Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

sched.h

#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

/*
 * cloning flags:
 */
#define CSIGNAL         0x000000ff  /* signal mask to be sent at exit */
#define CLONE_VM  0x00000100  /* set if VM shared between processes */
#define CLONE_FS  0x00000200  /* set if fs info shared between processes */
#define CLONE_FILES     0x00000400  /* set if open files shared between processes */
#define CLONE_SIGHAND   0x00000800  /* set if signal handlers and blocked signals shared */
#define CLONE_PTRACE    0x00002000  /* set if we want to let tracing continue on the child too */
#define CLONE_VFORK     0x00004000  /* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT    0x00008000  /* set if we want to have the same parent as the cloner */
#define CLONE_THREAD    0x00010000  /* Same thread group? */
#define CLONE_NEWNS     0x00020000  /* New namespace group? */
#define CLONE_SYSVSEM   0x00040000  /* share system V SEM_UNDO semantics */
#define CLONE_SETTLS    0x00080000  /* create a new TLS for the child */
#define CLONE_PARENT_SETTID   0x00100000  /* set the TID in the parent */
#define CLONE_CHILD_CLEARTID  0x00200000  /* clear the TID in the child */
#define CLONE_DETACHED        0x00400000  /* Unused, ignored */
#define CLONE_UNTRACED        0x00800000  /* set if the tracing process can't force CLONE_PTRACE on this clone */
#define CLONE_CHILD_SETTID    0x01000000  /* set the TID in the child */
#define CLONE_STOPPED         0x02000000  /* Start in stopped state */
#define CLONE_NEWUTS          0x04000000  /* New utsname group? */
#define CLONE_NEWIPC          0x08000000  /* New ipcs */
#define CLONE_NEWUSER         0x10000000  /* New user namespace */
#define CLONE_NEWPID          0x20000000  /* New pid namespace */
#define CLONE_NEWNET          0x40000000  /* New network namespace */
#define CLONE_IO        0x80000000  /* Clone io context */

/*
 * Scheduling policies
 */
#define SCHED_NORMAL          0
#define SCHED_FIFO            1
#define SCHED_RR        2
#define SCHED_BATCH           3
/* SCHED_ISO: reserved but not implemented yet */
#define SCHED_IDLE            5

#ifdef __KERNEL__

struct sched_param {
      int sched_priority;
};

#include <asm/param.h>  /* for HZ */

#include <linux/capability.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/rbtree.h>
#include <linux/thread_info.h>
#include <linux/cpumask.h>
#include <linux/errno.h>
#include <linux/nodemask.h>
#include <linux/mm_types.h>

#include <asm/system.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/cputime.h>

#include <linux/smp.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/path.h>
#include <linux/compiler.h>
#include <linux/completion.h>
#include <linux/pid.h>
#include <linux/percpu.h>
#include <linux/topology.h>
#include <linux/proportions.h>
#include <linux/seccomp.h>
#include <linux/rcupdate.h>
#include <linux/rculist.h>
#include <linux/rtmutex.h>

#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#include <linux/timer.h>
#include <linux/hrtimer.h>
#include <linux/task_io_accounting.h>
#include <linux/kobject.h>
#include <linux/latencytop.h>
#include <linux/cred.h>

#include <asm/processor.h>

struct exec_domain;
struct futex_pi_state;
struct robust_list_head;
struct bio;
struct fs_struct;
struct bts_context;
struct perf_counter_context;

/*
 * List of flags we want to share for kernel threads,
 * if only because they are not used by them anyway.
 */
#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)

/*
 * These are the constant used to fake the fixed-point load-average
 * counting. Some notes:
 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 *    a load-average precision of 10 bits integer + 11 bits fractional
 *  - if you want to count load-averages more often, you need more
 *    precision, or rounding will get you. With 2-second counting freq,
 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 *    11 bit fractions.
 */
extern unsigned long avenrun[];           /* Load averages */
extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);

#define FSHIFT          11          /* nr of bits of precision */
#define FIXED_1         (1<<FSHIFT) /* 1.0 as fixed-point */
#define LOAD_FREQ (5*HZ+1)    /* 5 sec intervals */
#define EXP_1           1884        /* 1/exp(5sec/1min) as fixed-point */
#define EXP_5           2014        /* 1/exp(5sec/5min) */
#define EXP_15          2037        /* 1/exp(5sec/15min) */

#define CALC_LOAD(load,exp,n) \
      load *= exp; \
      load += n*(FIXED_1-exp); \
      load >>= FSHIFT;

extern unsigned long total_forks;
extern int nr_threads;
DECLARE_PER_CPU(unsigned long, process_counts);
extern int nr_processes(void);
extern unsigned long nr_running(void);
extern unsigned long nr_uninterruptible(void);
extern unsigned long nr_iowait(void);
extern void calc_global_load(void);
extern u64 cpu_nr_migrations(int cpu);

extern unsigned long get_parent_ip(unsigned long addr);

struct seq_file;
struct cfs_rq;
struct task_group;
#ifdef CONFIG_SCHED_DEBUG
extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
extern void proc_sched_set_task(struct task_struct *p);
extern void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
#else
static inline void
proc_sched_show_task(struct task_struct *p, struct seq_file *m)
{
}
static inline void proc_sched_set_task(struct task_struct *p)
{
}
static inline void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
}
#endif

extern unsigned long long time_sync_thresh;

/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
#define TASK_RUNNING          0
#define TASK_INTERRUPTIBLE    1
#define TASK_UNINTERRUPTIBLE  2
#define __TASK_STOPPED        4
#define __TASK_TRACED         8
/* in tsk->exit_state */
#define EXIT_ZOMBIE           16
#define EXIT_DEAD       32
/* in tsk->state again */
#define TASK_DEAD       64
#define TASK_WAKEKILL         128

/* Convenience macros for the sake of set_task_state */
#define TASK_KILLABLE         (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED          (TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED           (TASK_WAKEKILL | __TASK_TRACED)

/* Convenience macros for the sake of wake_up */
#define TASK_NORMAL           (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
#define TASK_ALL        (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)

/* get_task_state() */
#define TASK_REPORT           (TASK_RUNNING | TASK_INTERRUPTIBLE | \
                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
                         __TASK_TRACED)

#define task_is_traced(task)  ((task->state & __TASK_TRACED) != 0)
#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
#define task_is_stopped_or_traced(task)   \
                  ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
#define task_contributes_to_load(task)    \
                        ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
                         (task->flags & PF_FREEZING) == 0)

#define __set_task_state(tsk, state_value)            \
      do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value)        \
      set_mb((tsk)->state, (state_value))

/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
 *    set_current_state(TASK_UNINTERRUPTIBLE);
 *    if (do_i_need_to_sleep())
 *          schedule();
 *
 * If the caller does not need such serialisation then use __set_current_state()
 */
#define __set_current_state(state_value)              \
      do { current->state = (state_value); } while (0)
#define set_current_state(state_value)          \
      set_mb(current->state, (state_value))

/* Task command name length */
#define TASK_COMM_LEN 16

#include <linux/spinlock.h>

/*
 * This serializes "schedule()" and also protects
 * the run-queue from deletions/modifications (but
 * _adding_ to the beginning of the run-queue has
 * a separate lock).
 */
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;

struct task_struct;

extern void sched_init(void);
extern void sched_init_smp(void);
extern asmlinkage void schedule_tail(struct task_struct *prev);
extern void init_idle(struct task_struct *idle, int cpu);
extern void init_idle_bootup_task(struct task_struct *idle);

extern int runqueue_is_locked(void);
extern void task_rq_unlock_wait(struct task_struct *p);

extern cpumask_var_t nohz_cpu_mask;
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
extern int select_nohz_load_balancer(int cpu);
extern int get_nohz_load_balancer(void);
#else
static inline int select_nohz_load_balancer(int cpu)
{
      return 0;
}
#endif

/*
 * Only dump TASK_* tasks. (0 for all tasks)
 */
extern void show_state_filter(unsigned long state_filter);

static inline void show_state(void)
{
      show_state_filter(0);
}

extern void show_regs(struct pt_regs *);

/*
 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 * task), SP is the stack pointer of the first frame that should be shown in the back
 * trace (or NULL if the entire call-chain of the task should be shown).
 */
extern void show_stack(struct task_struct *task, unsigned long *sp);

void io_schedule(void);
long io_schedule_timeout(long timeout);

extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void scheduler_tick(void);

extern void sched_show_task(struct task_struct *p);

