it up.
                         */
                        requeue = handle_lan_get_msg_rsp(intf, msg);
                  } else {
                        /*
                         * It's a command to the SMS from some other
                         * entity.  Handle that.
                         */
                        requeue = handle_lan_get_msg_cmd(intf, msg);
                  }
                  break;

            default:
                  /* Check for OEM Channels.  Clients had better
                     register for these commands. */
                  if ((intf->channels[chan].medium
                       >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
                      && (intf->channels[chan].medium
                        <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
                        requeue = handle_oem_get_msg_cmd(intf, msg);
                  } else {
                        /*
                         * We don't handle the channel type, so just
                         * free the message.
                         */
                        requeue = 0;
                  }
            }

      } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
               && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
            /* It's an asyncronous event. */
            requeue = handle_read_event_rsp(intf, msg);
      } else {
            /* It's a response from the local BMC. */
            requeue = handle_bmc_rsp(intf, msg);
      }

 out:
      return requeue;
}

/* Handle a new message from the lower layer. */
void ipmi_smi_msg_received(ipmi_smi_t          intf,
                     struct ipmi_smi_msg *msg)
{
      unsigned long flags = 0; /* keep us warning-free. */
      int           rv;
      int           run_to_completion;


      if ((msg->data_size >= 2)
          && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
          && (msg->data[1] == IPMI_SEND_MSG_CMD)
          && (msg->user_data == NULL)) {
            /*
             * This is the local response to a command send, start
             * the timer for these.  The user_data will not be
             * NULL if this is a response send, and we will let
             * response sends just go through.
             */

            /*
             * Check for errors, if we get certain errors (ones
             * that mean basically we can try again later), we
             * ignore them and start the timer.  Otherwise we
             * report the error immediately.
             */
            if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
                && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
                && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
                && (msg->rsp[2] != IPMI_BUS_ERR)
                && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
                  int chan = msg->rsp[3] & 0xf;

                  /* Got an error sending the message, handle it. */
                  if (chan >= IPMI_MAX_CHANNELS)
                        ; /* This shouldn't happen */
                  else if ((intf->channels[chan].medium
                          == IPMI_CHANNEL_MEDIUM_8023LAN)
                         || (intf->channels[chan].medium
                             == IPMI_CHANNEL_MEDIUM_ASYNC))
                        ipmi_inc_stat(intf, sent_lan_command_errs);
                  else
                        ipmi_inc_stat(intf, sent_ipmb_command_errs);
                  intf_err_seq(intf, msg->msgid, msg->rsp[2]);
            } else
                  /* The message was sent, start the timer. */
                  intf_start_seq_timer(intf, msg->msgid);

            ipmi_free_smi_msg(msg);
            goto out;
      }

      /*
       * To preserve message order, if the list is not empty, we
       * tack this message onto the end of the list.
       */
      run_to_completion = intf->run_to_completion;
      if (!run_to_completion)
            spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
      if (!list_empty(&intf->waiting_msgs)) {
            list_add_tail(&msg->link, &intf->waiting_msgs);
            if (!run_to_completion)
                  spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
            goto out;
      }
      if (!run_to_completion)
            spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);

      rv = handle_new_recv_msg(intf, msg);
      if (rv > 0) {
            /*
             * Could not handle the message now, just add it to a
             * list to handle later.
             */
            run_to_completion = intf->run_to_completion;
            if (!run_to_completion)
                  spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
            list_add_tail(&msg->link, &intf->waiting_msgs);
            if (!run_to_completion)
                  spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
      } else if (rv == 0) {
            ipmi_free_smi_msg(msg);
      }

 out:
      return;
}
EXPORT_SYMBOL(ipmi_smi_msg_received);

void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
{
      ipmi_user_t user;

      rcu_read_lock();
      list_for_each_entry_rcu(user, &intf->users, link) {
            if (!user->handler->ipmi_watchdog_pretimeout)
                  continue;

            user->handler->ipmi_watchdog_pretimeout(user->handler_data);
      }
      rcu_read_unlock();
}
EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);

static struct ipmi_smi_msg *
smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
              unsigned char seq, long seqid)
{
      struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
      if (!smi_msg)
            /*
             * If we can't allocate the message, then just return, we
             * get 4 retries, so this should be ok.
             */
            return NULL;

      memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
      smi_msg->data_size = recv_msg->msg.data_len;
      smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);

