Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

lpfc_scsi.c

/*******************************************************************
 * This file is part of the Emulex Linux Device Driver for         *
 * Fibre Channel Host Bus Adapters.                                *
 * Copyright (C) 2004-2009 Emulex.  All rights reserved.           *
 * EMULEX and SLI are trademarks of Emulex.                        *
 * www.emulex.com                                                  *
 * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
 *                                                                 *
 * This program is free software; you can redistribute it and/or   *
 * modify it under the terms of version 2 of the GNU General       *
 * Public License as published by the Free Software Foundation.    *
 * This program is distributed in the hope that it will be useful. *
 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
 * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
 * more details, a copy of which can be found in the file COPYING  *
 * included with this package.                                     *
 *******************************************************************/
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <asm/unaligned.h>

#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_transport_fc.h>

#include "lpfc_version.h"
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc_scsi.h"
#include "lpfc.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"

#define LPFC_RESET_WAIT  2
#define LPFC_ABORT_WAIT  2

int _dump_buf_done;

static char *dif_op_str[] = {
      "SCSI_PROT_NORMAL",
      "SCSI_PROT_READ_INSERT",
      "SCSI_PROT_WRITE_STRIP",
      "SCSI_PROT_READ_STRIP",
      "SCSI_PROT_WRITE_INSERT",
      "SCSI_PROT_READ_PASS",
      "SCSI_PROT_WRITE_PASS",
      "SCSI_PROT_READ_CONVERT",
      "SCSI_PROT_WRITE_CONVERT"
};
static void
lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);

static void
lpfc_debug_save_data(struct scsi_cmnd *cmnd)
{
      void *src, *dst;
      struct scatterlist *sgde = scsi_sglist(cmnd);

      if (!_dump_buf_data) {
            printk(KERN_ERR "BLKGRD ERROR %s _dump_buf_data is NULL\n",
                        __func__);
            return;
      }


      if (!sgde) {
            printk(KERN_ERR "BLKGRD ERROR: data scatterlist is null\n");
            return;
      }

      dst = (void *) _dump_buf_data;
      while (sgde) {
            src = sg_virt(sgde);
            memcpy(dst, src, sgde->length);
            dst += sgde->length;
            sgde = sg_next(sgde);
      }
}

static void
lpfc_debug_save_dif(struct scsi_cmnd *cmnd)
{
      void *src, *dst;
      struct scatterlist *sgde = scsi_prot_sglist(cmnd);

      if (!_dump_buf_dif) {
            printk(KERN_ERR "BLKGRD ERROR %s _dump_buf_data is NULL\n",
                        __func__);
            return;
      }

      if (!sgde) {
            printk(KERN_ERR "BLKGRD ERROR: prot scatterlist is null\n");
            return;
      }

      dst = _dump_buf_dif;
      while (sgde) {
            src = sg_virt(sgde);
            memcpy(dst, src, sgde->length);
            dst += sgde->length;
            sgde = sg_next(sgde);
      }
}

/**
 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge.
 * @phba: Pointer to HBA object.
 * @lpfc_cmd: lpfc scsi command object pointer.
 *
 * This function is called from the lpfc_prep_task_mgmt_cmd function to
 * set the last bit in the response sge entry.
 **/
static void
lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba,
                        struct lpfc_scsi_buf *lpfc_cmd)
{
      struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
      if (sgl) {
            sgl += 1;
            sgl->word2 = le32_to_cpu(sgl->word2);
            bf_set(lpfc_sli4_sge_last, sgl, 1);
            sgl->word2 = cpu_to_le32(sgl->word2);
      }
}

/**
 * lpfc_update_stats - Update statistical data for the command completion
 * @phba: Pointer to HBA object.
 * @lpfc_cmd: lpfc scsi command object pointer.
 *
 * This function is called when there is a command completion and this
 * function updates the statistical data for the command completion.
 **/
static void
lpfc_update_stats(struct lpfc_hba *phba, struct  lpfc_scsi_buf *lpfc_cmd)
{
      struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
      struct lpfc_nodelist *pnode = rdata->pnode;
      struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
      unsigned long flags;
      struct Scsi_Host  *shost = cmd->device->host;
      struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
      unsigned long latency;
      int i;

      if (cmd->result)
            return;

      latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time);

