Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

ipmi_si_intf.c

/*
 * ipmi_si.c
 *
 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
 * BT).
 *
 * Author: MontaVista Software, Inc.
 *         Corey Minyard <minyard@mvista.com>
 *         source@mvista.com
 *
 * Copyright 2002 MontaVista Software Inc.
 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; either version 2 of the License, or (at your
 *  option) any later version.
 *
 *
 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * This file holds the "policy" for the interface to the SMI state
 * machine.  It does the configuration, handles timers and interrupts,
 * and drives the real SMI state machine.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <asm/system.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/notifier.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <asm/irq.h>
#include <linux/interrupt.h>
#include <linux/rcupdate.h>
#include <linux/ipmi_smi.h>
#include <asm/io.h>
#include "ipmi_si_sm.h"
#include <linux/init.h>
#include <linux/dmi.h>
#include <linux/string.h>
#include <linux/ctype.h>

#ifdef CONFIG_PPC_OF
#include <linux/of_device.h>
#include <linux/of_platform.h>
#endif

#define PFX "ipmi_si: "

/* Measure times between events in the driver. */
#undef DEBUG_TIMING

/* Call every 10 ms. */
#define SI_TIMEOUT_TIME_USEC  10000
#define SI_USEC_PER_JIFFY     (1000000/HZ)
#define SI_TIMEOUT_JIFFIES    (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
#define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
                              short timeout */

enum si_intf_state {
      SI_NORMAL,
      SI_GETTING_FLAGS,
      SI_GETTING_EVENTS,
      SI_CLEARING_FLAGS,
      SI_CLEARING_FLAGS_THEN_SET_IRQ,
      SI_GETTING_MESSAGES,
      SI_ENABLE_INTERRUPTS1,
      SI_ENABLE_INTERRUPTS2,
      SI_DISABLE_INTERRUPTS1,
      SI_DISABLE_INTERRUPTS2
      /* FIXME - add watchdog stuff. */
};

/* Some BT-specific defines we need here. */
#define IPMI_BT_INTMASK_REG         2
#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT     2
#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT    1

enum si_type {
    SI_KCS, SI_SMIC, SI_BT
};
static char *si_to_str[] = { "kcs", "smic", "bt" };

#define DEVICE_NAME "ipmi_si"

static struct platform_driver ipmi_driver = {
      .driver = {
            .name = DEVICE_NAME,
            .bus = &platform_bus_type
      }
};


/*
 * Indexes into stats[] in smi_info below.
 */
enum si_stat_indexes {
      /*
       * Number of times the driver requested a timer while an operation
       * was in progress.
       */
      SI_STAT_short_timeouts = 0,

      /*
       * Number of times the driver requested a timer while nothing was in
       * progress.
       */
      SI_STAT_long_timeouts,

      /* Number of times the interface was idle while being polled. */
      SI_STAT_idles,

      /* Number of interrupts the driver handled. */
      SI_STAT_interrupts,

      /* Number of time the driver got an ATTN from the hardware. */
      SI_STAT_attentions,

      /* Number of times the driver requested flags from the hardware. */
      SI_STAT_flag_fetches,

      /* Number of times the hardware didn't follow the state machine. */
      SI_STAT_hosed_count,

      /* Number of completed messages. */
      SI_STAT_complete_transactions,

      /* Number of IPMI events received from the hardware. */
      SI_STAT_events,

      /* Number of watchdog pretimeouts. */
      SI_STAT_watchdog_pretimeouts,

      /* Number of asyncronous messages received. */
      SI_STAT_incoming_messages,


      /* This *must* remain last, add new values above this. */
      SI_NUM_STATS
};

00167 struct smi_info {
      int                    intf_num;
      ipmi_smi_t             intf;
      struct si_sm_data      *si_sm;
      struct si_sm_handlers  *handlers;
      enum si_type           si_type;
      spinlock_t             si_lock;
      spinlock_t             msg_lock;
      struct list_head       xmit_msgs;
      struct list_head       hp_xmit_msgs;
      struct ipmi_smi_msg    *curr_msg;
      enum si_intf_state     si_state;

      /*
       * Used to handle the various types of I/O that can occur with
       * IPMI
       */
      struct si_sm_io io;
      int (*io_setup)(struct smi_info *info);
      void (*io_cleanup)(struct smi_info *info);
      int (*irq_setup)(struct smi_info *info);
      void (*irq_cleanup)(struct smi_info *info);
      unsigned int io_size;
      char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
      void (*addr_source_cleanup)(struct smi_info *info);
      void *addr_source_data;

      /*
       * Per-OEM handler, called from handle_flags().  Returns 1
       * when handle_flags() needs to be re-run or 0 indicating it
       * set si_state itself.
       */
      int (*oem_data_avail_handler)(struct smi_info *smi_info);

      /*
       * Flags from the last GET_MSG_FLAGS command, used when an ATTN
       * is set to hold the flags until we are done handling everything
       * from the flags.
       */
#define RECEIVE_MSG_AVAIL     0x01
#define EVENT_MSG_BUFFER_FULL 0x02
#define WDT_PRE_TIMEOUT_INT   0x08
#define OEM0_DATA_AVAIL     0x20
#define OEM1_DATA_AVAIL     0x40
#define OEM2_DATA_AVAIL     0x80
#define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
                       OEM1_DATA_AVAIL | \
                       OEM2_DATA_AVAIL)
      unsigned char       msg_flags;

      /* Does the BMC have an event buffer? */
      char            has_event_buffer;

      /*
       * If set to true, this will request events the next time the
       * state machine is idle.
       */
      atomic_t            req_events;

      /*
       * If true, run the state machine to completion on every send
       * call.  Generally used after a panic to make sure stuff goes
       * out.
       */
      int                 run_to_completion;

      /* The I/O port of an SI interface. */
      int                 port;

      /*
       * The space between start addresses of the two ports.  For
       * instance, if the first port is 0xca2 and the spacing is 4, then
       * the second port is 0xca6.
       */
      unsigned int        spacing;

      /* zero if no irq; */
      int                 irq;

      /* The timer for this si. */
      struct timer_list   si_timer;

      /* The time (in jiffies) the last timeout occurred at. */
      unsigned long       last_timeout_jiffies;

      /* Used to gracefully stop the timer without race conditions. */
      atomic_t            stop_operation;

      /*
       * The driver will disable interrupts when it gets into a
       * situation where it cannot handle messages due to lack of
       * memory.  Once that situation clears up, it will re-enable
       * interrupts.
       */
      int interrupt_disabled;

      /* From the get device id response... */
      struct ipmi_device_id device_id;

      /* Driver model stuff. */
      struct device *dev;
      struct platform_device *pdev;

      /*
       * True if we allocated the device, false if it came from
       * someplace else (like PCI).
       */
      int dev_registered;

      /* Slave address, could be reported from DMI. */
      unsigned char slave_addr;

      /* Counters and things for the proc filesystem. */
      atomic_t stats[SI_NUM_STATS];

      struct task_struct *thread;

      struct list_head link;
};

#define smi_inc_stat(smi, stat) \
      atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
#define smi_get_stat(smi, stat) \
      ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))

#define SI_MAX_PARMS 4

static int force_kipmid[SI_MAX_PARMS];
static int num_force_kipmid;

static int unload_when_empty = 1;

static int try_smi_init(struct smi_info *smi);
static void cleanup_one_si(struct smi_info *to_clean);

static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
static int register_xaction_notifier(struct notifier_block *nb)
{
      return atomic_notifier_chain_register(&xaction_notifier_list, nb);
}

static void deliver_recv_msg(struct smi_info *smi_info,
                       struct ipmi_smi_msg *msg)
{
      /* Deliver the message to the upper layer with the lock
         released. */
      spin_unlock(&(smi_info->si_lock));
      ipmi_smi_msg_received(smi_info->intf, msg);
      spin_lock(&(smi_info->si_lock));
}

static void return_hosed_msg(struct smi_info *smi_info, int cCode)
{
      struct ipmi_smi_msg *msg = smi_info->curr_msg;

      if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
            cCode = IPMI_ERR_UNSPECIFIED;
      /* else use it as is */

      /* Make it a reponse */
      msg->rsp[0] = msg->data[0] | 4;
      msg->rsp[1] = msg->data[1];
      msg->rsp[2] = cCode;
      msg->rsp_size = 3;

      smi_info->curr_msg = NULL;
      deliver_recv_msg(smi_info, msg);
}

static enum si_sm_result start_next_msg(struct smi_info *smi_info)
{
      int              rv;
      struct list_head *entry = NULL;
#ifdef DEBUG_TIMING
      struct timeval t;
#endif

      /*
       * No need to save flags, we aleady have interrupts off and we
       * already hold the SMI lock.
       */
      if (!smi_info->run_to_completion)
            spin_lock(&(smi_info->msg_lock));

      /* Pick the high priority queue first. */
      if (!list_empty(&(smi_info->hp_xmit_msgs))) {
            entry = smi_info->hp_xmit_msgs.next;
      } else if (!list_empty(&(smi_info->xmit_msgs))) {
            entry = smi_info->xmit_msgs.next;
      }

      if (!entry) {
            smi_info->curr_msg = NULL;
            rv = SI_SM_IDLE;
      } else {
            int err;

            list_del(entry);
            smi_info->curr_msg = list_entry(entry,
                                    struct ipmi_smi_msg,
                                    link);
#ifdef DEBUG_TIMING
            do_gettimeofday(&t);
            printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
            err = atomic_notifier_call_chain(&xaction_notifier_list,
                        0, smi_info);
            if (err & NOTIFY_STOP_MASK) {
                  rv = SI_SM_CALL_WITHOUT_DELAY;
                  goto out;
            }
            err = smi_info->handlers->start_transaction(
                  smi_info->si_sm,
                  smi_info->curr_msg->data,
                  smi_info->curr_msg->data_size);
            if (err)
                  return_hosed_msg(smi_info, err);

            rv = SI_SM_CALL_WITHOUT_DELAY;
      }
 out:
      if (!smi_info->run_to_completion)
            spin_unlock(&(smi_info->msg_lock));

      return rv;
}

static void start_enable_irq(struct smi_info *smi_info)
{
      unsigned char msg[2];

      /*
       * If we are enabling interrupts, we have to tell the
       * BMC to use them.
       */
      msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
      msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;

      smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
      smi_info->si_state = SI_ENABLE_INTERRUPTS1;
}

static void start_disable_irq(struct smi_info *smi_info)
{
      unsigned char msg[2];

      msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
      msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;

      smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
      smi_info->si_state = SI_DISABLE_INTERRUPTS1;
}

static void start_clear_flags(struct smi_info *smi_info)
{
      unsigned char msg[3];

      /* Make sure the watchdog pre-timeout flag is not set at startup. */
      msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
      msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
      msg[2] = WDT_PRE_TIMEOUT_INT;

      smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
      smi_info->si_state = SI_CLEARING_FLAGS;
}