#ifdef CONFIG_DETECT_SOFTLOCKUP
extern void softlockup_tick(void);
extern void touch_softlockup_watchdog(void);
extern void touch_all_softlockup_watchdogs(void);
extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
                            struct file *filp, void __user *buffer,
                            size_t *lenp, loff_t *ppos);
extern unsigned int  softlockup_panic;
extern int softlockup_thresh;
#else
static inline void softlockup_tick(void)
{
}
static inline void touch_softlockup_watchdog(void)
{
}
static inline void touch_all_softlockup_watchdogs(void)
{
}
#endif

#ifdef CONFIG_DETECT_HUNG_TASK
extern unsigned int  sysctl_hung_task_panic;
extern unsigned long sysctl_hung_task_check_count;
extern unsigned long sysctl_hung_task_timeout_secs;
extern unsigned long sysctl_hung_task_warnings;
extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
                               struct file *filp, void __user *buffer,
                               size_t *lenp, loff_t *ppos);
#endif

/* Attach to any functions which should be ignored in wchan output. */
#define __sched         __attribute__((__section__(".sched.text")))

/* Linker adds these: start and end of __sched functions */
extern char __sched_text_start[], __sched_text_end[];

/* Is this address in the __sched functions? */
extern int in_sched_functions(unsigned long addr);

#define     MAX_SCHEDULE_TIMEOUT    LONG_MAX
extern signed long schedule_timeout(signed long timeout);
extern signed long schedule_timeout_interruptible(signed long timeout);
extern signed long schedule_timeout_killable(signed long timeout);
extern signed long schedule_timeout_uninterruptible(signed long timeout);
asmlinkage void __schedule(void);
asmlinkage void schedule(void);
extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);

struct nsproxy;
struct user_namespace;

/*
 * Default maximum number of active map areas, this limits the number of vmas
 * per mm struct. Users can overwrite this number by sysctl but there is a
 * problem.
 *
 * When a program's coredump is generated as ELF format, a section is created
 * per a vma. In ELF, the number of sections is represented in unsigned short.
 * This means the number of sections should be smaller than 65535 at coredump.
 * Because the kernel adds some informative sections to a image of program at
 * generating coredump, we need some margin. The number of extra sections is
 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 */
#define MAPCOUNT_ELF_CORE_MARGIN    (5)
#define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)

extern int sysctl_max_map_count;

#include <linux/aio.h>

extern unsigned long
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
                   unsigned long, unsigned long);
extern unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
                    unsigned long len, unsigned long pgoff,
                    unsigned long flags);
extern void arch_unmap_area(struct mm_struct *, unsigned long);
extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);

#if USE_SPLIT_PTLOCKS
/*
 * The mm counters are not protected by its page_table_lock,
 * so must be incremented atomically.
 */
#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)

#else  /* !USE_SPLIT_PTLOCKS */
/*
 * The mm counters are protected by its page_table_lock,
 * so can be incremented directly.
 */
#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
#define get_mm_counter(mm, member) ((mm)->_##member)
#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
#define inc_mm_counter(mm, member) (mm)->_##member++
#define dec_mm_counter(mm, member) (mm)->_##member--

#endif /* !USE_SPLIT_PTLOCKS */

#define get_mm_rss(mm)                          \
      (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
#define update_hiwater_rss(mm)      do {              \
      unsigned long _rss = get_mm_rss(mm);            \
      if ((mm)->hiwater_rss < _rss)             \
            (mm)->hiwater_rss = _rss;           \
} while (0)
#define update_hiwater_vm(mm) do {              \
      if ((mm)->hiwater_vm < (mm)->total_vm)          \
            (mm)->hiwater_vm = (mm)->total_vm;  \
} while (0)

static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
{
      return max(mm->hiwater_rss, get_mm_rss(mm));
}

static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
{
      return max(mm->hiwater_vm, mm->total_vm);
}

extern void set_dumpable(struct mm_struct *mm, int value);
extern int get_dumpable(struct mm_struct *mm);

/* mm flags */
/* dumpable bits */
#define MMF_DUMPABLE      0  /* core dump is permitted */
#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
#define MMF_DUMPABLE_BITS 2

/* coredump filter bits */
#define MMF_DUMP_ANON_PRIVATE 2
#define MMF_DUMP_ANON_SHARED  3
#define MMF_DUMP_MAPPED_PRIVATE     4
#define MMF_DUMP_MAPPED_SHARED      5
#define MMF_DUMP_ELF_HEADERS  6
#define MMF_DUMP_HUGETLB_PRIVATE 7
#define MMF_DUMP_HUGETLB_SHARED  8
#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
#define MMF_DUMP_FILTER_BITS  7
#define MMF_DUMP_FILTER_MASK \
      (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
#define MMF_DUMP_FILTER_DEFAULT \
      ((1 << MMF_DUMP_ANON_PRIVATE) |     (1 << MMF_DUMP_ANON_SHARED) |\
       (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)

#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
# define MMF_DUMP_MASK_DEFAULT_ELF  (1 << MMF_DUMP_ELF_HEADERS)
#else
# define MMF_DUMP_MASK_DEFAULT_ELF  0
#endif

struct sighand_struct {
      atomic_t          count;
      struct k_sigaction      action[_NSIG];
      spinlock_t        siglock;
      wait_queue_head_t signalfd_wqh;
};

struct pacct_struct {
      int               ac_flag;
      long              ac_exitcode;
      unsigned long           ac_mem;
      cputime_t         ac_utime, ac_stime;
      unsigned long           ac_minflt, ac_majflt;
};

/**
 * struct task_cputime - collected CPU time counts
 * @utime:        time spent in user mode, in &cputime_t units
 * @stime:        time spent in kernel mode, in &cputime_t units
 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 *
 * This structure groups together three kinds of CPU time that are
 * tracked for threads and thread groups.  Most things considering
 * CPU time want to group these counts together and treat all three
 * of them in parallel.
 */
struct task_cputime {
      cputime_t utime;
      cputime_t stime;
      unsigned long long sum_exec_runtime;
};
/* Alternate field names when used to cache expirations. */
#define prof_exp  stime
#define virt_exp  utime
#define sched_exp sum_exec_runtime

#define INIT_CPUTIME    \
      (struct task_cputime) {                         \
            .utime = cputime_zero,                    \
            .stime = cputime_zero,                    \
            .sum_exec_runtime = 0,                    \
      }

/*
 * Disable preemption until the scheduler is running.
 * Reset by start_kernel()->sched_init()->init_idle().
 *
 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 * before the scheduler is active -- see should_resched().
 */
#define INIT_PREEMPT_COUNT    (1 + PREEMPT_ACTIVE)

/**
 * struct thread_group_cputimer - thread group interval timer counts
 * @cputime:            thread group interval timers.
 * @running:            non-zero when there are timers running and
 *                @cputime receives updates.
 * @lock:         lock for fields in this struct.
 *
 * This structure contains the version of task_cputime, above, that is
 * used for thread group CPU timer calculations.
 */
struct thread_group_cputimer {
      struct task_cputime cputime;
      int running;
      spinlock_t lock;
};

/*
 * NOTE! "signal_struct" does not have it's own
 * locking, because a shared signal_struct always
 * implies a shared sighand_struct, so locking
 * sighand_struct is always a proper superset of
 * the locking of signal_struct.
 */
struct signal_struct {
      atomic_t          count;
      atomic_t          live;

      wait_queue_head_t wait_chldexit;    /* for wait4() */

      /* current thread group signal load-balancing target: */
      struct task_struct      *curr_target;

      /* shared signal handling: */
      struct sigpending shared_pending;

      /* thread group exit support */
      int               group_exit_code;
      /* overloaded:
       * - notify group_exit_task when ->count is equal to notify_count
       * - everyone except group_exit_task is stopped during signal delivery
       *   of fatal signals, group_exit_task processes the signal.
       */
      int               notify_count;
      struct task_struct      *group_exit_task;

      /* thread group stop support, overloads group_exit_code too */
      int               group_stop_count;
      unsigned int            flags; /* see SIGNAL_* flags below */

      /* POSIX.1b Interval Timers */
      struct list_head posix_timers;

      /* ITIMER_REAL timer for the process */
      struct hrtimer real_timer;
      struct pid *leader_pid;
      ktime_t it_real_incr;