      spin_lock_irqsave(shost->host_lock, flags);
      if (!vport->stat_data_enabled ||
            vport->stat_data_blocked ||
            !pnode->lat_data ||
            (phba->bucket_type == LPFC_NO_BUCKET)) {
            spin_unlock_irqrestore(shost->host_lock, flags);
            return;
      }

      if (phba->bucket_type == LPFC_LINEAR_BUCKET) {
            i = (latency + phba->bucket_step - 1 - phba->bucket_base)/
                  phba->bucket_step;
            /* check array subscript bounds */
            if (i < 0)
                  i = 0;
            else if (i >= LPFC_MAX_BUCKET_COUNT)
                  i = LPFC_MAX_BUCKET_COUNT - 1;
      } else {
            for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++)
                  if (latency <= (phba->bucket_base +
                        ((1<<i)*phba->bucket_step)))
                        break;
      }

      pnode->lat_data[i].cmd_count++;
      spin_unlock_irqrestore(shost->host_lock, flags);
}

/**
 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event
 * @phba: Pointer to HBA context object.
 * @vport: Pointer to vport object.
 * @ndlp: Pointer to FC node associated with the target.
 * @lun: Lun number of the scsi device.
 * @old_val: Old value of the queue depth.
 * @new_val: New value of the queue depth.
 *
 * This function sends an event to the mgmt application indicating
 * there is a change in the scsi device queue depth.
 **/
static void
lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba,
            struct lpfc_vport  *vport,
            struct lpfc_nodelist *ndlp,
            uint32_t lun,
            uint32_t old_val,
            uint32_t new_val)
{
      struct lpfc_fast_path_event *fast_path_evt;
      unsigned long flags;

      fast_path_evt = lpfc_alloc_fast_evt(phba);
      if (!fast_path_evt)
            return;

      fast_path_evt->un.queue_depth_evt.scsi_event.event_type =
            FC_REG_SCSI_EVENT;
      fast_path_evt->un.queue_depth_evt.scsi_event.subcategory =
            LPFC_EVENT_VARQUEDEPTH;

      /* Report all luns with change in queue depth */
      fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun;
      if (ndlp && NLP_CHK_NODE_ACT(ndlp)) {
            memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn,
                  &ndlp->nlp_portname, sizeof(struct lpfc_name));
            memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn,
                  &ndlp->nlp_nodename, sizeof(struct lpfc_name));
      }

      fast_path_evt->un.queue_depth_evt.oldval = old_val;
      fast_path_evt->un.queue_depth_evt.newval = new_val;
      fast_path_evt->vport = vport;

      fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT;
      spin_lock_irqsave(&phba->hbalock, flags);
      list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
      spin_unlock_irqrestore(&phba->hbalock, flags);
      lpfc_worker_wake_up(phba);

      return;
}

/**
 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread
 * @phba: The Hba for which this call is being executed.
 *
 * This routine is called when there is resource error in driver or firmware.
 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine
 * posts at most 1 event each second. This routine wakes up worker thread of
 * @phba to process WORKER_RAM_DOWN_EVENT event.
 *
 * This routine should be called with no lock held.
 **/
void
lpfc_rampdown_queue_depth(struct lpfc_hba *phba)
{
      unsigned long flags;
      uint32_t evt_posted;

      spin_lock_irqsave(&phba->hbalock, flags);
      atomic_inc(&phba->num_rsrc_err);
      phba->last_rsrc_error_time = jiffies;

      if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) {
            spin_unlock_irqrestore(&phba->hbalock, flags);
            return;
      }

      phba->last_ramp_down_time = jiffies;

      spin_unlock_irqrestore(&phba->hbalock, flags);

      spin_lock_irqsave(&phba->pport->work_port_lock, flags);
      evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE;
      if (!evt_posted)
            phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE;
      spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);

      if (!evt_posted)
            lpfc_worker_wake_up(phba);
      return;
}

/**
 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread
 * @phba: The Hba for which this call is being executed.
 *
 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine
 * post at most 1 event every 5 minute after last_ramp_up_time or
 * last_rsrc_error_time.  This routine wakes up worker thread of @phba
 * to process WORKER_RAM_DOWN_EVENT event.
 *
 * This routine should be called with no lock held.
 **/
static inline void
lpfc_rampup_queue_depth(struct lpfc_vport  *vport,
                  uint32_t queue_depth)
{
      unsigned long flags;
      struct lpfc_hba *phba = vport->phba;
      uint32_t evt_posted;
      atomic_inc(&phba->num_cmd_success);