/*
 * When we have a situtaion where we run out of memory and cannot
 * allocate messages, we just leave them in the BMC and run the system
 * polled until we can allocate some memory.  Once we have some
 * memory, we will re-enable the interrupt.
 */
static inline void disable_si_irq(struct smi_info *smi_info)
{
      if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
            start_disable_irq(smi_info);
            smi_info->interrupt_disabled = 1;
      }
}

static inline void enable_si_irq(struct smi_info *smi_info)
{
      if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
            start_enable_irq(smi_info);
            smi_info->interrupt_disabled = 0;
      }
}

static void handle_flags(struct smi_info *smi_info)
{
 retry:
      if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
            /* Watchdog pre-timeout */
            smi_inc_stat(smi_info, watchdog_pretimeouts);

            start_clear_flags(smi_info);
            smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
            spin_unlock(&(smi_info->si_lock));
            ipmi_smi_watchdog_pretimeout(smi_info->intf);
            spin_lock(&(smi_info->si_lock));
      } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
            /* Messages available. */
            smi_info->curr_msg = ipmi_alloc_smi_msg();
            if (!smi_info->curr_msg) {
                  disable_si_irq(smi_info);
                  smi_info->si_state = SI_NORMAL;
                  return;
            }
            enable_si_irq(smi_info);

            smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
            smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
            smi_info->curr_msg->data_size = 2;

            smi_info->handlers->start_transaction(
                  smi_info->si_sm,
                  smi_info->curr_msg->data,
                  smi_info->curr_msg->data_size);
            smi_info->si_state = SI_GETTING_MESSAGES;
      } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
            /* Events available. */
            smi_info->curr_msg = ipmi_alloc_smi_msg();
            if (!smi_info->curr_msg) {
                  disable_si_irq(smi_info);
                  smi_info->si_state = SI_NORMAL;
                  return;
            }
            enable_si_irq(smi_info);

            smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
            smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
            smi_info->curr_msg->data_size = 2;

            smi_info->handlers->start_transaction(
                  smi_info->si_sm,
                  smi_info->curr_msg->data,
                  smi_info->curr_msg->data_size);
            smi_info->si_state = SI_GETTING_EVENTS;
      } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
               smi_info->oem_data_avail_handler) {
            if (smi_info->oem_data_avail_handler(smi_info))
                  goto retry;
      } else
            smi_info->si_state = SI_NORMAL;
}

static void handle_transaction_done(struct smi_info *smi_info)
{
      struct ipmi_smi_msg *msg;
#ifdef DEBUG_TIMING
      struct timeval t;

      do_gettimeofday(&t);
      printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
      switch (smi_info->si_state) {
      case SI_NORMAL:
            if (!smi_info->curr_msg)
                  break;

            smi_info->curr_msg->rsp_size
                  = smi_info->handlers->get_result(
                        smi_info->si_sm,
                        smi_info->curr_msg->rsp,
                        IPMI_MAX_MSG_LENGTH);

            /*
             * Do this here becase deliver_recv_msg() releases the
             * lock, and a new message can be put in during the
             * time the lock is released.
             */
            msg = smi_info->curr_msg;
            smi_info->curr_msg = NULL;
            deliver_recv_msg(smi_info, msg);
            break;

      case SI_GETTING_FLAGS:
      {
            unsigned char msg[4];
            unsigned int  len;

            /* We got the flags from the SMI, now handle them. */
            len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
            if (msg[2] != 0) {
                  /* Error fetching flags, just give up for now. */
                  smi_info->si_state = SI_NORMAL;
            } else if (len < 4) {
                  /*
                   * Hmm, no flags.  That's technically illegal, but
                   * don't use uninitialized data.
                   */
                  smi_info->si_state = SI_NORMAL;
            } else {
                  smi_info->msg_flags = msg[3];
                  handle_flags(smi_info);
            }
            break;
      }

      case SI_CLEARING_FLAGS:
      case SI_CLEARING_FLAGS_THEN_SET_IRQ:
      {
            unsigned char msg[3];

            /* We cleared the flags. */
            smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
            if (msg[2] != 0) {
                  /* Error clearing flags */
                  printk(KERN_WARNING
                         "ipmi_si: Error clearing flags: %2.2x\n",
                         msg[2]);
            }
            if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
                  start_enable_irq(smi_info);
            else
                  smi_info->si_state = SI_NORMAL;
            break;
      }

      case SI_GETTING_EVENTS:
      {
            smi_info->curr_msg->rsp_size
                  = smi_info->handlers->get_result(
                        smi_info->si_sm,
                        smi_info->curr_msg->rsp,
                        IPMI_MAX_MSG_LENGTH);

            /*
             * Do this here becase deliver_recv_msg() releases the
             * lock, and a new message can be put in during the
             * time the lock is released.
             */
            msg = smi_info->curr_msg;
            smi_info->curr_msg = NULL;
            if (msg->rsp[2] != 0) {
                  /* Error getting event, probably done. */
                  msg->done(msg);

                  /* Take off the event flag. */
                  smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
                  handle_flags(smi_info);
            } else {
                  smi_inc_stat(smi_info, events);

                  /*
                   * Do this before we deliver the message
                   * because delivering the message releases the
                   * lock and something else can mess with the
                   * state.
                   */
                  handle_flags(smi_info);

                  deliver_recv_msg(smi_info, msg);
            }
            break;
      }

      case SI_GETTING_MESSAGES:
      {
            smi_info->curr_msg->rsp_size
                  = smi_info->handlers->get_result(
                        smi_info->si_sm,
                        smi_info->curr_msg->rsp,
                        IPMI_MAX_MSG_LENGTH);

            /*
             * Do this here becase deliver_recv_msg() releases the
             * lock, and a new message can be put in during the
             * time the lock is released.
             */
            msg = smi_info->curr_msg;
            smi_info->curr_msg = NULL;
            if (msg->rsp[2] != 0) {
                  /* Error getting event, probably done. */
                  msg->done(msg);

                  /* Take off the msg flag. */
                  smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
                  handle_flags(smi_info);
            } else {
                  smi_inc_stat(smi_info, incoming_messages);

                  /*
                   * Do this before we deliver the message
                   * because delivering the message releases the
                   * lock and something else can mess with the
                   * state.
                   */
                  handle_flags(smi_info);

                  deliver_recv_msg(smi_info, msg);
            }
            break;
      }

      case SI_ENABLE_INTERRUPTS1:
      {
            unsigned char msg[4];

            /* We got the flags from the SMI, now handle them. */
            smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
            if (msg[2] != 0) {
                  printk(KERN_WARNING
                         "ipmi_si: Could not enable interrupts"
                         ", failed get, using polled mode.\n");
                  smi_info->si_state = SI_NORMAL;
            } else {
                  msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
                  msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
                  msg[2] = (msg[3] |
                          IPMI_BMC_RCV_MSG_INTR |
                          IPMI_BMC_EVT_MSG_INTR);
                  smi_info->handlers->start_transaction(
                        smi_info->si_sm, msg, 3);
                  smi_info->si_state = SI_ENABLE_INTERRUPTS2;
            }
            break;
      }

      case SI_ENABLE_INTERRUPTS2:
      {
            unsigned char msg[4];

            /* We got the flags from the SMI, now handle them. */
            smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
            if (msg[2] != 0) {
                  printk(KERN_WARNING
                         "ipmi_si: Could not enable interrupts"
                         ", failed set, using polled mode.\n");
            }
            smi_info->si_state = SI_NORMAL;
            break;
      }

      case SI_DISABLE_INTERRUPTS1:
      {
            unsigned char msg[4];

            /* We got the flags from the SMI, now handle them. */
            smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
            if (msg[2] != 0) {
                  printk(KERN_WARNING
                         "ipmi_si: Could not disable interrupts"
                         ", failed get.\n");
                  smi_info->si_state = SI_NORMAL;
            } else {
                  msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
                  msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
                  msg[2] = (msg[3] &
                          ~(IPMI_BMC_RCV_MSG_INTR |
                            IPMI_BMC_EVT_MSG_INTR));
                  smi_info->handlers->start_transaction(
                        smi_info->si_sm, msg, 3);
                  smi_info->si_state = SI_DISABLE_INTERRUPTS2;
            }
            break;
      }

      case SI_DISABLE_INTERRUPTS2:
      {
            unsigned char msg[4];

            /* We got the flags from the SMI, now handle them. */
            smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
            if (msg[2] != 0) {
                  printk(KERN_WARNING
                         "ipmi_si: Could not disable interrupts"
                         ", failed set.\n");
            }
            smi_info->si_state = SI_NORMAL;
            break;
      }
      }
}

/*
 * Called on timeouts and events.  Timeouts should pass the elapsed
 * time, interrupts should pass in zero.  Must be called with
 * si_lock held and interrupts disabled.
 */
static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
                                 int time)
{
      enum si_sm_result si_sm_result;

 restart:
      /*
       * There used to be a loop here that waited a little while
       * (around 25us) before giving up.  That turned out to be
       * pointless, the minimum delays I was seeing were in the 300us
       * range, which is far too long to wait in an interrupt.  So
       * we just run until the state machine tells us something
       * happened or it needs a delay.
       */
      si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
      time = 0;
      while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
            si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);

      if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
            smi_inc_stat(smi_info, complete_transactions);

            handle_transaction_done(smi_info);
            si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
      } else if (si_sm_result == SI_SM_HOSED) {
            smi_inc_stat(smi_info, hosed_count);

            /*
             * Do the before return_hosed_msg, because that
             * releases the lock.
             */
            smi_info->si_state = SI_NORMAL;
            if (smi_info->curr_msg != NULL) {
                  /*
                   * If we were handling a user message, format
                   * a response to send to the upper layer to
                   * tell it about the error.
                   */
                  return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
            }
            si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
      }

      /*
       * We prefer handling attn over new messages.  But don't do
       * this if there is not yet an upper layer to handle anything.
       */
      if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
            unsigned char msg[2];

            smi_inc_stat(smi_info, attentions);

            /*
             * Got a attn, send down a get message flags to see
             * what's causing it.  It would be better to handle
             * this in the upper layer, but due to the way
             * interrupts work with the SMI, that's not really
             * possible.
             */
            msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
            msg[1] = IPMI_GET_MSG_FLAGS_CMD;

            smi_info->handlers->start_transaction(
                  smi_info->si_sm, msg, 2);
            smi_info->si_state = SI_GETTING_FLAGS;
            goto restart;
      }