#ifdef DEBUG_MSGING
      {
            int m;
            printk("Resend: ");
            for (m = 0; m < smi_msg->data_size; m++)
                  printk(" %2.2x", smi_msg->data[m]);
            printk("\n");
      }
#endif
      return smi_msg;
}

static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
                        struct list_head *timeouts, long timeout_period,
                        int slot, unsigned long *flags)
{
      struct ipmi_recv_msg     *msg;
      struct ipmi_smi_handlers *handlers;

      if (intf->intf_num == -1)
            return;

      if (!ent->inuse)
            return;

      ent->timeout -= timeout_period;
      if (ent->timeout > 0)
            return;

      if (ent->retries_left == 0) {
            /* The message has used all its retries. */
            ent->inuse = 0;
            msg = ent->recv_msg;
            list_add_tail(&msg->link, timeouts);
            if (ent->broadcast)
                  ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
            else if (is_lan_addr(&ent->recv_msg->addr))
                  ipmi_inc_stat(intf, timed_out_lan_commands);
            else
                  ipmi_inc_stat(intf, timed_out_ipmb_commands);
      } else {
            struct ipmi_smi_msg *smi_msg;
            /* More retries, send again. */

            /*
             * Start with the max timer, set to normal timer after
             * the message is sent.
             */
            ent->timeout = MAX_MSG_TIMEOUT;
            ent->retries_left--;
            smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
                                  ent->seqid);
            if (!smi_msg) {
                  if (is_lan_addr(&ent->recv_msg->addr))
                        ipmi_inc_stat(intf,
                                    dropped_rexmit_lan_commands);
                  else
                        ipmi_inc_stat(intf,
                                    dropped_rexmit_ipmb_commands);
                  return;
            }

            spin_unlock_irqrestore(&intf->seq_lock, *flags);

            /*
             * Send the new message.  We send with a zero
             * priority.  It timed out, I doubt time is that
             * critical now, and high priority messages are really
             * only for messages to the local MC, which don't get
             * resent.
             */
            handlers = intf->handlers;
            if (handlers) {
                  if (is_lan_addr(&ent->recv_msg->addr))
                        ipmi_inc_stat(intf,
                                    retransmitted_lan_commands);
                  else
                        ipmi_inc_stat(intf,
                                    retransmitted_ipmb_commands);

                  intf->handlers->sender(intf->send_info,
                                     smi_msg, 0);
            } else
                  ipmi_free_smi_msg(smi_msg);

            spin_lock_irqsave(&intf->seq_lock, *flags);
      }
}

static void ipmi_timeout_handler(long timeout_period)
{
      ipmi_smi_t           intf;
      struct list_head     timeouts;
      struct ipmi_recv_msg *msg, *msg2;
      struct ipmi_smi_msg  *smi_msg, *smi_msg2;
      unsigned long        flags;
      int                  i;

      rcu_read_lock();
      list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
            /* See if any waiting messages need to be processed. */
            spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
            list_for_each_entry_safe(smi_msg, smi_msg2,
                               &intf->waiting_msgs, link) {
                  if (!handle_new_recv_msg(intf, smi_msg)) {
                        list_del(&smi_msg->link);
                        ipmi_free_smi_msg(smi_msg);
                  } else {
                        /*
                         * To preserve message order, quit if we
                         * can't handle a message.
                         */
                        break;
                  }
            }
            spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);

            /*
             * Go through the seq table and find any messages that
             * have timed out, putting them in the timeouts
             * list.
             */
            INIT_LIST_HEAD(&timeouts);
            spin_lock_irqsave(&intf->seq_lock, flags);
            for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
                  check_msg_timeout(intf, &(intf->seq_table[i]),
                                &timeouts, timeout_period, i,
                                &flags);
            spin_unlock_irqrestore(&intf->seq_lock, flags);

            list_for_each_entry_safe(msg, msg2, &timeouts, link)
                  deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);