      if (vport->cfg_lun_queue_depth <= queue_depth)
            return;
      spin_lock_irqsave(&phba->hbalock, flags);
      if (((phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) > jiffies) ||
       ((phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL ) > jiffies)) {
            spin_unlock_irqrestore(&phba->hbalock, flags);
            return;
      }
      phba->last_ramp_up_time = jiffies;
      spin_unlock_irqrestore(&phba->hbalock, flags);

      spin_lock_irqsave(&phba->pport->work_port_lock, flags);
      evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE;
      if (!evt_posted)
            phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE;
      spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);

      if (!evt_posted)
            lpfc_worker_wake_up(phba);
      return;
}

/**
 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler
 * @phba: The Hba for which this call is being executed.
 *
 * This routine is called to  process WORKER_RAMP_DOWN_QUEUE event for worker
 * thread.This routine reduces queue depth for all scsi device on each vport
 * associated with @phba.
 **/
void
lpfc_ramp_down_queue_handler(struct lpfc_hba *phba)
{
      struct lpfc_vport **vports;
      struct Scsi_Host  *shost;
      struct scsi_device *sdev;
      unsigned long new_queue_depth, old_queue_depth;
      unsigned long num_rsrc_err, num_cmd_success;
      int i;
      struct lpfc_rport_data *rdata;

      num_rsrc_err = atomic_read(&phba->num_rsrc_err);
      num_cmd_success = atomic_read(&phba->num_cmd_success);

      vports = lpfc_create_vport_work_array(phba);
      if (vports != NULL)
            for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
                  shost = lpfc_shost_from_vport(vports[i]);
                  shost_for_each_device(sdev, shost) {
                        new_queue_depth =
                              sdev->queue_depth * num_rsrc_err /
                              (num_rsrc_err + num_cmd_success);
                        if (!new_queue_depth)
                              new_queue_depth = sdev->queue_depth - 1;
                        else
                              new_queue_depth = sdev->queue_depth -
                                                new_queue_depth;
                        old_queue_depth = sdev->queue_depth;
                        if (sdev->ordered_tags)
                              scsi_adjust_queue_depth(sdev,
                                          MSG_ORDERED_TAG,
                                          new_queue_depth);
                        else
                              scsi_adjust_queue_depth(sdev,
                                          MSG_SIMPLE_TAG,
                                          new_queue_depth);
                        rdata = sdev->hostdata;
                        if (rdata)
                              lpfc_send_sdev_queuedepth_change_event(
                                    phba, vports[i],
                                    rdata->pnode,
                                    sdev->lun, old_queue_depth,
                                    new_queue_depth);
                  }
            }
      lpfc_destroy_vport_work_array(phba, vports);
      atomic_set(&phba->num_rsrc_err, 0);
      atomic_set(&phba->num_cmd_success, 0);
}

/**
 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler
 * @phba: The Hba for which this call is being executed.
 *
 * This routine is called to  process WORKER_RAMP_UP_QUEUE event for worker
 * thread.This routine increases queue depth for all scsi device on each vport
 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and
 * num_cmd_success to zero.
 **/
void
lpfc_ramp_up_queue_handler(struct lpfc_hba *phba)
{
      struct lpfc_vport **vports;
      struct Scsi_Host  *shost;
      struct scsi_device *sdev;
      int i;
      struct lpfc_rport_data *rdata;

      vports = lpfc_create_vport_work_array(phba);
      if (vports != NULL)
            for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
                  shost = lpfc_shost_from_vport(vports[i]);
                  shost_for_each_device(sdev, shost) {
                        if (vports[i]->cfg_lun_queue_depth <=
                            sdev->queue_depth)
                              continue;
                        if (sdev->ordered_tags)
                              scsi_adjust_queue_depth(sdev,
                                          MSG_ORDERED_TAG,
                                          sdev->queue_depth+1);
                        else
                              scsi_adjust_queue_depth(sdev,
                                          MSG_SIMPLE_TAG,
                                          sdev->queue_depth+1);
                        rdata = sdev->hostdata;
                        if (rdata)
                              lpfc_send_sdev_queuedepth_change_event(
                                    phba, vports[i],
                                    rdata->pnode,
                                    sdev->lun,
                                    sdev->queue_depth - 1,
                                    sdev->queue_depth);
                  }
            }
      lpfc_destroy_vport_work_array(phba, vports);
      atomic_set(&phba->num_rsrc_err, 0);
      atomic_set(&phba->num_cmd_success, 0);
}