      /* If we are currently idle, try to start the next message. */
      if (si_sm_result == SI_SM_IDLE) {
            smi_inc_stat(smi_info, idles);

            si_sm_result = start_next_msg(smi_info);
            if (si_sm_result != SI_SM_IDLE)
                  goto restart;
      }

      if ((si_sm_result == SI_SM_IDLE)
          && (atomic_read(&smi_info->req_events))) {
            /*
             * We are idle and the upper layer requested that I fetch
             * events, so do so.
             */
            atomic_set(&smi_info->req_events, 0);

            smi_info->curr_msg = ipmi_alloc_smi_msg();
            if (!smi_info->curr_msg)
                  goto out;

            smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
            smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
            smi_info->curr_msg->data_size = 2;

            smi_info->handlers->start_transaction(
                  smi_info->si_sm,
                  smi_info->curr_msg->data,
                  smi_info->curr_msg->data_size);
            smi_info->si_state = SI_GETTING_EVENTS;
            goto restart;
      }
 out:
      return si_sm_result;
}

static void sender(void                *send_info,
               struct ipmi_smi_msg *msg,
               int                 priority)
{
      struct smi_info   *smi_info = send_info;
      enum si_sm_result result;
      unsigned long     flags;
#ifdef DEBUG_TIMING
      struct timeval    t;
#endif

      if (atomic_read(&smi_info->stop_operation)) {
            msg->rsp[0] = msg->data[0] | 4;
            msg->rsp[1] = msg->data[1];
            msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
            msg->rsp_size = 3;
            deliver_recv_msg(smi_info, msg);
            return;
      }

#ifdef DEBUG_TIMING
      do_gettimeofday(&t);
      printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif

      if (smi_info->run_to_completion) {
            /*
             * If we are running to completion, then throw it in
             * the list and run transactions until everything is
             * clear.  Priority doesn't matter here.
             */

            /*
             * Run to completion means we are single-threaded, no
             * need for locks.
             */
            list_add_tail(&(msg->link), &(smi_info->xmit_msgs));

            result = smi_event_handler(smi_info, 0);
            while (result != SI_SM_IDLE) {
                  udelay(SI_SHORT_TIMEOUT_USEC);
                  result = smi_event_handler(smi_info,
                                       SI_SHORT_TIMEOUT_USEC);
            }
            return;
      }

      spin_lock_irqsave(&smi_info->msg_lock, flags);
      if (priority > 0)
            list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
      else
            list_add_tail(&msg->link, &smi_info->xmit_msgs);
      spin_unlock_irqrestore(&smi_info->msg_lock, flags);

      spin_lock_irqsave(&smi_info->si_lock, flags);
      if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
            start_next_msg(smi_info);
      spin_unlock_irqrestore(&smi_info->si_lock, flags);
}

static void set_run_to_completion(void *send_info, int i_run_to_completion)
{
      struct smi_info   *smi_info = send_info;
      enum si_sm_result result;

      smi_info->run_to_completion = i_run_to_completion;
      if (i_run_to_completion) {
            result = smi_event_handler(smi_info, 0);
            while (result != SI_SM_IDLE) {
                  udelay(SI_SHORT_TIMEOUT_USEC);
                  result = smi_event_handler(smi_info,
                                       SI_SHORT_TIMEOUT_USEC);
            }
      }
}

static int ipmi_thread(void *data)
{
      struct smi_info *smi_info = data;
      unsigned long flags;
      enum si_sm_result smi_result;

      set_user_nice(current, 19);
      while (!kthread_should_stop()) {
            spin_lock_irqsave(&(smi_info->si_lock), flags);
            smi_result = smi_event_handler(smi_info, 0);
            spin_unlock_irqrestore(&(smi_info->si_lock), flags);
            if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
                  ; /* do nothing */
            else if (smi_result == SI_SM_CALL_WITH_DELAY)
                  schedule();
            else
                  schedule_timeout_interruptible(1);
      }
      return 0;
}


static void poll(void *send_info)
{
      struct smi_info *smi_info = send_info;
      unsigned long flags;

      /*
       * Make sure there is some delay in the poll loop so we can
       * drive time forward and timeout things.
       */
      udelay(10);
      spin_lock_irqsave(&smi_info->si_lock, flags);
      smi_event_handler(smi_info, 10);
      spin_unlock_irqrestore(&smi_info->si_lock, flags);
}

static void request_events(void *send_info)
{
      struct smi_info *smi_info = send_info;

      if (atomic_read(&smi_info->stop_operation) ||
                        !smi_info->has_event_buffer)
            return;

      atomic_set(&smi_info->req_events, 1);
}

static int initialized;

static void smi_timeout(unsigned long data)
{
      struct smi_info   *smi_info = (struct smi_info *) data;
      enum si_sm_result smi_result;
      unsigned long     flags;
      unsigned long     jiffies_now;
      long              time_diff;
#ifdef DEBUG_TIMING
      struct timeval    t;
#endif

      spin_lock_irqsave(&(smi_info->si_lock), flags);
#ifdef DEBUG_TIMING
      do_gettimeofday(&t);
      printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
      jiffies_now = jiffies;
      time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
                 * SI_USEC_PER_JIFFY);
      smi_result = smi_event_handler(smi_info, time_diff);

      spin_unlock_irqrestore(&(smi_info->si_lock), flags);

      smi_info->last_timeout_jiffies = jiffies_now;

      if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
            /* Running with interrupts, only do long timeouts. */
            smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
            smi_inc_stat(smi_info, long_timeouts);
            goto do_add_timer;
      }

      /*
       * If the state machine asks for a short delay, then shorten
       * the timer timeout.
       */
      if (smi_result == SI_SM_CALL_WITH_DELAY) {
            smi_inc_stat(smi_info, short_timeouts);
            smi_info->si_timer.expires = jiffies + 1;
      } else {
            smi_inc_stat(smi_info, long_timeouts);
            smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
      }

 do_add_timer:
      add_timer(&(smi_info->si_timer));
}

static irqreturn_t si_irq_handler(int irq, void *data)
{
      struct smi_info *smi_info = data;
      unsigned long   flags;
#ifdef DEBUG_TIMING
      struct timeval  t;
#endif

      spin_lock_irqsave(&(smi_info->si_lock), flags);

      smi_inc_stat(smi_info, interrupts);

#ifdef DEBUG_TIMING
      do_gettimeofday(&t);
      printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
      smi_event_handler(smi_info, 0);
      spin_unlock_irqrestore(&(smi_info->si_lock), flags);
      return IRQ_HANDLED;
}

static irqreturn_t si_bt_irq_handler(int irq, void *data)
{
      struct smi_info *smi_info = data;
      /* We need to clear the IRQ flag for the BT interface. */
      smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
                       IPMI_BT_INTMASK_CLEAR_IRQ_BIT
                       | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
      return si_irq_handler(irq, data);
}

static int smi_start_processing(void       *send_info,
                        ipmi_smi_t intf)
{
      struct smi_info *new_smi = send_info;
      int             enable = 0;

      new_smi->intf = intf;

      /* Try to claim any interrupts. */
      if (new_smi->irq_setup)
            new_smi->irq_setup(new_smi);

      /* Set up the timer that drives the interface. */
      setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
      new_smi->last_timeout_jiffies = jiffies;
      mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);

      /*
       * Check if the user forcefully enabled the daemon.
       */
      if (new_smi->intf_num < num_force_kipmid)
            enable = force_kipmid[new_smi->intf_num];
      /*
       * The BT interface is efficient enough to not need a thread,
       * and there is no need for a thread if we have interrupts.
       */
      else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
            enable = 1;

      if (enable) {
            new_smi->thread = kthread_run(ipmi_thread, new_smi,
                                    "kipmi%d", new_smi->intf_num);
            if (IS_ERR(new_smi->thread)) {
                  printk(KERN_NOTICE "ipmi_si_intf: Could not start"
                         " kernel thread due to error %ld, only using"
                         " timers to drive the interface\n",
                         PTR_ERR(new_smi->thread));
                  new_smi->thread = NULL;
            }
      }

      return 0;
}

static void set_maintenance_mode(void *send_info, int enable)
{
      struct smi_info   *smi_info = send_info;

      if (!enable)
            atomic_set(&smi_info->req_events, 0);
}

static struct ipmi_smi_handlers handlers = {
      .owner                  = THIS_MODULE,
      .start_processing       = smi_start_processing,
      .sender                 = sender,
      .request_events         = request_events,
      .set_maintenance_mode   = set_maintenance_mode,
      .set_run_to_completion  = set_run_to_completion,
      .poll             = poll,
};

/*
 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
 * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
 */

static LIST_HEAD(smi_infos);
static DEFINE_MUTEX(smi_infos_lock);
static int smi_num; /* Used to sequence the SMIs */

#define DEFAULT_REGSPACING    1
#define DEFAULT_REGSIZE       1

static int           si_trydefaults = 1;
static char          *si_type[SI_MAX_PARMS];
#define MAX_SI_TYPE_STR 30
static char          si_type_str[MAX_SI_TYPE_STR];
static unsigned long addrs[SI_MAX_PARMS];
static unsigned int num_addrs;
static unsigned int  ports[SI_MAX_PARMS];
static unsigned int num_ports;
static int           irqs[SI_MAX_PARMS];
static unsigned int num_irqs;
static int           regspacings[SI_MAX_PARMS];
static unsigned int num_regspacings;
static int           regsizes[SI_MAX_PARMS];
static unsigned int num_regsizes;
static int           regshifts[SI_MAX_PARMS];
static unsigned int num_regshifts;
static int slave_addrs[SI_MAX_PARMS];
static unsigned int num_slave_addrs;