      /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
      cputime_t it_prof_expires, it_virt_expires;
      cputime_t it_prof_incr, it_virt_incr;

      /*
       * Thread group totals for process CPU timers.
       * See thread_group_cputimer(), et al, for details.
       */
      struct thread_group_cputimer cputimer;

      /* Earliest-expiration cache. */
      struct task_cputime cputime_expires;

      struct list_head cpu_timers[3];

      struct pid *tty_old_pgrp;

      /* boolean value for session group leader */
      int leader;

      struct tty_struct *tty; /* NULL if no tty */

      /*
       * Cumulative resource counters for dead threads in the group,
       * and for reaped dead child processes forked by this group.
       * Live threads maintain their own counters and add to these
       * in __exit_signal, except for the group leader.
       */
      cputime_t utime, stime, cutime, cstime;
      cputime_t gtime;
      cputime_t cgtime;
      unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
      unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
      unsigned long inblock, oublock, cinblock, coublock;
      struct task_io_accounting ioac;

      /*
       * Cumulative ns of schedule CPU time fo dead threads in the
       * group, not including a zombie group leader, (This only differs
       * from jiffies_to_ns(utime + stime) if sched_clock uses something
       * other than jiffies.)
       */
      unsigned long long sum_sched_runtime;

      /*
       * We don't bother to synchronize most readers of this at all,
       * because there is no reader checking a limit that actually needs
       * to get both rlim_cur and rlim_max atomically, and either one
       * alone is a single word that can safely be read normally.
       * getrlimit/setrlimit use task_lock(current->group_leader) to
       * protect this instead of the siglock, because they really
       * have no need to disable irqs.
       */
      struct rlimit rlim[RLIM_NLIMITS];

#ifdef CONFIG_BSD_PROCESS_ACCT
      struct pacct_struct pacct;    /* per-process accounting information */
#endif
#ifdef CONFIG_TASKSTATS
      struct taskstats *stats;
#endif
#ifdef CONFIG_AUDIT
      unsigned audit_tty;
      struct tty_audit_buf *tty_audit_buf;
#endif
};

/* Context switch must be unlocked if interrupts are to be enabled */
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
# define __ARCH_WANT_UNLOCKED_CTXSW
#endif

/*
 * Bits in flags field of signal_struct.
 */
#define SIGNAL_STOP_STOPPED   0x00000001 /* job control stop in effect */
#define SIGNAL_STOP_DEQUEUED  0x00000002 /* stop signal dequeued */
#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
#define SIGNAL_GROUP_EXIT     0x00000008 /* group exit in progress */
/*
 * Pending notifications to parent.
 */
#define SIGNAL_CLD_STOPPED    0x00000010
#define SIGNAL_CLD_CONTINUED  0x00000020
#define SIGNAL_CLD_MASK       (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)

#define SIGNAL_UNKILLABLE     0x00000040 /* for init: ignore fatal signals */

/* If true, all threads except ->group_exit_task have pending SIGKILL */
static inline int signal_group_exit(const struct signal_struct *sig)
{
      return      (sig->flags & SIGNAL_GROUP_EXIT) ||
            (sig->group_exit_task != NULL);
}

/*
 * Some day this will be a full-fledged user tracking system..
 */
struct user_struct {
      atomic_t __count; /* reference count */
      atomic_t processes;     /* How many processes does this user have? */
      atomic_t files;         /* How many open files does this user have? */
      atomic_t sigpending;    /* How many pending signals does this user have? */
#ifdef CONFIG_INOTIFY_USER
      atomic_t inotify_watches; /* How many inotify watches does this user have? */
      atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
#endif
#ifdef CONFIG_EPOLL
      atomic_t epoll_watches; /* The number of file descriptors currently watched */
#endif
#ifdef CONFIG_POSIX_MQUEUE
      /* protected by mq_lock */
      unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
#endif
      unsigned long locked_shm; /* How many pages of mlocked shm ? */

#ifdef CONFIG_KEYS
      struct key *uid_keyring;      /* UID specific keyring */
      struct key *session_keyring;  /* UID's default session keyring */
#endif

      /* Hash table maintenance information */
      struct hlist_node uidhash_node;
      uid_t uid;
      struct user_namespace *user_ns;

#ifdef CONFIG_USER_SCHED
      struct task_group *tg;
#ifdef CONFIG_SYSFS
      struct kobject kobj;
      struct delayed_work work;
#endif
#endif

#ifdef CONFIG_PERF_COUNTERS
      atomic_long_t locked_vm;
#endif
};

extern int uids_sysfs_init(void);

extern struct user_struct *find_user(uid_t);

extern struct user_struct root_user;
#define INIT_USER (&root_user)


struct backing_dev_info;
struct reclaim_state;

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
struct sched_info {
      /* cumulative counters */
      unsigned long pcount;         /* # of times run on this cpu */
      unsigned long long run_delay; /* time spent waiting on a runqueue */

      /* timestamps */
      unsigned long long last_arrival,/* when we last ran on a cpu */
                     last_queued;   /* when we were last queued to run */
#ifdef CONFIG_SCHEDSTATS
      /* BKL stats */
      unsigned int bkl_count;
#endif
};
#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */

#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info {
      spinlock_t  lock;
      unsigned int      flags;      /* Private per-task flags */

      /* For each stat XXX, add following, aligned appropriately
       *
       * struct timespec XXX_start, XXX_end;
       * u64 XXX_delay;
       * u32 XXX_count;
       *
       * Atomicity of updates to XXX_delay, XXX_count protected by
       * single lock above (split into XXX_lock if contention is an issue).
       */

      /*
       * XXX_count is incremented on every XXX operation, the delay
       * associated with the operation is added to XXX_delay.
       * XXX_delay contains the accumulated delay time in nanoseconds.
       */
      struct timespec blkio_start, blkio_end;   /* Shared by blkio, swapin */
      u64 blkio_delay;  /* wait for sync block io completion */
      u64 swapin_delay; /* wait for swapin block io completion */
      u32 blkio_count;  /* total count of the number of sync block */
                        /* io operations performed */
      u32 swapin_count; /* total count of the number of swapin block */
                        /* io operations performed */

      struct timespec freepages_start, freepages_end;
      u64 freepages_delay;    /* wait for memory reclaim */
      u32 freepages_count;    /* total count of memory reclaim */
};
#endif      /* CONFIG_TASK_DELAY_ACCT */

static inline int sched_info_on(void)
{
#ifdef CONFIG_SCHEDSTATS
      return 1;
#elif defined(CONFIG_TASK_DELAY_ACCT)
      extern int delayacct_on;
      return delayacct_on;
#else
      return 0;
#endif
}

enum cpu_idle_type {
      CPU_IDLE,
      CPU_NOT_IDLE,
      CPU_NEWLY_IDLE,
      CPU_MAX_IDLE_TYPES
};

/*
 * sched-domains (multiprocessor balancing) declarations:
 */

/*
 * Increase resolution of nice-level calculations:
 */
#define SCHED_LOAD_SHIFT      10
#define SCHED_LOAD_SCALE      (1L << SCHED_LOAD_SHIFT)

#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE

#ifdef CONFIG_SMP
#define SD_LOAD_BALANCE       1     /* Do load balancing on this domain. */
#define SD_BALANCE_NEWIDLE    2     /* Balance when about to become idle */
#define SD_BALANCE_EXEC       4     /* Balance on exec */
#define SD_BALANCE_FORK       8     /* Balance on fork, clone */
#define SD_WAKE_IDLE          16    /* Wake to idle CPU on task wakeup */
#define SD_WAKE_AFFINE        32    /* Wake task to waking CPU */
#define SD_WAKE_BALANCE       64    /* Perform balancing at task wakeup */
#define SD_SHARE_CPUPOWER     128   /* Domain members share cpu power */
#define SD_POWERSAVINGS_BALANCE     256   /* Balance for power savings */
#define SD_SHARE_PKG_RESOURCES      512   /* Domain members share cpu pkg resources */
#define SD_SERIALIZE          1024  /* Only a single load balancing instance */
#define SD_WAKE_IDLE_FAR      2048  /* Gain latency sacrificing cache hit */

enum powersavings_balance_level {
      POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
      POWERSAVINGS_BALANCE_BASIC,   /* Fill one thread/core/package
                               * first for long running threads
                               */
      POWERSAVINGS_BALANCE_WAKEUP,  /* Also bias task wakeups to semi-idle
                               * cpu package for power savings
                               */
      MAX_POWERSAVINGS_BALANCE_LEVELS
};

extern int sched_mc_power_savings, sched_smt_power_savings;

static inline int sd_balance_for_mc_power(void)
{
      if (sched_smt_power_savings)
            return SD_POWERSAVINGS_BALANCE;

      return 0;
}

static inline int sd_balance_for_package_power(void)
{
      if (sched_mc_power_savings | sched_smt_power_savings)
            return SD_POWERSAVINGS_BALANCE;

      return 0;
}

/*
 * Optimise SD flags for power savings:
 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
 * Keep default SD flags if sched_{smt,mc}_power_saving=0
 */

static inline int sd_power_saving_flags(void)
{
      if (sched_mc_power_savings | sched_smt_power_savings)
            return SD_BALANCE_NEWIDLE;

      return 0;
}

struct sched_group {
      struct sched_group *next;     /* Must be a circular list */