/**
 * lpfc_scsi_dev_block - set all scsi hosts to block state
 * @phba: Pointer to HBA context object.
 *
 * This function walks vport list and set each SCSI host to block state
 * by invoking fc_remote_port_delete() routine. This function is invoked
 * with EEH when device's PCI slot has been permanently disabled.
 **/
void
lpfc_scsi_dev_block(struct lpfc_hba *phba)
{
      struct lpfc_vport **vports;
      struct Scsi_Host  *shost;
      struct scsi_device *sdev;
      struct fc_rport *rport;
      int i;

      vports = lpfc_create_vport_work_array(phba);
      if (vports != NULL)
            for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
                  shost = lpfc_shost_from_vport(vports[i]);
                  shost_for_each_device(sdev, shost) {
                        rport = starget_to_rport(scsi_target(sdev));
                        fc_remote_port_delete(rport);
                  }
            }
      lpfc_destroy_vport_work_array(phba, vports);
}

/**
 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec
 * @vport: The virtual port for which this call being executed.
 * @num_to_allocate: The requested number of buffers to allocate.
 *
 * This routine allocates a scsi buffer for device with SLI-3 interface spec,
 * the scsi buffer contains all the necessary information needed to initiate
 * a SCSI I/O. The non-DMAable buffer region contains information to build
 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP,
 * and the initial BPL. In addition to allocating memory, the FCP CMND and
 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB.
 *
 * Return codes:
 *   int - number of scsi buffers that were allocated.
 *   0 = failure, less than num_to_alloc is a partial failure.
 **/
static int
lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc)
{
      struct lpfc_hba *phba = vport->phba;
      struct lpfc_scsi_buf *psb;
      struct ulp_bde64 *bpl;
      IOCB_t *iocb;
      dma_addr_t pdma_phys_fcp_cmd;
      dma_addr_t pdma_phys_fcp_rsp;
      dma_addr_t pdma_phys_bpl;
      uint16_t iotag;
      int bcnt;

      for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
            psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
            if (!psb)
                  break;

            /*
             * Get memory from the pci pool to map the virt space to pci
             * bus space for an I/O.  The DMA buffer includes space for the
             * struct fcp_cmnd, struct fcp_rsp and the number of bde's
             * necessary to support the sg_tablesize.
             */
            psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
                              GFP_KERNEL, &psb->dma_handle);
            if (!psb->data) {
                  kfree(psb);
                  break;
            }

            /* Initialize virtual ptrs to dma_buf region. */
            memset(psb->data, 0, phba->cfg_sg_dma_buf_size);

            /* Allocate iotag for psb->cur_iocbq. */
            iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
            if (iotag == 0) {
                  pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
                              psb->data, psb->dma_handle);
                  kfree(psb);
                  break;
            }
            psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;

            psb->fcp_cmnd = psb->data;
            psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd);
            psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) +
                  sizeof(struct fcp_rsp);

            /* Initialize local short-hand pointers. */
            bpl = psb->fcp_bpl;
            pdma_phys_fcp_cmd = psb->dma_handle;
            pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd);
            pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) +
                  sizeof(struct fcp_rsp);

            /*
             * The first two bdes are the FCP_CMD and FCP_RSP. The balance
             * are sg list bdes.  Initialize the first two and leave the
             * rest for queuecommand.
             */
            bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd));
            bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd));
            bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd);
            bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
            bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w);

            /* Setup the physical region for the FCP RSP */
            bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp));
            bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp));
            bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp);
            bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
            bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w);