#define IPMI_IO_ADDR_SPACE  0
#define IPMI_MEM_ADDR_SPACE 1
static char *addr_space_to_str[] = { "i/o", "mem" };

static int hotmod_handler(const char *val, struct kernel_param *kp);

module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
             " Documentation/IPMI.txt in the kernel sources for the"
             " gory details.");

module_param_named(trydefaults, si_trydefaults, bool, 0);
MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
             " default scan of the KCS and SMIC interface at the standard"
             " address");
module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
MODULE_PARM_DESC(type, "Defines the type of each interface, each"
             " interface separated by commas.  The types are 'kcs',"
             " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
             " the first interface to kcs and the second to bt");
module_param_array(addrs, ulong, &num_addrs, 0);
MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
             " addresses separated by commas.  Only use if an interface"
             " is in memory.  Otherwise, set it to zero or leave"
             " it blank.");
module_param_array(ports, uint, &num_ports, 0);
MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
             " addresses separated by commas.  Only use if an interface"
             " is a port.  Otherwise, set it to zero or leave"
             " it blank.");
module_param_array(irqs, int, &num_irqs, 0);
MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
             " addresses separated by commas.  Only use if an interface"
             " has an interrupt.  Otherwise, set it to zero or leave"
             " it blank.");
module_param_array(regspacings, int, &num_regspacings, 0);
MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
             " and each successive register used by the interface.  For"
             " instance, if the start address is 0xca2 and the spacing"
             " is 2, then the second address is at 0xca4.  Defaults"
             " to 1.");
module_param_array(regsizes, int, &num_regsizes, 0);
MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
             " This should generally be 1, 2, 4, or 8 for an 8-bit,"
             " 16-bit, 32-bit, or 64-bit register.  Use this if you"
             " the 8-bit IPMI register has to be read from a larger"
             " register.");
module_param_array(regshifts, int, &num_regshifts, 0);
MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
             " IPMI register, in bits.  For instance, if the data"
             " is read from a 32-bit word and the IPMI data is in"
             " bit 8-15, then the shift would be 8");
module_param_array(slave_addrs, int, &num_slave_addrs, 0);
MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
             " the controller.  Normally this is 0x20, but can be"
             " overridden by this parm.  This is an array indexed"
             " by interface number.");
module_param_array(force_kipmid, int, &num_force_kipmid, 0);
MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
             " disabled(0).  Normally the IPMI driver auto-detects"
             " this, but the value may be overridden by this parm.");
module_param(unload_when_empty, int, 0);
MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
             " specified or found, default is 1.  Setting to 0"
             " is useful for hot add of devices using hotmod.");


static void std_irq_cleanup(struct smi_info *info)
{
      if (info->si_type == SI_BT)
            /* Disable the interrupt in the BT interface. */
            info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
      free_irq(info->irq, info);
}

static int std_irq_setup(struct smi_info *info)
{
      int rv;

      if (!info->irq)
            return 0;

      if (info->si_type == SI_BT) {
            rv = request_irq(info->irq,
                         si_bt_irq_handler,
                         IRQF_SHARED | IRQF_DISABLED,
                         DEVICE_NAME,
                         info);
            if (!rv)
                  /* Enable the interrupt in the BT interface. */
                  info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
                               IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
      } else
            rv = request_irq(info->irq,
                         si_irq_handler,
                         IRQF_SHARED | IRQF_DISABLED,
                         DEVICE_NAME,
                         info);
      if (rv) {
            printk(KERN_WARNING
                   "ipmi_si: %s unable to claim interrupt %d,"
                   " running polled\n",
                   DEVICE_NAME, info->irq);
            info->irq = 0;
      } else {
            info->irq_cleanup = std_irq_cleanup;
            printk("  Using irq %d\n", info->irq);
      }

      return rv;
}

static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
{
      unsigned int addr = io->addr_data;

      return inb(addr + (offset * io->regspacing));
}

static void port_outb(struct si_sm_io *io, unsigned int offset,
                  unsigned char b)
{
      unsigned int addr = io->addr_data;

      outb(b, addr + (offset * io->regspacing));
}

static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
{
      unsigned int addr = io->addr_data;

      return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
}

static void port_outw(struct si_sm_io *io, unsigned int offset,
                  unsigned char b)
{
      unsigned int addr = io->addr_data;

      outw(b << io->regshift, addr + (offset * io->regspacing));
}

static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
{
      unsigned int addr = io->addr_data;

      return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
}

static void port_outl(struct si_sm_io *io, unsigned int offset,
                  unsigned char b)
{
      unsigned int addr = io->addr_data;

      outl(b << io->regshift, addr+(offset * io->regspacing));
}

static void port_cleanup(struct smi_info *info)
{
      unsigned int addr = info->io.addr_data;
      int          idx;

      if (addr) {
            for (idx = 0; idx < info->io_size; idx++)
                  release_region(addr + idx * info->io.regspacing,
                               info->io.regsize);
      }
}

static int port_setup(struct smi_info *info)
{
      unsigned int addr = info->io.addr_data;
      int          idx;

      if (!addr)
            return -ENODEV;

      info->io_cleanup = port_cleanup;

      /*
       * Figure out the actual inb/inw/inl/etc routine to use based
       * upon the register size.
       */
      switch (info->io.regsize) {
      case 1:
            info->io.inputb = port_inb;
            info->io.outputb = port_outb;
            break;
      case 2:
            info->io.inputb = port_inw;
            info->io.outputb = port_outw;
            break;
      case 4:
            info->io.inputb = port_inl;
            info->io.outputb = port_outl;
            break;
      default:
            printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
                   info->io.regsize);
            return -EINVAL;
      }

      /*
       * Some BIOSes reserve disjoint I/O regions in their ACPI
       * tables.  This causes problems when trying to register the
       * entire I/O region.  Therefore we must register each I/O
       * port separately.
       */
      for (idx = 0; idx < info->io_size; idx++) {
            if (request_region(addr + idx * info->io.regspacing,
                           info->io.regsize, DEVICE_NAME) == NULL) {
                  /* Undo allocations */
                  while (idx--) {
                        release_region(addr + idx * info->io.regspacing,
                                     info->io.regsize);
                  }
                  return -EIO;
            }
      }
      return 0;
}

static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
{
      return readb((io->addr)+(offset * io->regspacing));
}

static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
                 unsigned char b)
{
      writeb(b, (io->addr)+(offset * io->regspacing));
}

static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
{
      return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
            & 0xff;
}

static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
                 unsigned char b)
{
      writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
}

static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
{
      return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
            & 0xff;
}

static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
                 unsigned char b)
{
      writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
}

#ifdef readq
static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
{
      return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
            & 0xff;
}

static void mem_outq(struct si_sm_io *io, unsigned int offset,
                 unsigned char b)
{
      writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
#endif

static void mem_cleanup(struct smi_info *info)
{
      unsigned long addr = info->io.addr_data;
      int           mapsize;

      if (info->io.addr) {
            iounmap(info->io.addr);

            mapsize = ((info->io_size * info->io.regspacing)
                     - (info->io.regspacing - info->io.regsize));

            release_mem_region(addr, mapsize);
      }
}

static int mem_setup(struct smi_info *info)
{
      unsigned long addr = info->io.addr_data;
      int           mapsize;

      if (!addr)
            return -ENODEV;

      info->io_cleanup = mem_cleanup;

      /*
       * Figure out the actual readb/readw/readl/etc routine to use based
       * upon the register size.
       */
      switch (info->io.regsize) {
      case 1:
            info->io.inputb = intf_mem_inb;
            info->io.outputb = intf_mem_outb;
            break;
      case 2:
            info->io.inputb = intf_mem_inw;
            info->io.outputb = intf_mem_outw;
            break;
      case 4:
            info->io.inputb = intf_mem_inl;
            info->io.outputb = intf_mem_outl;
            break;
#ifdef readq
      case 8:
            info->io.inputb = mem_inq;
            info->io.outputb = mem_outq;
            break;
#endif
      default:
            printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
                   info->io.regsize);
            return -EINVAL;
      }

      /*
       * Calculate the total amount of memory to claim.  This is an
       * unusual looking calculation, but it avoids claiming any
       * more memory than it has to.  It will claim everything
       * between the first address to the end of the last full
       * register.
       */
      mapsize = ((info->io_size * info->io.regspacing)
               - (info->io.regspacing - info->io.regsize));

      if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
            return -EIO;

      info->io.addr = ioremap(addr, mapsize);
      if (info->io.addr == NULL) {
            release_mem_region(addr, mapsize);
            return -EIO;
      }
      return 0;
}

/*
 * Parms come in as <op1>[:op2[:op3...]].  ops are:
 *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
 * Options are:
 *   rsp=<regspacing>
 *   rsi=<regsize>
 *   rsh=<regshift>
 *   irq=<irq>
 *   ipmb=<ipmb addr>
 */
enum hotmod_op { HM_ADD, HM_REMOVE };
01506 struct hotmod_vals {
      char *name;
      int  val;
};
static struct hotmod_vals hotmod_ops[] = {
      { "add",    HM_ADD },
      { "remove", HM_REMOVE },
      { NULL }
};
static struct hotmod_vals hotmod_si[] = {
      { "kcs",    SI_KCS },
      { "smic",   SI_SMIC },
      { "bt",           SI_BT },
      { NULL }
};
static struct hotmod_vals hotmod_as[] = {
      { "mem",    IPMI_MEM_ADDR_SPACE },
      { "i/o",    IPMI_IO_ADDR_SPACE },
      { NULL }
};

static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
{
      char *s;
      int  i;

      s = strchr(*curr, ',');
      if (!s) {
            printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
            return -EINVAL;
      }
      *s = '\0';
      s++;
      for (i = 0; hotmod_ops[i].name; i++) {
            if (strcmp(*curr, v[i].name) == 0) {
                  *val = v[i].val;
                  *curr = s;
                  return 0;
            }
      }

      printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
      return -EINVAL;
}

static int check_hotmod_int_op(const char *curr, const char *option,
                         const char *name, int *val)
{
      char *n;

      if (strcmp(curr, name) == 0) {
            if (!option) {
                  printk(KERN_WARNING PFX
                         "No option given for '%s'\n",
                         curr);
                  return -EINVAL;
            }
            *val = simple_strtoul(option, &n, 0);
            if ((*n != '\0') || (*option == '\0')) {
                  printk(KERN_WARNING PFX
                         "Bad option given for '%s'\n",
                         curr);
                  return -EINVAL;
            }
            return 1;
      }
      return 0;
}

static int hotmod_handler(const char *val, struct kernel_param *kp)
{
      char *str = kstrdup(val, GFP_KERNEL);
      int  rv;
      char *next, *curr, *s, *n, *o;
      enum hotmod_op op;
      enum si_type si_type;
      int  addr_space;
      unsigned long addr;
      int regspacing;
      int regsize;
      int regshift;
      int irq;
      int ipmb;
      int ival;
      int len;
      struct smi_info *info;

      if (!str)
            return -ENOMEM;