      /*
       * CPU power of this group, SCHED_LOAD_SCALE being max power for a
       * single CPU. This is read only (except for setup, hotplug CPU).
       * Note : Never change cpu_power without recompute its reciprocal
       */
      unsigned int __cpu_power;
      /*
       * reciprocal value of cpu_power to avoid expensive divides
       * (see include/linux/reciprocal_div.h)
       */
      u32 reciprocal_cpu_power;

      /*
       * The CPUs this group covers.
       *
       * NOTE: this field is variable length. (Allocated dynamically
       * by attaching extra space to the end of the structure,
       * depending on how many CPUs the kernel has booted up with)
       *
       * It is also be embedded into static data structures at build
       * time. (See 'struct static_sched_group' in kernel/sched.c)
       */
      unsigned long cpumask[0];
};

static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
{
      return to_cpumask(sg->cpumask);
}

enum sched_domain_level {
      SD_LV_NONE = 0,
      SD_LV_SIBLING,
      SD_LV_MC,
      SD_LV_CPU,
      SD_LV_NODE,
      SD_LV_ALLNODES,
      SD_LV_MAX
};

struct sched_domain_attr {
      int relax_domain_level;
};

#define SD_ATTR_INIT    (struct sched_domain_attr) {  \
      .relax_domain_level = -1,                 \
}

struct sched_domain {
      /* These fields must be setup */
      struct sched_domain *parent;  /* top domain must be null terminated */
      struct sched_domain *child;   /* bottom domain must be null terminated */
      struct sched_group *groups;   /* the balancing groups of the domain */
      unsigned long min_interval;   /* Minimum balance interval ms */
      unsigned long max_interval;   /* Maximum balance interval ms */
      unsigned int busy_factor;     /* less balancing by factor if busy */
      unsigned int imbalance_pct;   /* No balance until over watermark */
      unsigned int cache_nice_tries;      /* Leave cache hot tasks for # tries */
      unsigned int busy_idx;
      unsigned int idle_idx;
      unsigned int newidle_idx;
      unsigned int wake_idx;
      unsigned int forkexec_idx;
      int flags;              /* See SD_* */
      enum sched_domain_level level;

      /* Runtime fields. */
      unsigned long last_balance;   /* init to jiffies. units in jiffies */
      unsigned int balance_interval;      /* initialise to 1. units in ms. */
      unsigned int nr_balance_failed; /* initialise to 0 */

      u64 last_update;

#ifdef CONFIG_SCHEDSTATS
      /* load_balance() stats */
      unsigned int lb_count[CPU_MAX_IDLE_TYPES];
      unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
      unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
      unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
      unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
      unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
      unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
      unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];

      /* Active load balancing */
      unsigned int alb_count;
      unsigned int alb_failed;
      unsigned int alb_pushed;

      /* SD_BALANCE_EXEC stats */
      unsigned int sbe_count;
      unsigned int sbe_balanced;
      unsigned int sbe_pushed;

      /* SD_BALANCE_FORK stats */
      unsigned int sbf_count;
      unsigned int sbf_balanced;
      unsigned int sbf_pushed;

      /* try_to_wake_up() stats */
      unsigned int ttwu_wake_remote;
      unsigned int ttwu_move_affine;
      unsigned int ttwu_move_balance;
#endif
#ifdef CONFIG_SCHED_DEBUG
      char *name;
#endif

      /*
       * Span of all CPUs in this domain.
       *
       * NOTE: this field is variable length. (Allocated dynamically
       * by attaching extra space to the end of the structure,
       * depending on how many CPUs the kernel has booted up with)
       *
       * It is also be embedded into static data structures at build
       * time. (See 'struct static_sched_domain' in kernel/sched.c)
       */
      unsigned long span[0];
};

static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
{
      return to_cpumask(sd->span);
}

extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
                            struct sched_domain_attr *dattr_new);

/* Test a flag in parent sched domain */
static inline int test_sd_parent(struct sched_domain *sd, int flag)
{
      if (sd->parent && (sd->parent->flags & flag))
            return 1;

      return 0;
}

#else /* CONFIG_SMP */

struct sched_domain_attr;

static inline void
partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
                  struct sched_domain_attr *dattr_new)
{
}
#endif      /* !CONFIG_SMP */

struct io_context;                  /* See blkdev.h */


#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
extern void prefetch_stack(struct task_struct *t);
#else
static inline void prefetch_stack(struct task_struct *t) { }
#endif

struct audit_context;         /* See audit.c */
struct mempolicy;
struct pipe_inode_info;
struct uts_namespace;

struct rq;
struct sched_domain;

struct sched_class {
      const struct sched_class *next;

      void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
      void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
      void (*yield_task) (struct rq *rq);

      void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);

      struct task_struct * (*pick_next_task) (struct rq *rq);
      void (*put_prev_task) (struct rq *rq, struct task_struct *p);

#ifdef CONFIG_SMP
      int  (*select_task_rq)(struct task_struct *p, int sync);

      unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
                  struct rq *busiest, unsigned long max_load_move,
                  struct sched_domain *sd, enum cpu_idle_type idle,
                  int *all_pinned, int *this_best_prio);

      int (*move_one_task) (struct rq *this_rq, int this_cpu,
                        struct rq *busiest, struct sched_domain *sd,
                        enum cpu_idle_type idle);
      void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
      int (*needs_post_schedule) (struct rq *this_rq);
      void (*post_schedule) (struct rq *this_rq);
      void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);

      void (*set_cpus_allowed)(struct task_struct *p,
                         const struct cpumask *newmask);

      void (*rq_online)(struct rq *rq);
      void (*rq_offline)(struct rq *rq);
#endif

      void (*set_curr_task) (struct rq *rq);
      void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
      void (*task_new) (struct rq *rq, struct task_struct *p);

      void (*switched_from) (struct rq *this_rq, struct task_struct *task,
                         int running);
      void (*switched_to) (struct rq *this_rq, struct task_struct *task,
                       int running);
      void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
                       int oldprio, int running);

#ifdef CONFIG_FAIR_GROUP_SCHED
      void (*moved_group) (struct task_struct *p);
#endif
};

struct load_weight {
      unsigned long weight, inv_weight;
};

/*
 * CFS stats for a schedulable entity (task, task-group etc)
 *
 * Current field usage histogram:
 *
 *     4 se->block_start
 *     4 se->run_node
 *     4 se->sleep_start
 *     6 se->load.weight
 */
struct sched_entity {
      struct load_weight      load;       /* for load-balancing */
      struct rb_node          run_node;
      struct list_head  group_node;
      unsigned int            on_rq;

      u64               exec_start;
      u64               sum_exec_runtime;
      u64               vruntime;
      u64               prev_sum_exec_runtime;

      u64               last_wakeup;
      u64               avg_overlap;

      u64               nr_migrations;

      u64               start_runtime;
      u64               avg_wakeup;