            /*
             * Since the IOCB for the FCP I/O is built into this
             * lpfc_scsi_buf, initialize it with all known data now.
             */
            iocb = &psb->cur_iocbq.iocb;
            iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
            if ((phba->sli_rev == 3) &&
                        !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
                  /* fill in immediate fcp command BDE */
                  iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED;
                  iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
                  iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t,
                              unsli3.fcp_ext.icd);
                  iocb->un.fcpi64.bdl.addrHigh = 0;
                  iocb->ulpBdeCount = 0;
                  iocb->ulpLe = 0;
                  /* fill in responce BDE */
                  iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags =
                                          BUFF_TYPE_BDE_64;
                  iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize =
                        sizeof(struct fcp_rsp);
                  iocb->unsli3.fcp_ext.rbde.addrLow =
                        putPaddrLow(pdma_phys_fcp_rsp);
                  iocb->unsli3.fcp_ext.rbde.addrHigh =
                        putPaddrHigh(pdma_phys_fcp_rsp);
            } else {
                  iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
                  iocb->un.fcpi64.bdl.bdeSize =
                              (2 * sizeof(struct ulp_bde64));
                  iocb->un.fcpi64.bdl.addrLow =
                              putPaddrLow(pdma_phys_bpl);
                  iocb->un.fcpi64.bdl.addrHigh =
                              putPaddrHigh(pdma_phys_bpl);
                  iocb->ulpBdeCount = 1;
                  iocb->ulpLe = 1;
            }
            iocb->ulpClass = CLASS3;
            psb->status = IOSTAT_SUCCESS;
            /* Put it back into the SCSI buffer list */
            lpfc_release_scsi_buf_s4(phba, psb);

      }

      return bcnt;
}

/**
 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort
 * @phba: pointer to lpfc hba data structure.
 * @axri: pointer to the fcp xri abort wcqe structure.
 *
 * This routine is invoked by the worker thread to process a SLI4 fast-path
 * FCP aborted xri.
 **/
void
lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba,
                    struct sli4_wcqe_xri_aborted *axri)
{
      uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
      struct lpfc_scsi_buf *psb, *next_psb;
      unsigned long iflag = 0;

      spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, iflag);
      list_for_each_entry_safe(psb, next_psb,
            &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
            if (psb->cur_iocbq.sli4_xritag == xri) {
                  list_del(&psb->list);
                  psb->status = IOSTAT_SUCCESS;
                  spin_unlock_irqrestore(
                        &phba->sli4_hba.abts_scsi_buf_list_lock,
                        iflag);
                  lpfc_release_scsi_buf_s4(phba, psb);
                  return;
            }
      }
      spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock,
                        iflag);
}

/**
 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block
 * @phba: pointer to lpfc hba data structure.
 *
 * This routine walks the list of scsi buffers that have been allocated and
 * repost them to the HBA by using SGL block post. This is needed after a
 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list
 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers.
 *
 * Returns: 0 = success, non-zero failure.
 **/
int
lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba)
{
      struct lpfc_scsi_buf *psb;
      int index, status, bcnt = 0, rcnt = 0, rc = 0;
      LIST_HEAD(sblist);

      for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) {
            psb = phba->sli4_hba.lpfc_scsi_psb_array[index];
            if (psb) {
                  /* Remove from SCSI buffer list */
                  list_del(&psb->list);
                  /* Add it to a local SCSI buffer list */
                  list_add_tail(&psb->list, &sblist);
                  if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) {
                        bcnt = rcnt;
                        rcnt = 0;
                  }
            } else
                  /* A hole present in the XRI array, need to skip */
                  bcnt = rcnt;

            if (index == phba->sli4_hba.scsi_xri_cnt - 1)
                  /* End of XRI array for SCSI buffer, complete */
                  bcnt = rcnt;

            /* Continue until collect up to a nembed page worth of sgls */
            if (bcnt == 0)
                  continue;
            /* Now, post the SCSI buffer list sgls as a block */
            status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
            /* Reset SCSI buffer count for next round of posting */
            bcnt = 0;
            while (!list_empty(&sblist)) {
                  list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
                               list);
                  if (status) {
                        /* Put this back on the abort scsi list */
                        psb->status = IOSTAT_LOCAL_REJECT;
                        psb->result = IOERR_ABORT_REQUESTED;
                        rc++;
                  } else
                        psb->status = IOSTAT_SUCCESS;
                  /* Put it back into the SCSI buffer list */
                  lpfc_release_scsi_buf_s4(phba, psb);
            }
      }
      return rc;
}

/**
 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec
 * @vport: The virtual port for which this call being executed.
 * @num_to_allocate: The requested number of buffers to allocate.
 *
 * This routine allocates a scsi buffer for device with SLI-4 interface spec,
 * the scsi buffer contains all the necessary information needed to initiate
 * a SCSI I/O.
 *
 * Return codes:
 *   int - number of scsi buffers that were allocated.
 *   0 = failure, less than num_to_alloc is a partial failure.
 **/
static int
lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc)
{
      struct lpfc_hba *phba = vport->phba;
      struct lpfc_scsi_buf *psb;
      struct sli4_sge *sgl;
      IOCB_t *iocb;
      dma_addr_t pdma_phys_fcp_cmd;
      dma_addr_t pdma_phys_fcp_rsp;
      dma_addr_t pdma_phys_bpl, pdma_phys_bpl1;
      uint16_t iotag, last_xritag = NO_XRI;
      int status = 0, index;
      int bcnt;
      int non_sequential_xri = 0;
      int rc = 0;
      LIST_HEAD(sblist);

      for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
            psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
            if (!psb)
                  break;