      /* Kill any trailing spaces, as we can get a "\n" from echo. */
      len = strlen(str);
      ival = len - 1;
      while ((ival >= 0) && isspace(str[ival])) {
            str[ival] = '\0';
            ival--;
      }

      for (curr = str; curr; curr = next) {
            regspacing = 1;
            regsize = 1;
            regshift = 0;
            irq = 0;
            ipmb = 0x20;

            next = strchr(curr, ':');
            if (next) {
                  *next = '\0';
                  next++;
            }

            rv = parse_str(hotmod_ops, &ival, "operation", &curr);
            if (rv)
                  break;
            op = ival;

            rv = parse_str(hotmod_si, &ival, "interface type", &curr);
            if (rv)
                  break;
            si_type = ival;

            rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
            if (rv)
                  break;

            s = strchr(curr, ',');
            if (s) {
                  *s = '\0';
                  s++;
            }
            addr = simple_strtoul(curr, &n, 0);
            if ((*n != '\0') || (*curr == '\0')) {
                  printk(KERN_WARNING PFX "Invalid hotmod address"
                         " '%s'\n", curr);
                  break;
            }

            while (s) {
                  curr = s;
                  s = strchr(curr, ',');
                  if (s) {
                        *s = '\0';
                        s++;
                  }
                  o = strchr(curr, '=');
                  if (o) {
                        *o = '\0';
                        o++;
                  }
                  rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
                  if (rv < 0)
                        goto out;
                  else if (rv)
                        continue;
                  rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
                  if (rv < 0)
                        goto out;
                  else if (rv)
                        continue;
                  rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
                  if (rv < 0)
                        goto out;
                  else if (rv)
                        continue;
                  rv = check_hotmod_int_op(curr, o, "irq", &irq);
                  if (rv < 0)
                        goto out;
                  else if (rv)
                        continue;
                  rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
                  if (rv < 0)
                        goto out;
                  else if (rv)
                        continue;

                  rv = -EINVAL;
                  printk(KERN_WARNING PFX
                         "Invalid hotmod option '%s'\n",
                         curr);
                  goto out;
            }

            if (op == HM_ADD) {
                  info = kzalloc(sizeof(*info), GFP_KERNEL);
                  if (!info) {
                        rv = -ENOMEM;
                        goto out;
                  }

                  info->addr_source = "hotmod";
                  info->si_type = si_type;
                  info->io.addr_data = addr;
                  info->io.addr_type = addr_space;
                  if (addr_space == IPMI_MEM_ADDR_SPACE)
                        info->io_setup = mem_setup;
                  else
                        info->io_setup = port_setup;

                  info->io.addr = NULL;
                  info->io.regspacing = regspacing;
                  if (!info->io.regspacing)
                        info->io.regspacing = DEFAULT_REGSPACING;
                  info->io.regsize = regsize;
                  if (!info->io.regsize)
                        info->io.regsize = DEFAULT_REGSPACING;
                  info->io.regshift = regshift;
                  info->irq = irq;
                  if (info->irq)
                        info->irq_setup = std_irq_setup;
                  info->slave_addr = ipmb;

                  try_smi_init(info);
            } else {
                  /* remove */
                  struct smi_info *e, *tmp_e;

                  mutex_lock(&smi_infos_lock);
                  list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
                        if (e->io.addr_type != addr_space)
                              continue;
                        if (e->si_type != si_type)
                              continue;
                        if (e->io.addr_data == addr)
                              cleanup_one_si(e);
                  }
                  mutex_unlock(&smi_infos_lock);
            }
      }
      rv = len;
 out:
      kfree(str);
      return rv;
}

static __devinit void hardcode_find_bmc(void)
{
      int             i;
      struct smi_info *info;

      for (i = 0; i < SI_MAX_PARMS; i++) {
            if (!ports[i] && !addrs[i])
                  continue;

            info = kzalloc(sizeof(*info), GFP_KERNEL);
            if (!info)
                  return;

            info->addr_source = "hardcoded";

            if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
                  info->si_type = SI_KCS;
            } else if (strcmp(si_type[i], "smic") == 0) {
                  info->si_type = SI_SMIC;
            } else if (strcmp(si_type[i], "bt") == 0) {
                  info->si_type = SI_BT;
            } else {
                  printk(KERN_WARNING
                         "ipmi_si: Interface type specified "
                         "for interface %d, was invalid: %s\n",
                         i, si_type[i]);
                  kfree(info);
                  continue;
            }

            if (ports[i]) {
                  /* An I/O port */
                  info->io_setup = port_setup;
                  info->io.addr_data = ports[i];
                  info->io.addr_type = IPMI_IO_ADDR_SPACE;
            } else if (addrs[i]) {
                  /* A memory port */
                  info->io_setup = mem_setup;
                  info->io.addr_data = addrs[i];
                  info->io.addr_type = IPMI_MEM_ADDR_SPACE;
            } else {
                  printk(KERN_WARNING
                         "ipmi_si: Interface type specified "
                         "for interface %d, "
                         "but port and address were not set or "
                         "set to zero.\n", i);
                  kfree(info);
                  continue;
            }

            info->io.addr = NULL;
            info->io.regspacing = regspacings[i];
            if (!info->io.regspacing)
                  info->io.regspacing = DEFAULT_REGSPACING;
            info->io.regsize = regsizes[i];
            if (!info->io.regsize)
                  info->io.regsize = DEFAULT_REGSPACING;
            info->io.regshift = regshifts[i];
            info->irq = irqs[i];
            if (info->irq)
                  info->irq_setup = std_irq_setup;

            try_smi_init(info);
      }
}

#ifdef CONFIG_ACPI

#include <linux/acpi.h>

/*
 * Once we get an ACPI failure, we don't try any more, because we go
 * through the tables sequentially.  Once we don't find a table, there
 * are no more.
 */
static int acpi_failure;

/* For GPE-type interrupts. */
static u32 ipmi_acpi_gpe(void *context)
{
      struct smi_info *smi_info = context;
      unsigned long   flags;
#ifdef DEBUG_TIMING
      struct timeval t;
#endif

      spin_lock_irqsave(&(smi_info->si_lock), flags);

      smi_inc_stat(smi_info, interrupts);

#ifdef DEBUG_TIMING
      do_gettimeofday(&t);
      printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
      smi_event_handler(smi_info, 0);
      spin_unlock_irqrestore(&(smi_info->si_lock), flags);

      return ACPI_INTERRUPT_HANDLED;
}

static void acpi_gpe_irq_cleanup(struct smi_info *info)
{
      if (!info->irq)
            return;

      acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
}

static int acpi_gpe_irq_setup(struct smi_info *info)
{
      acpi_status status;

      if (!info->irq)
            return 0;

      /* FIXME - is level triggered right? */
      status = acpi_install_gpe_handler(NULL,
                                info->irq,
                                ACPI_GPE_LEVEL_TRIGGERED,
                                &ipmi_acpi_gpe,
                                info);
      if (status != AE_OK) {
            printk(KERN_WARNING
                   "ipmi_si: %s unable to claim ACPI GPE %d,"
                   " running polled\n",
                   DEVICE_NAME, info->irq);
            info->irq = 0;
            return -EINVAL;
      } else {
            info->irq_cleanup = acpi_gpe_irq_cleanup;
            printk("  Using ACPI GPE %d\n", info->irq);
            return 0;
      }
}

/*
 * Defined at
 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
 * Docs/TechPapers/IA64/hpspmi.pdf
 */
struct SPMITable {
      s8    Signature[4];
      u32   Length;
      u8    Revision;
      u8    Checksum;
      s8    OEMID[6];
      s8    OEMTableID[8];
      s8    OEMRevision[4];
      s8    CreatorID[4];
      s8    CreatorRevision[4];
      u8    InterfaceType;
      u8    IPMIlegacy;
      s16   SpecificationRevision;

      /*
       * Bit 0 - SCI interrupt supported
       * Bit 1 - I/O APIC/SAPIC
       */
      u8    InterruptType;

      /*
       * If bit 0 of InterruptType is set, then this is the SCI
       * interrupt in the GPEx_STS register.
       */
      u8    GPE;

      s16   Reserved;

      /*
       * If bit 1 of InterruptType is set, then this is the I/O
       * APIC/SAPIC interrupt.
       */
      u32   GlobalSystemInterrupt;

      /* The actual register address. */
      struct acpi_generic_address addr;

      u8    UID[4];

      s8      spmi_id[1]; /* A '\0' terminated array starts here. */
};

static __devinit int try_init_acpi(struct SPMITable *spmi)
{
      struct smi_info  *info;
      u8           addr_space;

      if (spmi->IPMIlegacy != 1) {
          printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
          return -ENODEV;
      }

      if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
            addr_space = IPMI_MEM_ADDR_SPACE;
      else
            addr_space = IPMI_IO_ADDR_SPACE;

      info = kzalloc(sizeof(*info), GFP_KERNEL);
      if (!info) {
            printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
            return -ENOMEM;
      }

      info->addr_source = "ACPI";

      /* Figure out the interface type. */
      switch (spmi->InterfaceType) {
      case 1:     /* KCS */
            info->si_type = SI_KCS;
            break;
      case 2:     /* SMIC */
            info->si_type = SI_SMIC;
            break;
      case 3:     /* BT */
            info->si_type = SI_BT;
            break;
      default:
            printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
                  spmi->InterfaceType);
            kfree(info);
            return -EIO;
      }

      if (spmi->InterruptType & 1) {
            /* We've got a GPE interrupt. */
            info->irq = spmi->GPE;
            info->irq_setup = acpi_gpe_irq_setup;
      } else if (spmi->InterruptType & 2) {
            /* We've got an APIC/SAPIC interrupt. */
            info->irq = spmi->GlobalSystemInterrupt;
            info->irq_setup = std_irq_setup;
      } else {
            /* Use the default interrupt setting. */
            info->irq = 0;
            info->irq_setup = NULL;
      }

      if (spmi->addr.bit_width) {
            /* A (hopefully) properly formed register bit width. */
            info->io.regspacing = spmi->addr.bit_width / 8;
      } else {
            info->io.regspacing = DEFAULT_REGSPACING;
      }
      info->io.regsize = info->io.regspacing;
      info->io.regshift = spmi->addr.bit_offset;

      if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
            info->io_setup = mem_setup;
            info->io.addr_type = IPMI_MEM_ADDR_SPACE;
      } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
            info->io_setup = port_setup;
            info->io.addr_type = IPMI_IO_ADDR_SPACE;
      } else {
            kfree(info);
            printk(KERN_WARNING
                   "ipmi_si: Unknown ACPI I/O Address type\n");
            return -EIO;
      }
      info->io.addr_data = spmi->addr.address;

      try_smi_init(info);

      return 0;
}

static __devinit void acpi_find_bmc(void)
{
      acpi_status      status;
      struct SPMITable *spmi;
      int              i;

      if (acpi_disabled)
            return;

      if (acpi_failure)
            return;

      for (i = 0; ; i++) {
            status = acpi_get_table(ACPI_SIG_SPMI, i+1,
                              (struct acpi_table_header **)&spmi);
            if (status != AE_OK)
                  return;

            try_init_acpi(spmi);
      }
}
#endif

#ifdef CONFIG_DMI
struct dmi_ipmi_data {
      u8          type;
      u8          addr_space;
      unsigned long     base_addr;
      u8          irq;
      u8              offset;
      u8              slave_addr;
};

static int __devinit decode_dmi(const struct dmi_header *dm,
                        struct dmi_ipmi_data *dmi)
{
      const u8    *data = (const u8 *)dm;
      unsigned long     base_addr;
      u8          reg_spacing;
      u8              len = dm->length;

      dmi->type = data[4];

      memcpy(&base_addr, data+8, sizeof(unsigned long));
      if (len >= 0x11) {
            if (base_addr & 1) {
                  /* I/O */
                  base_addr &= 0xFFFE;
                  dmi->addr_space = IPMI_IO_ADDR_SPACE;
            } else
                  /* Memory */
                  dmi->addr_space = IPMI_MEM_ADDR_SPACE;

            /* If bit 4 of byte 0x10 is set, then the lsb for the address
               is odd. */
            dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);

            dmi->irq = data[0x11];