#ifdef CONFIG_SCHEDSTATS
      u64               wait_start;
      u64               wait_max;
      u64               wait_count;
      u64               wait_sum;

      u64               sleep_start;
      u64               sleep_max;
      s64               sum_sleep_runtime;

      u64               block_start;
      u64               block_max;
      u64               exec_max;
      u64               slice_max;

      u64               nr_migrations_cold;
      u64               nr_failed_migrations_affine;
      u64               nr_failed_migrations_running;
      u64               nr_failed_migrations_hot;
      u64               nr_forced_migrations;
      u64               nr_forced2_migrations;

      u64               nr_wakeups;
      u64               nr_wakeups_sync;
      u64               nr_wakeups_migrate;
      u64               nr_wakeups_local;
      u64               nr_wakeups_remote;
      u64               nr_wakeups_affine;
      u64               nr_wakeups_affine_attempts;
      u64               nr_wakeups_passive;
      u64               nr_wakeups_idle;
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
      struct sched_entity     *parent;
      /* rq on which this entity is (to be) queued: */
      struct cfs_rq           *cfs_rq;
      /* rq "owned" by this entity/group: */
      struct cfs_rq           *my_q;
#endif
};

struct sched_rt_entity {
      struct list_head run_list;
      unsigned long timeout;
      unsigned int time_slice;
      int nr_cpus_allowed;

      struct sched_rt_entity *back;
#ifdef CONFIG_RT_GROUP_SCHED
      struct sched_rt_entity  *parent;
      /* rq on which this entity is (to be) queued: */
      struct rt_rq            *rt_rq;
      /* rq "owned" by this entity/group: */
      struct rt_rq            *my_q;
#endif
};

struct task_struct {
      volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
      void *stack;
      atomic_t usage;
      unsigned int flags;     /* per process flags, defined below */
      unsigned int ptrace;

      int lock_depth;         /* BKL lock depth */

#ifdef CONFIG_SMP
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
      int oncpu;
#endif
#endif

      int prio, static_prio, normal_prio;
      unsigned int rt_priority;
      const struct sched_class *sched_class;
      struct sched_entity se;
      struct sched_rt_entity rt;

#ifdef CONFIG_PREEMPT_NOTIFIERS
      /* list of struct preempt_notifier: */
      struct hlist_head preempt_notifiers;
#endif

      /*
       * fpu_counter contains the number of consecutive context switches
       * that the FPU is used. If this is over a threshold, the lazy fpu
       * saving becomes unlazy to save the trap. This is an unsigned char
       * so that after 256 times the counter wraps and the behavior turns
       * lazy again; this to deal with bursty apps that only use FPU for
       * a short time
       */
      unsigned char fpu_counter;
      s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
#ifdef CONFIG_BLK_DEV_IO_TRACE
      unsigned int btrace_seq;
#endif

      unsigned int policy;
      cpumask_t cpus_allowed;

#ifdef CONFIG_PREEMPT_RCU
      int rcu_read_lock_nesting;
      int rcu_flipctr_idx;
#endif /* #ifdef CONFIG_PREEMPT_RCU */

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
      struct sched_info sched_info;
#endif

      struct list_head tasks;
      struct plist_node pushable_tasks;

      struct mm_struct *mm, *active_mm;

/* task state */
      struct linux_binfmt *binfmt;
      int exit_state;
      int exit_code, exit_signal;
      int pdeath_signal;  /*  The signal sent when the parent dies  */
      /* ??? */
      unsigned int personality;
      unsigned did_exec:1;
      unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
                         * execve */
      pid_t pid;
      pid_t tgid;

      /* Canary value for the -fstack-protector gcc feature */
      unsigned long stack_canary;

      /* 
       * pointers to (original) parent process, youngest child, younger sibling,
       * older sibling, respectively.  (p->father can be replaced with 
       * p->real_parent->pid)
       */
      struct task_struct *real_parent; /* real parent process */
      struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
      /*
       * children/sibling forms the list of my natural children
       */
      struct list_head children;    /* list of my children */
      struct list_head sibling;     /* linkage in my parent's children list */
      struct task_struct *group_leader;   /* threadgroup leader */

      /*
       * ptraced is the list of tasks this task is using ptrace on.
       * This includes both natural children and PTRACE_ATTACH targets.
       * p->ptrace_entry is p's link on the p->parent->ptraced list.
       */
      struct list_head ptraced;
      struct list_head ptrace_entry;

      /*
       * This is the tracer handle for the ptrace BTS extension.
       * This field actually belongs to the ptracer task.
       */
      struct bts_context *bts;

      /* PID/PID hash table linkage. */
      struct pid_link pids[PIDTYPE_MAX];
      struct list_head thread_group;

      struct completion *vfork_done;            /* for vfork() */
      int __user *set_child_tid;          /* CLONE_CHILD_SETTID */
      int __user *clear_child_tid;        /* CLONE_CHILD_CLEARTID */

      cputime_t utime, stime, utimescaled, stimescaled;
      cputime_t gtime;
      cputime_t prev_utime, prev_stime;
      unsigned long nvcsw, nivcsw; /* context switch counts */
      struct timespec start_time;         /* monotonic time */
      struct timespec real_start_time;    /* boot based time */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
      unsigned long min_flt, maj_flt;

      struct task_cputime cputime_expires;
      struct list_head cpu_timers[3];

/* process credentials */
      const struct cred *real_cred; /* objective and real subjective task
                               * credentials (COW) */
      const struct cred *cred;      /* effective (overridable) subjective task
                               * credentials (COW) */
      struct mutex cred_guard_mutex;      /* guard against foreign influences on
                               * credential calculations
                               * (notably. ptrace) */

      char comm[TASK_COMM_LEN]; /* executable name excluding path
                             - access with [gs]et_task_comm (which lock
                               it with task_lock())
                             - initialized normally by flush_old_exec */
/* file system info */
      int link_count, total_link_count;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
      struct sysv_sem sysvsem;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */
      unsigned long last_switch_count;
#endif
/* CPU-specific state of this task */
      struct thread_struct thread;
/* filesystem information */
      struct fs_struct *fs;
/* open file information */
      struct files_struct *files;
/* namespaces */
      struct nsproxy *nsproxy;
/* signal handlers */
      struct signal_struct *signal;
      struct sighand_struct *sighand;

      sigset_t blocked, real_blocked;
      sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
      struct sigpending pending;

      unsigned long sas_ss_sp;
      size_t sas_ss_size;
      int (*notifier)(void *priv);
      void *notifier_data;
      sigset_t *notifier_mask;
      struct audit_context *audit_context;
#ifdef CONFIG_AUDITSYSCALL
      uid_t loginuid;
      unsigned int sessionid;
#endif
      seccomp_t seccomp;

/* Thread group tracking */
      u32 parent_exec_id;
      u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
 * mempolicy */
      spinlock_t alloc_lock;

#ifdef CONFIG_GENERIC_HARDIRQS
      /* IRQ handler threads */
      struct irqaction *irqaction;
#endif

      /* Protection of the PI data structures: */
      spinlock_t pi_lock;

#ifdef CONFIG_RT_MUTEXES
      /* PI waiters blocked on a rt_mutex held by this task */
      struct plist_head pi_waiters;
      /* Deadlock detection and priority inheritance handling */
      struct rt_mutex_waiter *pi_blocked_on;
#endif

#ifdef CONFIG_DEBUG_MUTEXES
      /* mutex deadlock detection */
      struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
      unsigned int irq_events;
      int hardirqs_enabled;
      unsigned long hardirq_enable_ip;
      unsigned int hardirq_enable_event;
      unsigned long hardirq_disable_ip;
      unsigned int hardirq_disable_event;
      int softirqs_enabled;
      unsigned long softirq_disable_ip;
      unsigned int softirq_disable_event;
      unsigned long softirq_enable_ip;
      unsigned int softirq_enable_event;
      int hardirq_context;
      int softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
      u64 curr_chain_key;
      int lockdep_depth;
      unsigned int lockdep_recursion;
      struct held_lock held_locks[MAX_LOCK_DEPTH];
      gfp_t lockdep_reclaim_gfp;
#endif

/* journalling filesystem info */
      void *journal_info;

/* stacked block device info */
      struct bio *bio_list, **bio_tail;