            /*
             * Maintenance mode handling.  Check the timeout
             * optimistically before we claim the lock.  It may
             * mean a timeout gets missed occasionally, but that
             * only means the timeout gets extended by one period
             * in that case.  No big deal, and it avoids the lock
             * most of the time.
             */
            if (intf->auto_maintenance_timeout > 0) {
                  spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
                  if (intf->auto_maintenance_timeout > 0) {
                        intf->auto_maintenance_timeout
                              -= timeout_period;
                        if (!intf->maintenance_mode
                            && (intf->auto_maintenance_timeout <= 0)) {
                              intf->maintenance_mode_enable = 0;
                              maintenance_mode_update(intf);
                        }
                  }
                  spin_unlock_irqrestore(&intf->maintenance_mode_lock,
                                     flags);
            }
      }
      rcu_read_unlock();
}

static void ipmi_request_event(void)
{
      ipmi_smi_t               intf;
      struct ipmi_smi_handlers *handlers;

      rcu_read_lock();
      /*
       * Called from the timer, no need to check if handlers is
       * valid.
       */
      list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
            /* No event requests when in maintenance mode. */
            if (intf->maintenance_mode_enable)
                  continue;

            handlers = intf->handlers;
            if (handlers)
                  handlers->request_events(intf->send_info);
      }
      rcu_read_unlock();
}

static struct timer_list ipmi_timer;

/* Call every ~100 ms. */
#define IPMI_TIMEOUT_TIME     100

/* How many jiffies does it take to get to the timeout time. */
#define IPMI_TIMEOUT_JIFFIES  ((IPMI_TIMEOUT_TIME * HZ) / 1000)

/*
 * Request events from the queue every second (this is the number of
 * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
 * future, IPMI will add a way to know immediately if an event is in
 * the queue and this silliness can go away.
 */
#define IPMI_REQUEST_EV_TIME  (1000 / (IPMI_TIMEOUT_TIME))

static atomic_t stop_operation;
static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;

static void ipmi_timeout(unsigned long data)
{
      if (atomic_read(&stop_operation))
            return;

      ticks_to_req_ev--;
      if (ticks_to_req_ev == 0) {
            ipmi_request_event();
            ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
      }

      ipmi_timeout_handler(IPMI_TIMEOUT_TIME);

      mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
}


static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);

/* FIXME - convert these to slabs. */
static void free_smi_msg(struct ipmi_smi_msg *msg)
{
      atomic_dec(&smi_msg_inuse_count);
      kfree(msg);
}

struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
{
      struct ipmi_smi_msg *rv;
      rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
      if (rv) {
            rv->done = free_smi_msg;
            rv->user_data = NULL;
            atomic_inc(&smi_msg_inuse_count);
      }
      return rv;
}
EXPORT_SYMBOL(ipmi_alloc_smi_msg);

static void free_recv_msg(struct ipmi_recv_msg *msg)
{
      atomic_dec(&recv_msg_inuse_count);
      kfree(msg);
}

static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
{
      struct ipmi_recv_msg *rv;

      rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
      if (rv) {
            rv->user = NULL;
            rv->done = free_recv_msg;
            atomic_inc(&recv_msg_inuse_count);
      }
      return rv;
}

void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
{
      if (msg->user)
            kref_put(&msg->user->refcount, free_user);
      msg->done(msg);
}
EXPORT_SYMBOL(ipmi_free_recv_msg);

#ifdef CONFIG_IPMI_PANIC_EVENT

static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
{
}

static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
{
}

#ifdef CONFIG_IPMI_PANIC_STRING
static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
      if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
          && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
          && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
          && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
            /* A get event receiver command, save it. */
            intf->event_receiver = msg->msg.data[1];
            intf->event_receiver_lun = msg->msg.data[2] & 0x3;
      }
}

static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
      if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
          && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
          && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
          && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
            /*
             * A get device id command, save if we are an event
             * receiver or generator.
             */
            intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
            intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
      }
}
#endif

static void send_panic_events(char *str)
{
      struct kernel_ipmi_msg            msg;
      ipmi_smi_t                        intf;
      unsigned char                     data[16];
      struct ipmi_system_interface_addr *si;
      struct ipmi_addr                  addr;
      struct ipmi_smi_msg               smi_msg;
      struct ipmi_recv_msg              recv_msg;

      si = (struct ipmi_system_interface_addr *) &addr;
      si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
      si->channel = IPMI_BMC_CHANNEL;
      si->lun = 0;