            /* The top two bits of byte 0x10 hold the register spacing. */
            reg_spacing = (data[0x10] & 0xC0) >> 6;
            switch (reg_spacing) {
            case 0x00: /* Byte boundaries */
                dmi->offset = 1;
                break;
            case 0x01: /* 32-bit boundaries */
                dmi->offset = 4;
                break;
            case 0x02: /* 16-byte boundaries */
                dmi->offset = 16;
                break;
            default:
                /* Some other interface, just ignore it. */
                return -EIO;
            }
      } else {
            /* Old DMI spec. */
            /*
             * Note that technically, the lower bit of the base
             * address should be 1 if the address is I/O and 0 if
             * the address is in memory.  So many systems get that
             * wrong (and all that I have seen are I/O) so we just
             * ignore that bit and assume I/O.  Systems that use
             * memory should use the newer spec, anyway.
             */
            dmi->base_addr = base_addr & 0xfffe;
            dmi->addr_space = IPMI_IO_ADDR_SPACE;
            dmi->offset = 1;
      }

      dmi->slave_addr = data[6];

      return 0;
}

static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
{
      struct smi_info *info;

      info = kzalloc(sizeof(*info), GFP_KERNEL);
      if (!info) {
            printk(KERN_ERR
                   "ipmi_si: Could not allocate SI data\n");
            return;
      }

      info->addr_source = "SMBIOS";

      switch (ipmi_data->type) {
      case 0x01: /* KCS */
            info->si_type = SI_KCS;
            break;
      case 0x02: /* SMIC */
            info->si_type = SI_SMIC;
            break;
      case 0x03: /* BT */
            info->si_type = SI_BT;
            break;
      default:
            kfree(info);
            return;
      }

      switch (ipmi_data->addr_space) {
      case IPMI_MEM_ADDR_SPACE:
            info->io_setup = mem_setup;
            info->io.addr_type = IPMI_MEM_ADDR_SPACE;
            break;

      case IPMI_IO_ADDR_SPACE:
            info->io_setup = port_setup;
            info->io.addr_type = IPMI_IO_ADDR_SPACE;
            break;

      default:
            kfree(info);
            printk(KERN_WARNING
                   "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
                   ipmi_data->addr_space);
            return;
      }
      info->io.addr_data = ipmi_data->base_addr;

      info->io.regspacing = ipmi_data->offset;
      if (!info->io.regspacing)
            info->io.regspacing = DEFAULT_REGSPACING;
      info->io.regsize = DEFAULT_REGSPACING;
      info->io.regshift = 0;

      info->slave_addr = ipmi_data->slave_addr;

      info->irq = ipmi_data->irq;
      if (info->irq)
            info->irq_setup = std_irq_setup;

      try_smi_init(info);
}

static void __devinit dmi_find_bmc(void)
{
      const struct dmi_device *dev = NULL;
      struct dmi_ipmi_data data;
      int                  rv;

      while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
            memset(&data, 0, sizeof(data));
            rv = decode_dmi((const struct dmi_header *) dev->device_data,
                        &data);
            if (!rv)
                  try_init_dmi(&data);
      }
}
#endif /* CONFIG_DMI */

#ifdef CONFIG_PCI

#define PCI_ERMC_CLASSCODE          0x0C0700
#define PCI_ERMC_CLASSCODE_MASK           0xffffff00
#define PCI_ERMC_CLASSCODE_TYPE_MASK      0xff
#define PCI_ERMC_CLASSCODE_TYPE_SMIC      0x00
#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
#define PCI_ERMC_CLASSCODE_TYPE_BT  0x02

#define PCI_HP_VENDOR_ID    0x103C
#define PCI_MMC_DEVICE_ID   0x121A
#define PCI_MMC_ADDR_CW     0x10

static void ipmi_pci_cleanup(struct smi_info *info)
{
      struct pci_dev *pdev = info->addr_source_data;

      pci_disable_device(pdev);
}

static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
                            const struct pci_device_id *ent)
{
      int rv;
      int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
      struct smi_info *info;
      int first_reg_offset = 0;

      info = kzalloc(sizeof(*info), GFP_KERNEL);
      if (!info)
            return -ENOMEM;

      info->addr_source = "PCI";

      switch (class_type) {
      case PCI_ERMC_CLASSCODE_TYPE_SMIC:
            info->si_type = SI_SMIC;
            break;

      case PCI_ERMC_CLASSCODE_TYPE_KCS:
            info->si_type = SI_KCS;
            break;

      case PCI_ERMC_CLASSCODE_TYPE_BT:
            info->si_type = SI_BT;
            break;

      default:
            kfree(info);
            printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
                   pci_name(pdev), class_type);
            return -ENOMEM;
      }

      rv = pci_enable_device(pdev);
      if (rv) {
            printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
                   pci_name(pdev));
            kfree(info);
            return rv;
      }

      info->addr_source_cleanup = ipmi_pci_cleanup;
      info->addr_source_data = pdev;

      if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
            first_reg_offset = 1;

      if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
            info->io_setup = port_setup;
            info->io.addr_type = IPMI_IO_ADDR_SPACE;
      } else {
            info->io_setup = mem_setup;
            info->io.addr_type = IPMI_MEM_ADDR_SPACE;
      }
      info->io.addr_data = pci_resource_start(pdev, 0);

      info->io.regspacing = DEFAULT_REGSPACING;
      info->io.regsize = DEFAULT_REGSPACING;
      info->io.regshift = 0;

      info->irq = pdev->irq;
      if (info->irq)
            info->irq_setup = std_irq_setup;

      info->dev = &pdev->dev;
      pci_set_drvdata(pdev, info);

      return try_smi_init(info);
}

static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
{
      struct smi_info *info = pci_get_drvdata(pdev);
      cleanup_one_si(info);
}

#ifdef CONFIG_PM
static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
      return 0;
}

static int ipmi_pci_resume(struct pci_dev *pdev)
{
      return 0;
}
#endif

static struct pci_device_id ipmi_pci_devices[] = {
      { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
      { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
      { 0, }
};
MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);

static struct pci_driver ipmi_pci_driver = {
      .name =         DEVICE_NAME,
      .id_table =     ipmi_pci_devices,
      .probe =        ipmi_pci_probe,
      .remove =       __devexit_p(ipmi_pci_remove),
#ifdef CONFIG_PM
      .suspend =      ipmi_pci_suspend,
      .resume =       ipmi_pci_resume,
#endif
};
#endif /* CONFIG_PCI */


#ifdef CONFIG_PPC_OF
static int __devinit ipmi_of_probe(struct of_device *dev,
                   const struct of_device_id *match)
{
      struct smi_info *info;
      struct resource resource;
      const int *regsize, *regspacing, *regshift;
      struct device_node *np = dev->node;
      int ret;
      int proplen;

      dev_info(&dev->dev, PFX "probing via device tree\n");

      ret = of_address_to_resource(np, 0, &resource);
      if (ret) {
            dev_warn(&dev->dev, PFX "invalid address from OF\n");
            return ret;
      }

      regsize = of_get_property(np, "reg-size", &proplen);
      if (regsize && proplen != 4) {
            dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
            return -EINVAL;
      }

      regspacing = of_get_property(np, "reg-spacing", &proplen);
      if (regspacing && proplen != 4) {
            dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
            return -EINVAL;
      }

      regshift = of_get_property(np, "reg-shift", &proplen);
      if (regshift && proplen != 4) {
            dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
            return -EINVAL;
      }

      info = kzalloc(sizeof(*info), GFP_KERNEL);

      if (!info) {
            dev_err(&dev->dev,
                  PFX "could not allocate memory for OF probe\n");
            return -ENOMEM;
      }

      info->si_type           = (enum si_type) match->data;
      info->addr_source = "device-tree";
      info->irq_setup         = std_irq_setup;

      if (resource.flags & IORESOURCE_IO) {
            info->io_setup          = port_setup;
            info->io.addr_type      = IPMI_IO_ADDR_SPACE;
      } else {
            info->io_setup          = mem_setup;
            info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
      }

      info->io.addr_data      = resource.start;

      info->io.regsize  = regsize ? *regsize : DEFAULT_REGSIZE;
      info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
      info->io.regshift = regshift ? *regshift : 0;

      info->irq         = irq_of_parse_and_map(dev->node, 0);
      info->dev         = &dev->dev;

      dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
            info->io.addr_data, info->io.regsize, info->io.regspacing,
            info->irq);

      dev_set_drvdata(&dev->dev, info);

      return try_smi_init(info);
}

static int __devexit ipmi_of_remove(struct of_device *dev)
{
      cleanup_one_si(dev_get_drvdata(&dev->dev));
      return 0;
}

static struct of_device_id ipmi_match[] =
{
      { .type = "ipmi", .compatible = "ipmi-kcs",
        .data = (void *)(unsigned long) SI_KCS },
      { .type = "ipmi", .compatible = "ipmi-smic",
        .data = (void *)(unsigned long) SI_SMIC },
      { .type = "ipmi", .compatible = "ipmi-bt",
        .data = (void *)(unsigned long) SI_BT },
      {},
};

static struct of_platform_driver ipmi_of_platform_driver = {
      .name       = "ipmi",
      .match_table      = ipmi_match,
      .probe            = ipmi_of_probe,
      .remove           = __devexit_p(ipmi_of_remove),
};
#endif /* CONFIG_PPC_OF */

static int wait_for_msg_done(struct smi_info *smi_info)
{
      enum si_sm_result     smi_result;

      smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
      for (;;) {
            if (smi_result == SI_SM_CALL_WITH_DELAY ||
                smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
                  schedule_timeout_uninterruptible(1);
                  smi_result = smi_info->handlers->event(
                        smi_info->si_sm, 100);
            } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
                  smi_result = smi_info->handlers->event(
                        smi_info->si_sm, 0);
            } else
                  break;
      }
      if (smi_result == SI_SM_HOSED)
            /*
             * We couldn't get the state machine to run, so whatever's at
             * the port is probably not an IPMI SMI interface.
             */
            return -ENODEV;

      return 0;
}

static int try_get_dev_id(struct smi_info *smi_info)
{
      unsigned char         msg[2];
      unsigned char         *resp;
      unsigned long         resp_len;
      int                   rv = 0;

      resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
      if (!resp)
            return -ENOMEM;

      /*
       * Do a Get Device ID command, since it comes back with some
       * useful info.
       */
      msg[0] = IPMI_NETFN_APP_REQUEST << 2;
      msg[1] = IPMI_GET_DEVICE_ID_CMD;
      smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);

      rv = wait_for_msg_done(smi_info);
      if (rv)
            goto out;

      resp_len = smi_info->handlers->get_result(smi_info->si_sm,
                                      resp, IPMI_MAX_MSG_LENGTH);