/* VM state */
      struct reclaim_state *reclaim_state;

      struct backing_dev_info *backing_dev_info;

      struct io_context *io_context;

      unsigned long ptrace_message;
      siginfo_t *last_siginfo; /* For ptrace use.  */
      struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
      u64 acct_rss_mem1;      /* accumulated rss usage */
      u64 acct_vm_mem1; /* accumulated virtual memory usage */
      cputime_t acct_timexpd; /* stime + utime since last update */
#endif
#ifdef CONFIG_CPUSETS
      nodemask_t mems_allowed;      /* Protected by alloc_lock */
      int cpuset_mem_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
      /* Control Group info protected by css_set_lock */
      struct css_set *cgroups;
      /* cg_list protected by css_set_lock and tsk->alloc_lock */
      struct list_head cg_list;
#endif
#ifdef CONFIG_FUTEX
      struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
      struct compat_robust_list_head __user *compat_robust_list;
#endif
      struct list_head pi_state_list;
      struct futex_pi_state *pi_state_cache;
#endif
#ifdef CONFIG_PERF_COUNTERS
      struct perf_counter_context *perf_counter_ctxp;
      struct mutex perf_counter_mutex;
      struct list_head perf_counter_list;
#endif
#ifdef CONFIG_NUMA
      struct mempolicy *mempolicy;  /* Protected by alloc_lock */
      short il_next;
#endif
      atomic_t fs_excl; /* holding fs exclusive resources */
      struct rcu_head rcu;

      /*
       * cache last used pipe for splice
       */
      struct pipe_inode_info *splice_pipe;
#ifdef      CONFIG_TASK_DELAY_ACCT
      struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
      int make_it_fail;
#endif
      struct prop_local_single dirties;
#ifdef CONFIG_LATENCYTOP
      int latency_record_count;
      struct latency_record latency_record[LT_SAVECOUNT];
#endif
      /*
       * time slack values; these are used to round up poll() and
       * select() etc timeout values. These are in nanoseconds.
       */
      unsigned long timer_slack_ns;
      unsigned long default_timer_slack_ns;

      struct list_head  *scm_work_list;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
      /* Index of current stored adress in ret_stack */
      int curr_ret_stack;
      /* Stack of return addresses for return function tracing */
      struct ftrace_ret_stack *ret_stack;
      /* time stamp for last schedule */
      unsigned long long ftrace_timestamp;
      /*
       * Number of functions that haven't been traced
       * because of depth overrun.
       */
      atomic_t trace_overrun;
      /* Pause for the tracing */
      atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
      /* state flags for use by tracers */
      unsigned long trace;
      /* bitmask of trace recursion */
      unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
};

/* Future-safe accessor for struct task_struct's cpus_allowed. */
#define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)

/*
 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
 * values are inverted: lower p->prio value means higher priority.
 *
 * The MAX_USER_RT_PRIO value allows the actual maximum
 * RT priority to be separate from the value exported to
 * user-space.  This allows kernel threads to set their
 * priority to a value higher than any user task. Note:
 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
 */

#define MAX_USER_RT_PRIO      100
#define MAX_RT_PRIO           MAX_USER_RT_PRIO

#define MAX_PRIO        (MAX_RT_PRIO + 40)
#define DEFAULT_PRIO          (MAX_RT_PRIO + 20)

static inline int rt_prio(int prio)
{
      if (unlikely(prio < MAX_RT_PRIO))
            return 1;
      return 0;
}

static inline int rt_task(struct task_struct *p)
{
      return rt_prio(p->prio);
}

static inline struct pid *task_pid(struct task_struct *task)
{
      return task->pids[PIDTYPE_PID].pid;
}

static inline struct pid *task_tgid(struct task_struct *task)
{
      return task->group_leader->pids[PIDTYPE_PID].pid;
}

/*
 * Without tasklist or rcu lock it is not safe to dereference
 * the result of task_pgrp/task_session even if task == current,
 * we can race with another thread doing sys_setsid/sys_setpgid.
 */
static inline struct pid *task_pgrp(struct task_struct *task)
{
      return task->group_leader->pids[PIDTYPE_PGID].pid;
}

static inline struct pid *task_session(struct task_struct *task)
{
      return task->group_leader->pids[PIDTYPE_SID].pid;
}

struct pid_namespace;

/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * set_task_vxid()   : assigns a virtual id to a task;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
                  struct pid_namespace *ns);

static inline pid_t task_pid_nr(struct task_struct *tsk)
{
      return tsk->pid;
}

static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
                              struct pid_namespace *ns)
{
      return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
      return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
}


static inline pid_t task_tgid_nr(struct task_struct *tsk)
{
      return tsk->tgid;
}

pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
      return pid_vnr(task_tgid(tsk));
}


static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
                              struct pid_namespace *ns)
{
      return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
      return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
}


static inline pid_t task_session_nr_ns(struct task_struct *tsk,
                              struct pid_namespace *ns)
{
      return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
      return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
}

/* obsolete, do not use */
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
      return task_pgrp_nr_ns(tsk, &init_pid_ns);
}

/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 */
static inline int pid_alive(struct task_struct *p)
{
      return p->pids[PIDTYPE_PID].pid != NULL;
}

/**
 * is_global_init - check if a task structure is init
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
 */
static inline int is_global_init(struct task_struct *tsk)
{
      return tsk->pid == 1;
}

/*
 * is_container_init:
 * check whether in the task is init in its own pid namespace.
 */
extern int is_container_init(struct task_struct *tsk);

extern struct pid *cad_pid;

extern void free_task(struct task_struct *tsk);
#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)

extern void __put_task_struct(struct task_struct *t);

static inline void put_task_struct(struct task_struct *t)
{
      if (atomic_dec_and_test(&t->usage))
            __put_task_struct(t);
}

extern cputime_t task_utime(struct task_struct *p);
extern cputime_t task_stime(struct task_struct *p);
extern cputime_t task_gtime(struct task_struct *p);

/*
 * Per process flags
 */
#define PF_ALIGNWARN    0x00000001  /* Print alignment warning msgs */
                              /* Not implemented yet, only for 486*/
#define PF_STARTING     0x00000002  /* being created */
#define PF_EXITING      0x00000004  /* getting shut down */
#define PF_EXITPIDONE   0x00000008  /* pi exit done on shut down */
#define PF_VCPU         0x00000010  /* I'm a virtual CPU */
#define PF_FORKNOEXEC   0x00000040  /* forked but didn't exec */
#define PF_SUPERPRIV    0x00000100  /* used super-user privileges */
#define PF_DUMPCORE     0x00000200  /* dumped core */
#define PF_SIGNALED     0x00000400  /* killed by a signal */
#define PF_MEMALLOC     0x00000800  /* Allocating memory */
#define PF_FLUSHER      0x00001000  /* responsible for disk writeback */
#define PF_USED_MATH    0x00002000  /* if unset the fpu must be initialized before use */
#define PF_FREEZING     0x00004000  /* freeze in progress. do not account to load */
#define PF_NOFREEZE     0x00008000  /* this thread should not be frozen */
#define PF_FROZEN 0x00010000  /* frozen for system suspend */
#define PF_FSTRANS      0x00020000  /* inside a filesystem transaction */
#define PF_KSWAPD 0x00040000  /* I am kswapd */
#define PF_SWAPOFF      0x00080000  /* I am in swapoff */
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
#define PF_KTHREAD      0x00200000  /* I am a kernel thread */
#define PF_RANDOMIZE    0x00400000  /* randomize virtual address space */
#define PF_SWAPWRITE    0x00800000  /* Allowed to write to swap */
#define PF_SPREAD_PAGE  0x01000000  /* Spread page cache over cpuset */
#define PF_SPREAD_SLAB  0x02000000  /* Spread some slab caches over cpuset */
#define PF_THREAD_BOUND 0x04000000  /* Thread bound to specific cpu */
#define PF_MEMPOLICY    0x10000000  /* Non-default NUMA mempolicy */
#define PF_MUTEX_TESTER 0x20000000  /* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP 0x40000000  /* Freezer should not count it as freezeable */
#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math() clear_stopped_child_used_math(current)
#define set_used_math() set_stopped_child_used_math(current)
#define conditional_stopped_child_used_math(condition, child) \
      do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
#define conditional_used_math(condition) \
      conditional_stopped_child_used_math(condition, current)
#define copy_to_stopped_child_used_math(child) \
      do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)

#ifdef CONFIG_SMP
extern int set_cpus_allowed_ptr(struct task_struct *p,
                        const struct cpumask *new_mask);
#else
static inline int set_cpus_allowed_ptr(struct task_struct *p,
                               const struct cpumask *new_mask)
{
      if (!cpumask_test_cpu(0, new_mask))
            return -EINVAL;
      return 0;
}
#endif
static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
{
      return set_cpus_allowed_ptr(p, &new_mask);
}