            /*
             * Get memory from the pci pool to map the virt space to pci bus
             * space for an I/O.  The DMA buffer includes space for the
             * struct fcp_cmnd, struct fcp_rsp and the number of bde's
             * necessary to support the sg_tablesize.
             */
            psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
                                    GFP_KERNEL, &psb->dma_handle);
            if (!psb->data) {
                  kfree(psb);
                  break;
            }

            /* Initialize virtual ptrs to dma_buf region. */
            memset(psb->data, 0, phba->cfg_sg_dma_buf_size);

            /* Allocate iotag for psb->cur_iocbq. */
            iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
            if (iotag == 0) {
                  kfree(psb);
                  break;
            }

            psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba);
            if (psb->cur_iocbq.sli4_xritag == NO_XRI) {
                  pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
                        psb->data, psb->dma_handle);
                  kfree(psb);
                  break;
            }
            if (last_xritag != NO_XRI
                  && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) {
                  non_sequential_xri = 1;
            } else
                  list_add_tail(&psb->list, &sblist);
            last_xritag = psb->cur_iocbq.sli4_xritag;

            index = phba->sli4_hba.scsi_xri_cnt++;
            psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;

            psb->fcp_bpl = psb->data;
            psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size)
                  - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
            psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd +
                              sizeof(struct fcp_cmnd));

            /* Initialize local short-hand pointers. */
            sgl = (struct sli4_sge *)psb->fcp_bpl;
            pdma_phys_bpl = psb->dma_handle;
            pdma_phys_fcp_cmd =
                  (psb->dma_handle + phba->cfg_sg_dma_buf_size)
                   - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
            pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd);

            /*
             * The first two bdes are the FCP_CMD and FCP_RSP.  The balance
             * are sg list bdes.  Initialize the first two and leave the
             * rest for queuecommand.
             */
            sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd));
            sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd));
            bf_set(lpfc_sli4_sge_len, sgl, sizeof(struct fcp_cmnd));
            bf_set(lpfc_sli4_sge_last, sgl, 0);
            sgl->word2 = cpu_to_le32(sgl->word2);
            sgl->word3 = cpu_to_le32(sgl->word3);
            sgl++;

            /* Setup the physical region for the FCP RSP */
            sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp));
            sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp));
            bf_set(lpfc_sli4_sge_len, sgl, sizeof(struct fcp_rsp));
            bf_set(lpfc_sli4_sge_last, sgl, 1);
            sgl->word2 = cpu_to_le32(sgl->word2);
            sgl->word3 = cpu_to_le32(sgl->word3);

            /*
             * Since the IOCB for the FCP I/O is built into this
             * lpfc_scsi_buf, initialize it with all known data now.
             */
            iocb = &psb->cur_iocbq.iocb;
            iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
            iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
            /* setting the BLP size to 2 * sizeof BDE may not be correct.
             * We are setting the bpl to point to out sgl. An sgl's
             * entries are 16 bytes, a bpl entries are 12 bytes.
             */
            iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
            iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd);
            iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd);
            iocb->ulpBdeCount = 1;
            iocb->ulpLe = 1;
            iocb->ulpClass = CLASS3;
            if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
                  pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE;
            else
                  pdma_phys_bpl1 = 0;
            psb->dma_phys_bpl = pdma_phys_bpl;
            phba->sli4_hba.lpfc_scsi_psb_array[index] = psb;
            if (non_sequential_xri) {
                  status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl,
                                    pdma_phys_bpl1,
                                    psb->cur_iocbq.sli4_xritag);
                  if (status) {
                        /* Put this back on the abort scsi list */
                        psb->status = IOSTAT_LOCAL_REJECT;
                        psb->result = IOERR_ABORT_REQUESTED;
                        rc++;
                  } else
                        psb->status = IOSTAT_SUCCESS;
                  /* Put it back into the SCSI buffer list */
                  lpfc_release_scsi_buf_s4(phba, psb);
                  break;
            }
      }
      if (bcnt) {
            status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
            /* Reset SCSI buffer count for next round of posting */
            while (!list_empty(&sblist)) {
                  list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
                         list);
                  if (status) {
                        /* Put this back on the abort scsi list */
                        psb->status = IOSTAT_LOCAL_REJECT;
                        psb->result = IOERR_ABORT_REQUESTED;
                        rc++;
                  } else
                        psb->status = IOSTAT_SUCCESS;
                  /* Put it back into the SCSI buffer list */
                  lpfc_release_scsi_buf_s4(phba, psb);
            }
      }