      /* Check and record info from the get device id, in case we need it. */
      rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);

 out:
      kfree(resp);
      return rv;
}

static int try_enable_event_buffer(struct smi_info *smi_info)
{
      unsigned char         msg[3];
      unsigned char         *resp;
      unsigned long         resp_len;
      int                   rv = 0;

      resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
      if (!resp)
            return -ENOMEM;

      msg[0] = IPMI_NETFN_APP_REQUEST << 2;
      msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
      smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);

      rv = wait_for_msg_done(smi_info);
      if (rv) {
            printk(KERN_WARNING
                   "ipmi_si: Error getting response from get global,"
                   " enables command, the event buffer is not"
                   " enabled.\n");
            goto out;
      }

      resp_len = smi_info->handlers->get_result(smi_info->si_sm,
                                      resp, IPMI_MAX_MSG_LENGTH);

      if (resp_len < 4 ||
                  resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
                  resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
                  resp[2] != 0) {
            printk(KERN_WARNING
                   "ipmi_si: Invalid return from get global"
                   " enables command, cannot enable the event"
                   " buffer.\n");
            rv = -EINVAL;
            goto out;
      }

      if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
            /* buffer is already enabled, nothing to do. */
            goto out;

      msg[0] = IPMI_NETFN_APP_REQUEST << 2;
      msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
      msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
      smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);

      rv = wait_for_msg_done(smi_info);
      if (rv) {
            printk(KERN_WARNING
                   "ipmi_si: Error getting response from set global,"
                   " enables command, the event buffer is not"
                   " enabled.\n");
            goto out;
      }

      resp_len = smi_info->handlers->get_result(smi_info->si_sm,
                                      resp, IPMI_MAX_MSG_LENGTH);

      if (resp_len < 3 ||
                  resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
                  resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
            printk(KERN_WARNING
                   "ipmi_si: Invalid return from get global,"
                   "enables command, not enable the event"
                   " buffer.\n");
            rv = -EINVAL;
            goto out;
      }

      if (resp[2] != 0)
            /*
             * An error when setting the event buffer bit means
             * that the event buffer is not supported.
             */
            rv = -ENOENT;
 out:
      kfree(resp);
      return rv;
}

static int type_file_read_proc(char *page, char **start, off_t off,
                         int count, int *eof, void *data)
{
      struct smi_info *smi = data;

      return sprintf(page, "%s\n", si_to_str[smi->si_type]);
}

static int stat_file_read_proc(char *page, char **start, off_t off,
                         int count, int *eof, void *data)
{
      char            *out = (char *) page;
      struct smi_info *smi = data;

      out += sprintf(out, "interrupts_enabled:    %d\n",
                   smi->irq && !smi->interrupt_disabled);
      out += sprintf(out, "short_timeouts:        %u\n",
                   smi_get_stat(smi, short_timeouts));
      out += sprintf(out, "long_timeouts:         %u\n",
                   smi_get_stat(smi, long_timeouts));
      out += sprintf(out, "idles:                 %u\n",
                   smi_get_stat(smi, idles));
      out += sprintf(out, "interrupts:            %u\n",
                   smi_get_stat(smi, interrupts));
      out += sprintf(out, "attentions:            %u\n",
                   smi_get_stat(smi, attentions));
      out += sprintf(out, "flag_fetches:          %u\n",
                   smi_get_stat(smi, flag_fetches));
      out += sprintf(out, "hosed_count:           %u\n",
                   smi_get_stat(smi, hosed_count));
      out += sprintf(out, "complete_transactions: %u\n",
                   smi_get_stat(smi, complete_transactions));
      out += sprintf(out, "events:                %u\n",
                   smi_get_stat(smi, events));
      out += sprintf(out, "watchdog_pretimeouts:  %u\n",
                   smi_get_stat(smi, watchdog_pretimeouts));
      out += sprintf(out, "incoming_messages:     %u\n",
                   smi_get_stat(smi, incoming_messages));

      return out - page;
}

static int param_read_proc(char *page, char **start, off_t off,
                     int count, int *eof, void *data)
{
      struct smi_info *smi = data;

      return sprintf(page,
                   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
                   si_to_str[smi->si_type],
                   addr_space_to_str[smi->io.addr_type],
                   smi->io.addr_data,
                   smi->io.regspacing,
                   smi->io.regsize,
                   smi->io.regshift,
                   smi->irq,
                   smi->slave_addr);
}

/*
 * oem_data_avail_to_receive_msg_avail
 * @info - smi_info structure with msg_flags set
 *
 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
 * Returns 1 indicating need to re-run handle_flags().
 */
static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
{
      smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
                         RECEIVE_MSG_AVAIL);
      return 1;
}

/*
 * setup_dell_poweredge_oem_data_handler
 * @info - smi_info.device_id must be populated
 *
 * Systems that match, but have firmware version < 1.40 may assert
 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
 * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
 * as RECEIVE_MSG_AVAIL instead.
 *
 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
 * assert the OEM[012] bits, and if it did, the driver would have to
 * change to handle that properly, we don't actually check for the
 * firmware version.
 * Device ID = 0x20                BMC on PowerEdge 8G servers
 * Device Revision = 0x80
 * Firmware Revision1 = 0x01       BMC version 1.40
 * Firmware Revision2 = 0x40       BCD encoded
 * IPMI Version = 0x51             IPMI 1.5
 * Manufacturer ID = A2 02 00      Dell IANA
 *
 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
 *
 */
#define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
#define DELL_IANA_MFR_ID 0x0002a2
static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
{
      struct ipmi_device_id *id = &smi_info->device_id;
      if (id->manufacturer_id == DELL_IANA_MFR_ID) {
            if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
                id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
                id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
                  smi_info->oem_data_avail_handler =
                        oem_data_avail_to_receive_msg_avail;
            } else if (ipmi_version_major(id) < 1 ||
                     (ipmi_version_major(id) == 1 &&
                      ipmi_version_minor(id) < 5)) {
                  smi_info->oem_data_avail_handler =
                        oem_data_avail_to_receive_msg_avail;
            }
      }
}

#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
static void return_hosed_msg_badsize(struct smi_info *smi_info)
{
      struct ipmi_smi_msg *msg = smi_info->curr_msg;

      /* Make it a reponse */
      msg->rsp[0] = msg->data[0] | 4;
      msg->rsp[1] = msg->data[1];
      msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
      msg->rsp_size = 3;
      smi_info->curr_msg = NULL;
      deliver_recv_msg(smi_info, msg);
}

/*
 * dell_poweredge_bt_xaction_handler
 * @info - smi_info.device_id must be populated
 *
 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
 * not respond to a Get SDR command if the length of the data
 * requested is exactly 0x3A, which leads to command timeouts and no
 * data returned.  This intercepts such commands, and causes userspace
 * callers to try again with a different-sized buffer, which succeeds.
 */

#define STORAGE_NETFN 0x0A
#define STORAGE_CMD_GET_SDR 0x23
static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
                                   unsigned long unused,
                                   void *in)
{
      struct smi_info *smi_info = in;
      unsigned char *data = smi_info->curr_msg->data;
      unsigned int size   = smi_info->curr_msg->data_size;
      if (size >= 8 &&
          (data[0]>>2) == STORAGE_NETFN &&
          data[1] == STORAGE_CMD_GET_SDR &&
          data[7] == 0x3A) {
            return_hosed_msg_badsize(smi_info);
            return NOTIFY_STOP;
      }
      return NOTIFY_DONE;
}

static struct notifier_block dell_poweredge_bt_xaction_notifier = {
      .notifier_call    = dell_poweredge_bt_xaction_handler,
};

/*
 * setup_dell_poweredge_bt_xaction_handler
 * @info - smi_info.device_id must be filled in already
 *
 * Fills in smi_info.device_id.start_transaction_pre_hook
 * when we know what function to use there.
 */
static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
{
      struct ipmi_device_id *id = &smi_info->device_id;
      if (id->manufacturer_id == DELL_IANA_MFR_ID &&
          smi_info->si_type == SI_BT)
            register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
}

/*
 * setup_oem_data_handler
 * @info - smi_info.device_id must be filled in already
 *
 * Fills in smi_info.device_id.oem_data_available_handler
 * when we know what function to use there.
 */

static void setup_oem_data_handler(struct smi_info *smi_info)
{
      setup_dell_poweredge_oem_data_handler(smi_info);
}

static void setup_xaction_handlers(struct smi_info *smi_info)
{
      setup_dell_poweredge_bt_xaction_handler(smi_info);
}

static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
{
      if (smi_info->intf) {
            /*
             * The timer and thread are only running if the
             * interface has been started up and registered.
             */
            if (smi_info->thread != NULL)
                  kthread_stop(smi_info->thread);
            del_timer_sync(&smi_info->si_timer);
      }
}

02766 static __devinitdata struct ipmi_default_vals
{
      int type;
      int port;
} ipmi_defaults[] =
{
      { .type = SI_KCS, .port = 0xca2 },
      { .type = SI_SMIC, .port = 0xca9 },
      { .type = SI_BT, .port = 0xe4 },
      { .port = 0 }
};

static __devinit void default_find_bmc(void)
{
      struct smi_info *info;
      int             i;

      for (i = 0; ; i++) {
            if (!ipmi_defaults[i].port)
                  break;
#ifdef CONFIG_PPC
            if (check_legacy_ioport(ipmi_defaults[i].port))
                  continue;
#endif
            info = kzalloc(sizeof(*info), GFP_KERNEL);
            if (!info)
                  return;

            info->addr_source = NULL;

            info->si_type = ipmi_defaults[i].type;
            info->io_setup = port_setup;
            info->io.addr_data = ipmi_defaults[i].port;
            info->io.addr_type = IPMI_IO_ADDR_SPACE;

            info->io.addr = NULL;
            info->io.regspacing = DEFAULT_REGSPACING;
            info->io.regsize = DEFAULT_REGSPACING;
            info->io.regshift = 0;

            if (try_smi_init(info) == 0) {
                  /* Found one... */
                  printk(KERN_INFO "ipmi_si: Found default %s state"
                         " machine at %s address 0x%lx\n",
                         si_to_str[info->si_type],
                         addr_space_to_str[info->io.addr_type],
                         info->io.addr_data);
                  return;
            }
      }
}

static int is_new_interface(struct smi_info *info)
{
      struct smi_info *e;

      list_for_each_entry(e, &smi_infos, link) {
            if (e->io.addr_type != info->io.addr_type)
                  continue;
            if (e->io.addr_data == info->io.addr_data)
                  return 0;
      }

      return 1;
}

static int try_smi_init(struct smi_info *new_smi)
{
      int rv;
      int i;

      if (new_smi->addr_source) {
            printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
                   " machine at %s address 0x%lx, slave address 0x%x,"
                   " irq %d\n",
                   new_smi->addr_source,
                   si_to_str[new_smi->si_type],
                   addr_space_to_str[new_smi->io.addr_type],
                   new_smi->io.addr_data,
                   new_smi->slave_addr, new_smi->irq);
      }

      mutex_lock(&smi_infos_lock);
      if (!is_new_interface(new_smi)) {
            printk(KERN_WARNING "ipmi_si: duplicate interface\n");
            rv = -EBUSY;
            goto out_err;
      }