/*
 * Architectures can set this to 1 if they have specified
 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
 * but then during bootup it turns out that sched_clock()
 * is reliable after all:
 */
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
extern int sched_clock_stable;
#endif

extern unsigned long long sched_clock(void);

extern void sched_clock_init(void);
extern u64 sched_clock_cpu(int cpu);

#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
static inline void sched_clock_tick(void)
{
}

static inline void sched_clock_idle_sleep_event(void)
{
}

static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
{
}
#else
extern void sched_clock_tick(void);
extern void sched_clock_idle_sleep_event(void);
extern void sched_clock_idle_wakeup_event(u64 delta_ns);
#endif

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
extern unsigned long long cpu_clock(int cpu);

extern unsigned long long
task_sched_runtime(struct task_struct *task);
extern unsigned long long thread_group_sched_runtime(struct task_struct *task);

/* sched_exec is called by processes performing an exec */
#ifdef CONFIG_SMP
extern void sched_exec(void);
#else
#define sched_exec()   {}
#endif

extern void sched_clock_idle_sleep_event(void);
extern void sched_clock_idle_wakeup_event(u64 delta_ns);

#ifdef CONFIG_HOTPLUG_CPU
extern void idle_task_exit(void);
#else
static inline void idle_task_exit(void) {}
#endif

extern void sched_idle_next(void);

#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
extern void wake_up_idle_cpu(int cpu);
#else
static inline void wake_up_idle_cpu(int cpu) { }
#endif

extern unsigned int sysctl_sched_latency;
extern unsigned int sysctl_sched_min_granularity;
extern unsigned int sysctl_sched_wakeup_granularity;
extern unsigned int sysctl_sched_shares_ratelimit;
extern unsigned int sysctl_sched_shares_thresh;
#ifdef CONFIG_SCHED_DEBUG
extern unsigned int sysctl_sched_child_runs_first;
extern unsigned int sysctl_sched_features;
extern unsigned int sysctl_sched_migration_cost;
extern unsigned int sysctl_sched_nr_migrate;
extern unsigned int sysctl_timer_migration;

int sched_nr_latency_handler(struct ctl_table *table, int write,
            struct file *file, void __user *buffer, size_t *length,
            loff_t *ppos);
#endif
#ifdef CONFIG_SCHED_DEBUG
static inline unsigned int get_sysctl_timer_migration(void)
{
      return sysctl_timer_migration;
}
#else
static inline unsigned int get_sysctl_timer_migration(void)
{
      return 1;
}
#endif
extern unsigned int sysctl_sched_rt_period;
extern int sysctl_sched_rt_runtime;

int sched_rt_handler(struct ctl_table *table, int write,
            struct file *filp, void __user *buffer, size_t *lenp,
            loff_t *ppos);

extern unsigned int sysctl_sched_compat_yield;

#ifdef CONFIG_RT_MUTEXES
extern int rt_mutex_getprio(struct task_struct *p);
extern void rt_mutex_setprio(struct task_struct *p, int prio);
extern void rt_mutex_adjust_pi(struct task_struct *p);
#else
static inline int rt_mutex_getprio(struct task_struct *p)
{
      return p->normal_prio;
}
# define rt_mutex_adjust_pi(p)            do { } while (0)
#endif

extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
extern int task_nice(const struct task_struct *p);
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
extern int idle_cpu(int cpu);
extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int,
                              struct sched_param *);
extern struct task_struct *idle_task(int cpu);
extern struct task_struct *curr_task(int cpu);
extern void set_curr_task(int cpu, struct task_struct *p);

void yield(void);

/*
 * The default (Linux) execution domain.
 */
extern struct exec_domain     default_exec_domain;

union thread_union {
      struct thread_info thread_info;
      unsigned long stack[THREAD_SIZE/sizeof(long)];
};

#ifndef __HAVE_ARCH_KSTACK_END
static inline int kstack_end(void *addr)
{
      /* Reliable end of stack detection:
       * Some APM bios versions misalign the stack
       */
      return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
}
#endif

extern union thread_union init_thread_union;
extern struct task_struct init_task;

extern struct   mm_struct init_mm;

extern struct pid_namespace init_pid_ns;

/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
 * find_task_by_vpid():
 *      finds a task by its virtual pid
 *
 * see also find_vpid() etc in include/linux/pid.h
 */

extern struct task_struct *find_task_by_vpid(pid_t nr);
extern struct task_struct *find_task_by_pid_ns(pid_t nr,
            struct pid_namespace *ns);

extern void __set_special_pids(struct pid *pid);

/* per-UID process charging. */
extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
static inline struct user_struct *get_uid(struct user_struct *u)
{
      atomic_inc(&u->__count);
      return u;
}
extern void free_uid(struct user_struct *);
extern void release_uids(struct user_namespace *ns);

#include <asm/current.h>

extern void do_timer(unsigned long ticks);

extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
extern void wake_up_new_task(struct task_struct *tsk,
                        unsigned long clone_flags);
#ifdef CONFIG_SMP
 extern void kick_process(struct task_struct *tsk);
#else
 static inline void kick_process(struct task_struct *tsk) { }
#endif
extern void sched_fork(struct task_struct *p, int clone_flags);
extern void sched_dead(struct task_struct *p);

extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void __flush_signals(struct task_struct *);
extern void ignore_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);

static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
{
      unsigned long flags;
      int ret;

      spin_lock_irqsave(&tsk->sighand->siglock, flags);
      ret = dequeue_signal(tsk, mask, info);
      spin_unlock_irqrestore(&tsk->sighand->siglock, flags);

      return ret;
}     

extern void block_all_signals(int (*notifier)(void *priv), void *priv,
                        sigset_t *mask);
extern void unblock_all_signals(void);
extern void release_task(struct task_struct * p);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sigsegv(int, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
extern int kill_pgrp(struct pid *pid, int sig, int priv);
extern int kill_pid(struct pid *pid, int sig, int priv);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern int do_notify_parent(struct task_struct *, int);
extern void force_sig(int, struct task_struct *);
extern void force_sig_specific(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern void zap_other_threads(struct task_struct *p);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);

static inline int kill_cad_pid(int sig, int priv)
{
      return kill_pid(cad_pid, sig, priv);
}

/* These can be the second arg to send_sig_info/send_group_sig_info.  */
#define SEND_SIG_NOINFO ((struct siginfo *) 0)
#define SEND_SIG_PRIV   ((struct siginfo *) 1)
#define SEND_SIG_FORCED ((struct siginfo *) 2)

static inline int is_si_special(const struct siginfo *info)
{
      return info <= SEND_SIG_FORCED;
}

/* True if we are on the alternate signal stack.  */

static inline int on_sig_stack(unsigned long sp)
{
      return (sp - current->sas_ss_sp < current->sas_ss_size);
}

static inline int sas_ss_flags(unsigned long sp)
{
      return (current->sas_ss_size == 0 ? SS_DISABLE
            : on_sig_stack(sp) ? SS_ONSTACK : 0);
}

/*
 * Routines for handling mm_structs
 */
extern struct mm_struct * mm_alloc(void);

/* mmdrop drops the mm and the page tables */
extern void __mmdrop(struct mm_struct *);
static inline void mmdrop(struct mm_struct * mm)
{
      if (unlikely(atomic_dec_and_test(&mm->mm_count)))
            __mmdrop(mm);
}

/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Grab a reference to a task's mm, if it is not already going away */
extern struct mm_struct *get_task_mm(struct task_struct *task);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(struct task_struct *, struct mm_struct *);
/* Allocate a new mm structure and copy contents from tsk->mm */
extern struct mm_struct *dup_mm(struct task_struct *tsk);

extern int copy_thread(unsigned long, unsigned long, unsigned long,
                  struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);

extern void exit_files(struct task_struct *);
extern void __cleanup_signal(struct signal_struct *);
extern void __cleanup_sighand(struct sighand_struct *);

extern void exit_itimers(struct signal_struct *);
extern void flush_itimer_signals(void);

extern NORET_TYPE void do_group_exit(int);

extern void daemonize(const char *, ...);
extern int allow_signal(int);
extern int disallow_signal(int);

extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
struct task_struct *fork_idle(int);

extern void set_task_comm(struct task_struct *tsk, char *from);
extern char *get_task_comm(char *to, struct task_struct *tsk);

#ifdef CONFIG_SMP
extern void wait_task_context_switch(struct task_struct *p);
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
#else
static inline void wait_task_context_switch(struct task_struct *p) {}
static inline unsigned long wait_task_inactive(struct task_struct *p,
                                     long match_state)
{
      return 1;
}
#endif