      /* Fill in an event telling that we have failed. */
      msg.netfn = 0x04; /* Sensor or Event. */
      msg.cmd = 2; /* Platform event command. */
      msg.data = data;
      msg.data_len = 8;
      data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
      data[1] = 0x03; /* This is for IPMI 1.0. */
      data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
      data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
      data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */

      /*
       * Put a few breadcrumbs in.  Hopefully later we can add more things
       * to make the panic events more useful.
       */
      if (str) {
            data[3] = str[0];
            data[6] = str[1];
            data[7] = str[2];
      }

      smi_msg.done = dummy_smi_done_handler;
      recv_msg.done = dummy_recv_done_handler;

      /* For every registered interface, send the event. */
      list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
            if (!intf->handlers)
                  /* Interface is not ready. */
                  continue;

            intf->run_to_completion = 1;
            /* Send the event announcing the panic. */
            intf->handlers->set_run_to_completion(intf->send_info, 1);
            i_ipmi_request(NULL,
                         intf,
                         &addr,
                         0,
                         &msg,
                         intf,
                         &smi_msg,
                         &recv_msg,
                         0,
                         intf->channels[0].address,
                         intf->channels[0].lun,
                         0, 1); /* Don't retry, and don't wait. */
      }

#ifdef CONFIG_IPMI_PANIC_STRING
      /*
       * On every interface, dump a bunch of OEM event holding the
       * string.
       */
      if (!str)
            return;

      /* For every registered interface, send the event. */
      list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
            char                  *p = str;
            struct ipmi_ipmb_addr *ipmb;
            int                   j;

            if (intf->intf_num == -1)
                  /* Interface was not ready yet. */
                  continue;

            /*
             * intf_num is used as an marker to tell if the
             * interface is valid.  Thus we need a read barrier to
             * make sure data fetched before checking intf_num
             * won't be used.
             */
            smp_rmb();

            /*
             * First job here is to figure out where to send the
             * OEM events.  There's no way in IPMI to send OEM
             * events using an event send command, so we have to
             * find the SEL to put them in and stick them in
             * there.
             */

            /* Get capabilities from the get device id. */
            intf->local_sel_device = 0;
            intf->local_event_generator = 0;
            intf->event_receiver = 0;

            /* Request the device info from the local MC. */
            msg.netfn = IPMI_NETFN_APP_REQUEST;
            msg.cmd = IPMI_GET_DEVICE_ID_CMD;
            msg.data = NULL;
            msg.data_len = 0;
            intf->null_user_handler = device_id_fetcher;
            i_ipmi_request(NULL,
                         intf,
                         &addr,
                         0,
                         &msg,
                         intf,
                         &smi_msg,
                         &recv_msg,
                         0,
                         intf->channels[0].address,
                         intf->channels[0].lun,
                         0, 1); /* Don't retry, and don't wait. */

            if (intf->local_event_generator) {
                  /* Request the event receiver from the local MC. */
                  msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
                  msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
                  msg.data = NULL;
                  msg.data_len = 0;
                  intf->null_user_handler = event_receiver_fetcher;
                  i_ipmi_request(NULL,
                               intf,
                               &addr,
                               0,
                               &msg,
                               intf,
                               &smi_msg,
                               &recv_msg,
                               0,
                               intf->channels[0].address,
                               intf->channels[0].lun,
                               0, 1); /* no retry, and no wait. */
            }
            intf->null_user_handler = NULL;

            /*
             * Validate the event receiver.  The low bit must not
             * be 1 (it must be a valid IPMB address), it cannot
             * be zero, and it must not be my address.
             */
            if (((intf->event_receiver & 1) == 0)
                && (intf->event_receiver != 0)
                && (intf->event_receiver != intf->channels[0].address)) {
                  /*
                   * The event receiver is valid, send an IPMB
                   * message.
                   */
                  ipmb = (struct ipmi_ipmb_addr *) &addr;
                  ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
                  ipmb->channel = 0; /* FIXME - is this right? */
                  ipmb->lun = intf->event_receiver_lun;
                  ipmb->slave_addr = intf->event_receiver;
            } else if (intf->local_sel_device) {
                  /*
                   * The event receiver was not valid (or was
                   * me), but I am an SEL device, just dump it
                   * in my SEL.
                   */
                  si = (struct ipmi_system_interface_addr *) &addr;
                  si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
                  si->channel = IPMI_BMC_CHANNEL;
                  si->lun = 0;
            } else
                  continue; /* No where to send the event. */

            msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
            msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
            msg.data = data;
            msg.data_len = 16;

            j = 0;
            while (*p) {
                  int size = strlen(p);

                  if (size > 11)
                        size = 11;
                  data[0] = 0;
                  data[1] = 0;
                  data[2] = 0xf0; /* OEM event without timestamp. */
                  data[3] = intf->channels[0].address;
                  data[4] = j++; /* sequence # */
                  /*
                   * Always give 11 bytes, so strncpy will fill
                   * it with zeroes for me.
                   */
                  strncpy(data+5, p, 11);
                  p += size;

                  i_ipmi_request(NULL,
                               intf,
                               &addr,
                               0,
                               &msg,
                               intf,
                               &smi_msg,
                               &recv_msg,
                               0,
                               intf->channels[0].address,
                               intf->channels[0].lun,
                               0, 1); /* no retry, and no wait. */
            }
      }
#endif /* CONFIG_IPMI_PANIC_STRING */
}
#endif /* CONFIG_IPMI_PANIC_EVENT */

static int has_panicked;

static int panic_event(struct notifier_block *this,
                   unsigned long         event,
                   void                  *ptr)
{
      ipmi_smi_t intf;

      if (has_panicked)
            return NOTIFY_DONE;
      has_panicked = 1;

      /* For every registered interface, set it to run to completion. */
      list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
            if (!intf->handlers)
                  /* Interface is not ready. */
                  continue;

            intf->run_to_completion = 1;
            intf->handlers->set_run_to_completion(intf->send_info, 1);
      }

#ifdef CONFIG_IPMI_PANIC_EVENT
      send_panic_events(ptr);
#endif

      return NOTIFY_DONE;
}

static struct notifier_block panic_block = {
      .notifier_call    = panic_event,
      .next       = NULL,
      .priority   = 200 /* priority: INT_MAX >= x >= 0 */
};

static int ipmi_init_msghandler(void)
{
      int rv;

      if (initialized)
            return 0;

      rv = driver_register(&ipmidriver.driver);
      if (rv) {
            printk(KERN_ERR PFX "Could not register IPMI driver\n");
            return rv;
      }

      printk(KERN_INFO "ipmi message handler version "
             IPMI_DRIVER_VERSION "\n");

#ifdef CONFIG_PROC_FS
      proc_ipmi_root = proc_mkdir("ipmi", NULL);
      if (!proc_ipmi_root) {
          printk(KERN_ERR PFX "Unable to create IPMI proc dir");
          return -ENOMEM;
      }

#endif /* CONFIG_PROC_FS */

      setup_timer(&ipmi_timer, ipmi_timeout, 0);
      mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);

      atomic_notifier_chain_register(&panic_notifier_list, &panic_block);

      initialized = 1;

      return 0;
}

static __init int ipmi_init_msghandler_mod(void)
{
      ipmi_init_msghandler();
      return 0;
}

static __exit void cleanup_ipmi(void)
{
      int count;

      if (!initialized)
            return;

      atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);

      /*
       * This can't be called if any interfaces exist, so no worry
       * about shutting down the interfaces.
       */

      /*
       * Tell the timer to stop, then wait for it to stop.  This
       * avoids problems with race conditions removing the timer
       * here.
       */
      atomic_inc(&stop_operation);
      del_timer_sync(&ipmi_timer);

#ifdef CONFIG_PROC_FS
      remove_proc_entry(proc_ipmi_root->name, NULL);
#endif /* CONFIG_PROC_FS */

      driver_unregister(&ipmidriver.driver);

      initialized = 0;

      /* Check for buffer leaks. */
      count = atomic_read(&smi_msg_inuse_count);
      if (count != 0)
            printk(KERN_WARNING PFX "SMI message count %d at exit\n",
                   count);
      count = atomic_read(&recv_msg_inuse_count);
      if (count != 0)
            printk(KERN_WARNING PFX "recv message count %d at exit\n",
                   count);
}
module_exit(cleanup_ipmi);

module_init(ipmi_init_msghandler_mod);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
               " interface.");
MODULE_VERSION(IPMI_DRIVER_VERSION);

Generated by  Doxygen 1.6.0   Back to index