      /* So we know not to free it unless we have allocated one. */
      new_smi->intf = NULL;
      new_smi->si_sm = NULL;
      new_smi->handlers = NULL;

      switch (new_smi->si_type) {
      case SI_KCS:
            new_smi->handlers = &kcs_smi_handlers;
            break;

      case SI_SMIC:
            new_smi->handlers = &smic_smi_handlers;
            break;

      case SI_BT:
            new_smi->handlers = &bt_smi_handlers;
            break;

      default:
            /* No support for anything else yet. */
            rv = -EIO;
            goto out_err;
      }

      /* Allocate the state machine's data and initialize it. */
      new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
      if (!new_smi->si_sm) {
            printk(KERN_ERR "Could not allocate state machine memory\n");
            rv = -ENOMEM;
            goto out_err;
      }
      new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
                                          &new_smi->io);

      /* Now that we know the I/O size, we can set up the I/O. */
      rv = new_smi->io_setup(new_smi);
      if (rv) {
            printk(KERN_ERR "Could not set up I/O space\n");
            goto out_err;
      }

      spin_lock_init(&(new_smi->si_lock));
      spin_lock_init(&(new_smi->msg_lock));

      /* Do low-level detection first. */
      if (new_smi->handlers->detect(new_smi->si_sm)) {
            if (new_smi->addr_source)
                  printk(KERN_INFO "ipmi_si: Interface detection"
                         " failed\n");
            rv = -ENODEV;
            goto out_err;
      }

      /*
       * Attempt a get device id command.  If it fails, we probably
       * don't have a BMC here.
       */
      rv = try_get_dev_id(new_smi);
      if (rv) {
            if (new_smi->addr_source)
                  printk(KERN_INFO "ipmi_si: There appears to be no BMC"
                         " at this location\n");
            goto out_err;
      }

      setup_oem_data_handler(new_smi);
      setup_xaction_handlers(new_smi);

      INIT_LIST_HEAD(&(new_smi->xmit_msgs));
      INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
      new_smi->curr_msg = NULL;
      atomic_set(&new_smi->req_events, 0);
      new_smi->run_to_completion = 0;
      for (i = 0; i < SI_NUM_STATS; i++)
            atomic_set(&new_smi->stats[i], 0);

      new_smi->interrupt_disabled = 0;
      atomic_set(&new_smi->stop_operation, 0);
      new_smi->intf_num = smi_num;
      smi_num++;

      rv = try_enable_event_buffer(new_smi);
      if (rv == 0)
            new_smi->has_event_buffer = 1;

      /*
       * Start clearing the flags before we enable interrupts or the
       * timer to avoid racing with the timer.
       */
      start_clear_flags(new_smi);
      /* IRQ is defined to be set when non-zero. */
      if (new_smi->irq)
            new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;

      if (!new_smi->dev) {
            /*
             * If we don't already have a device from something
             * else (like PCI), then register a new one.
             */
            new_smi->pdev = platform_device_alloc("ipmi_si",
                                          new_smi->intf_num);
            if (!new_smi->pdev) {
                  printk(KERN_ERR
                         "ipmi_si_intf:"
                         " Unable to allocate platform device\n");
                  goto out_err;
            }
            new_smi->dev = &new_smi->pdev->dev;
            new_smi->dev->driver = &ipmi_driver.driver;

            rv = platform_device_add(new_smi->pdev);
            if (rv) {
                  printk(KERN_ERR
                         "ipmi_si_intf:"
                         " Unable to register system interface device:"
                         " %d\n",
                         rv);
                  goto out_err;
            }
            new_smi->dev_registered = 1;
      }

      rv = ipmi_register_smi(&handlers,
                         new_smi,
                         &new_smi->device_id,
                         new_smi->dev,
                         "bmc",
                         new_smi->slave_addr);
      if (rv) {
            printk(KERN_ERR
                   "ipmi_si: Unable to register device: error %d\n",
                   rv);
            goto out_err_stop_timer;
      }

      rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
                             type_file_read_proc,
                             new_smi);
      if (rv) {
            printk(KERN_ERR
                   "ipmi_si: Unable to create proc entry: %d\n",
                   rv);
            goto out_err_stop_timer;
      }

      rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
                             stat_file_read_proc,
                             new_smi);
      if (rv) {
            printk(KERN_ERR
                   "ipmi_si: Unable to create proc entry: %d\n",
                   rv);
            goto out_err_stop_timer;
      }

      rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
                             param_read_proc,
                             new_smi);
      if (rv) {
            printk(KERN_ERR
                   "ipmi_si: Unable to create proc entry: %d\n",
                   rv);
            goto out_err_stop_timer;
      }

      list_add_tail(&new_smi->link, &smi_infos);

      mutex_unlock(&smi_infos_lock);

      printk(KERN_INFO "IPMI %s interface initialized\n",
             si_to_str[new_smi->si_type]);

      return 0;

 out_err_stop_timer:
      atomic_inc(&new_smi->stop_operation);
      wait_for_timer_and_thread(new_smi);

 out_err:
      if (new_smi->intf)
            ipmi_unregister_smi(new_smi->intf);

      if (new_smi->irq_cleanup)
            new_smi->irq_cleanup(new_smi);

      /*
       * Wait until we know that we are out of any interrupt
       * handlers might have been running before we freed the
       * interrupt.
       */
      synchronize_sched();

      if (new_smi->si_sm) {
            if (new_smi->handlers)
                  new_smi->handlers->cleanup(new_smi->si_sm);
            kfree(new_smi->si_sm);
      }
      if (new_smi->addr_source_cleanup)
            new_smi->addr_source_cleanup(new_smi);
      if (new_smi->io_cleanup)
            new_smi->io_cleanup(new_smi);

      if (new_smi->dev_registered)
            platform_device_unregister(new_smi->pdev);

      kfree(new_smi);

      mutex_unlock(&smi_infos_lock);

      return rv;
}

static __devinit int init_ipmi_si(void)
{
      int  i;
      char *str;
      int  rv;

      if (initialized)
            return 0;
      initialized = 1;

      /* Register the device drivers. */
      rv = driver_register(&ipmi_driver.driver);
      if (rv) {
            printk(KERN_ERR
                   "init_ipmi_si: Unable to register driver: %d\n",
                   rv);
            return rv;
      }


      /* Parse out the si_type string into its components. */
      str = si_type_str;
      if (*str != '\0') {
            for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
                  si_type[i] = str;
                  str = strchr(str, ',');
                  if (str) {
                        *str = '\0';
                        str++;
                  } else {
                        break;
                  }
            }
      }

      printk(KERN_INFO "IPMI System Interface driver.\n");

      hardcode_find_bmc();

#ifdef CONFIG_DMI
      dmi_find_bmc();
#endif

#ifdef CONFIG_ACPI
      acpi_find_bmc();
#endif

#ifdef CONFIG_PCI
      rv = pci_register_driver(&ipmi_pci_driver);
      if (rv)
            printk(KERN_ERR
                   "init_ipmi_si: Unable to register PCI driver: %d\n",
                   rv);
#endif

#ifdef CONFIG_PPC_OF
      of_register_platform_driver(&ipmi_of_platform_driver);
#endif

      if (si_trydefaults) {
            mutex_lock(&smi_infos_lock);
            if (list_empty(&smi_infos)) {
                  /* No BMC was found, try defaults. */
                  mutex_unlock(&smi_infos_lock);
                  default_find_bmc();
            } else {
                  mutex_unlock(&smi_infos_lock);
            }
      }

      mutex_lock(&smi_infos_lock);
      if (unload_when_empty && list_empty(&smi_infos)) {
            mutex_unlock(&smi_infos_lock);
#ifdef CONFIG_PCI
            pci_unregister_driver(&ipmi_pci_driver);
#endif

#ifdef CONFIG_PPC_OF
            of_unregister_platform_driver(&ipmi_of_platform_driver);
#endif
            driver_unregister(&ipmi_driver.driver);
            printk(KERN_WARNING
                   "ipmi_si: Unable to find any System Interface(s)\n");
            return -ENODEV;
      } else {
            mutex_unlock(&smi_infos_lock);
            return 0;
      }
}
module_init(init_ipmi_si);

static void cleanup_one_si(struct smi_info *to_clean)
{
      int           rv;
      unsigned long flags;

      if (!to_clean)
            return;

      list_del(&to_clean->link);

      /* Tell the driver that we are shutting down. */
      atomic_inc(&to_clean->stop_operation);

      /*
       * Make sure the timer and thread are stopped and will not run
       * again.
       */
      wait_for_timer_and_thread(to_clean);

      /*
       * Timeouts are stopped, now make sure the interrupts are off
       * for the device.  A little tricky with locks to make sure
       * there are no races.
       */
      spin_lock_irqsave(&to_clean->si_lock, flags);
      while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
            spin_unlock_irqrestore(&to_clean->si_lock, flags);
            poll(to_clean);
            schedule_timeout_uninterruptible(1);
            spin_lock_irqsave(&to_clean->si_lock, flags);
      }
      disable_si_irq(to_clean);
      spin_unlock_irqrestore(&to_clean->si_lock, flags);
      while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
            poll(to_clean);
            schedule_timeout_uninterruptible(1);
      }

      /* Clean up interrupts and make sure that everything is done. */
      if (to_clean->irq_cleanup)
            to_clean->irq_cleanup(to_clean);
      while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
            poll(to_clean);
            schedule_timeout_uninterruptible(1);
      }

      rv = ipmi_unregister_smi(to_clean->intf);
      if (rv) {
            printk(KERN_ERR
                   "ipmi_si: Unable to unregister device: errno=%d\n",
                   rv);
      }

      to_clean->handlers->cleanup(to_clean->si_sm);

      kfree(to_clean->si_sm);

      if (to_clean->addr_source_cleanup)
            to_clean->addr_source_cleanup(to_clean);
      if (to_clean->io_cleanup)
            to_clean->io_cleanup(to_clean);

      if (to_clean->dev_registered)
            platform_device_unregister(to_clean->pdev);

      kfree(to_clean);
}

static __exit void cleanup_ipmi_si(void)
{
      struct smi_info *e, *tmp_e;

      if (!initialized)
            return;

#ifdef CONFIG_PCI
      pci_unregister_driver(&ipmi_pci_driver);
#endif

#ifdef CONFIG_PPC_OF
      of_unregister_platform_driver(&ipmi_of_platform_driver);
#endif

      mutex_lock(&smi_infos_lock);
      list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
            cleanup_one_si(e);
      mutex_unlock(&smi_infos_lock);

      driver_unregister(&ipmi_driver.driver);
}
module_exit(cleanup_ipmi_si);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
               " system interfaces.");

Generated by  Doxygen 1.6.0   Back to index