#define next_task(p) \
      list_entry_rcu((p)->tasks.next, struct task_struct, tasks)

#define for_each_process(p) \
      for (p = &init_task ; (p = next_task(p)) != &init_task ; )

extern bool is_single_threaded(struct task_struct *);

/*
 * Careful: do_each_thread/while_each_thread is a double loop so
 *          'break' will not work as expected - use goto instead.
 */
#define do_each_thread(g, t) \
      for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do

#define while_each_thread(g, t) \
      while ((t = next_thread(t)) != g)

/* de_thread depends on thread_group_leader not being a pid based check */
#define thread_group_leader(p)      (p == p->group_leader)

/* Do to the insanities of de_thread it is possible for a process
 * to have the pid of the thread group leader without actually being
 * the thread group leader.  For iteration through the pids in proc
 * all we care about is that we have a task with the appropriate
 * pid, we don't actually care if we have the right task.
 */
static inline int has_group_leader_pid(struct task_struct *p)
{
      return p->pid == p->tgid;
}

static inline
int same_thread_group(struct task_struct *p1, struct task_struct *p2)
{
      return p1->tgid == p2->tgid;
}

static inline struct task_struct *next_thread(const struct task_struct *p)
{
      return list_entry_rcu(p->thread_group.next,
                        struct task_struct, thread_group);
}

static inline int thread_group_empty(struct task_struct *p)
{
      return list_empty(&p->thread_group);
}

#define delay_group_leader(p) \
            (thread_group_leader(p) && !thread_group_empty(p))

static inline int task_detached(struct task_struct *p)
{
      return p->exit_signal == -1;
}

/*
 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
 * pins the final release of task.io_context.  Also protects ->cpuset and
 * ->cgroup.subsys[].
 *
 * Nests both inside and outside of read_lock(&tasklist_lock).
 * It must not be nested with write_lock_irq(&tasklist_lock),
 * neither inside nor outside.
 */
static inline void task_lock(struct task_struct *p)
{
      spin_lock(&p->alloc_lock);
}

static inline void task_unlock(struct task_struct *p)
{
      spin_unlock(&p->alloc_lock);
}

extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
                                          unsigned long *flags);

static inline void unlock_task_sighand(struct task_struct *tsk,
                                    unsigned long *flags)
{
      spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
}

#ifndef __HAVE_THREAD_FUNCTIONS

#define task_thread_info(task)      ((struct thread_info *)(task)->stack)
#define task_stack_page(task) ((task)->stack)

static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
{
      *task_thread_info(p) = *task_thread_info(org);
      task_thread_info(p)->task = p;
}

static inline unsigned long *end_of_stack(struct task_struct *p)
{
      return (unsigned long *)(task_thread_info(p) + 1);
}

#endif

static inline int object_is_on_stack(void *obj)
{
      void *stack = task_stack_page(current);

      return (obj >= stack) && (obj < (stack + THREAD_SIZE));
}

extern void thread_info_cache_init(void);

#ifdef CONFIG_DEBUG_STACK_USAGE
static inline unsigned long stack_not_used(struct task_struct *p)
{
      unsigned long *n = end_of_stack(p);

      do {  /* Skip over canary */
            n++;
      } while (!*n);

      return (unsigned long)n - (unsigned long)end_of_stack(p);
}
#endif

/* set thread flags in other task's structures
 * - see asm/thread_info.h for TIF_xxxx flags available
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
      set_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
      clear_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
      return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
      return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
      return test_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
      set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
      clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline int test_tsk_need_resched(struct task_struct *tsk)
{
      return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

static inline int restart_syscall(void)
{
      set_tsk_thread_flag(current, TIF_SIGPENDING);
      return -ERESTARTNOINTR;
}

static inline int signal_pending(struct task_struct *p)
{
      return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
}

extern int __fatal_signal_pending(struct task_struct *p);

static inline int fatal_signal_pending(struct task_struct *p)
{
      return signal_pending(p) && __fatal_signal_pending(p);
}

static inline int signal_pending_state(long state, struct task_struct *p)
{
      if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
            return 0;
      if (!signal_pending(p))
            return 0;

      return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
}

static inline int need_resched(void)
{
      return unlikely(test_thread_flag(TIF_NEED_RESCHED));
}

/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 * cond_resched_softirq() will enable bhs before scheduling.
 */
extern int _cond_resched(void);
#ifdef CONFIG_PREEMPT_BKL
static inline int cond_resched(void)
{
      return 0;
}
#else
static inline int cond_resched(void)
{
      return _cond_resched();
}
#endif
extern int cond_resched_lock(spinlock_t * lock);
extern int cond_resched_softirq(void);
static inline int cond_resched_bkl(void)
{
      return _cond_resched();
}

/*
 * Does a critical section need to be broken due to another
 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
 * but a general need for low latency)
 */
static inline int spin_needbreak(spinlock_t *lock)
{
#ifdef CONFIG_PREEMPT
      return spin_is_contended(lock);
#else
      return 0;
#endif
}

/*
 * Thread group CPU time accounting.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);

static inline void thread_group_cputime_init(struct signal_struct *sig)
{
      sig->cputimer.cputime = INIT_CPUTIME;
      spin_lock_init(&sig->cputimer.lock);
      sig->cputimer.running = 0;
}

static inline void thread_group_cputime_free(struct signal_struct *sig)
{
}

/*
 * Reevaluate whether the task has signals pending delivery.
 * Wake the task if so.
 * This is required every time the blocked sigset_t changes.
 * callers must hold sighand->siglock.
 */
extern void recalc_sigpending_and_wake(struct task_struct *t);
extern void recalc_sigpending(void);

extern void signal_wake_up(struct task_struct *t, int resume_stopped);

/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
      return task_thread_info(p)->cpu;
}

extern void set_task_cpu(struct task_struct *p, unsigned int cpu);

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
      return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

extern void arch_pick_mmap_layout(struct mm_struct *mm);

#ifdef CONFIG_TRACING
extern void
__trace_special(void *__tr, void *__data,
            unsigned long arg1, unsigned long arg2, unsigned long arg3);
#else
static inline void
__trace_special(void *__tr, void *__data,
            unsigned long arg1, unsigned long arg2, unsigned long arg3)
{
}
#endif

extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);

extern void normalize_rt_tasks(void);

#ifdef CONFIG_GROUP_SCHED

extern struct task_group init_task_group;
#ifdef CONFIG_USER_SCHED
extern struct task_group root_task_group;
extern void set_tg_uid(struct user_struct *user);
#endif

extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_move_task(struct task_struct *tsk);
#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
extern unsigned long sched_group_shares(struct task_group *tg);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
extern int sched_group_set_rt_runtime(struct task_group *tg,
                              long rt_runtime_us);
extern long sched_group_rt_runtime(struct task_group *tg);
extern int sched_group_set_rt_period(struct task_group *tg,
                              long rt_period_us);
extern long sched_group_rt_period(struct task_group *tg);
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
#endif
#endif

extern int task_can_switch_user(struct user_struct *up,
                              struct task_struct *tsk);

#ifdef CONFIG_TASK_XACCT
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
{
      tsk->ioac.rchar += amt;
}

static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
{
      tsk->ioac.wchar += amt;
}

static inline void inc_syscr(struct task_struct *tsk)
{
      tsk->ioac.syscr++;
}

static inline void inc_syscw(struct task_struct *tsk)
{
      tsk->ioac.syscw++;
}
#else
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
{
}

static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
{
}

static inline void inc_syscr(struct task_struct *tsk)
{
}

static inline void inc_syscw(struct task_struct *tsk)
{
}
#endif

#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)     TASK_SIZE
#endif

/*
 * Call the function if the target task is executing on a CPU right now:
 */
extern void task_oncpu_function_call(struct task_struct *p,
                             void (*func) (void *info), void *info);


#ifdef CONFIG_MM_OWNER
extern void mm_update_next_owner(struct mm_struct *mm);
extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
#else
static inline void mm_update_next_owner(struct mm_struct *mm)
{
}

static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
{
}
#endif /* CONFIG_MM_OWNER */

#define TASK_STATE_TO_CHAR_STR "RSDTtZX"

#endif /* __KERNEL__ */

#endif

Generated by  Doxygen 1.6.0   Back to index