      return bcnt + non_sequential_xri - rc;
}

/**
 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator
 * @vport: The virtual port for which this call being executed.
 * @num_to_allocate: The requested number of buffers to allocate.
 *
 * This routine wraps the actual SCSI buffer allocator function pointer from
 * the lpfc_hba struct.
 *
 * Return codes:
 *   int - number of scsi buffers that were allocated.
 *   0 = failure, less than num_to_alloc is a partial failure.
 **/
static inline int
lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc)
{
      return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc);
}

/**
 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
 * @phba: The HBA for which this call is being executed.
 *
 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
 * and returns to caller.
 *
 * Return codes:
 *   NULL - Error
 *   Pointer to lpfc_scsi_buf - Success
 **/
static struct lpfc_scsi_buf*
lpfc_get_scsi_buf(struct lpfc_hba * phba)
{
      struct  lpfc_scsi_buf * lpfc_cmd = NULL;
      struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list;
      unsigned long iflag = 0;

      spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
      list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list);
      if (lpfc_cmd) {
            lpfc_cmd->seg_cnt = 0;
            lpfc_cmd->nonsg_phys = 0;
            lpfc_cmd->prot_seg_cnt = 0;
      }
      spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
      return  lpfc_cmd;
}

/**
 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list
 * @phba: The Hba for which this call is being executed.
 * @psb: The scsi buffer which is being released.
 *
 * This routine releases @psb scsi buffer by adding it to tail of @phba
 * lpfc_scsi_buf_list list.
 **/
static void
lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
{
      unsigned long iflag = 0;

      spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
      psb->pCmd = NULL;
      list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
      spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
}

/**
 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list.
 * @phba: The Hba for which this call is being executed.
 * @psb: The scsi buffer which is being released.
 *
 * This routine releases @psb scsi buffer by adding it to tail of @phba
 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer
 * and cannot be reused for at least RA_TOV amount of time if it was
 * aborted.
 **/
static void
lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
{
      unsigned long iflag = 0;

      if (psb->status == IOSTAT_LOCAL_REJECT
            && psb->result == IOERR_ABORT_REQUESTED) {
            spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock,
                              iflag);
            psb->pCmd = NULL;
            list_add_tail(&psb->list,
                  &phba->sli4_hba.lpfc_abts_scsi_buf_list);
            spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock,
                              iflag);
      } else {

            spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
            psb->pCmd = NULL;
            list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
            spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
      }
}

/**
 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list.
 * @phba: The Hba for which this call is being executed.
 * @psb: The scsi buffer which is being released.
 *
 * This routine releases @psb scsi buffer by adding it to tail of @phba
 * lpfc_scsi_buf_list list.
 **/
static void
lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
{

      phba->lpfc_release_scsi_buf(phba, psb);
}

/**
 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
 * @phba: The Hba for which this call is being executed.
 * @lpfc_cmd: The scsi buffer which is going to be mapped.
 *
 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans
 * through sg elements and format the bdea. This routine also initializes all
 * IOCB fields which are dependent on scsi command request buffer.
 *
 * Return codes:
 *   1 - Error
 *   0 - Success
 **/
static int
lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
{
      struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
      struct scatterlist *sgel = NULL;
      struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
      struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
      IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
      struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde;
      dma_addr_t physaddr;
      uint32_t num_bde = 0;
      int nseg, datadir = scsi_cmnd->sc_data_direction;

      /*
       * There are three possibilities here - use scatter-gather segment, use
       * the single mapping, or neither.  Start the lpfc command prep by
       * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
       * data bde entry.
       */
      bpl += 2;
      if (scsi_sg_count(scsi_cmnd)) {
            /*
             * The driver stores the segment count returned from pci_map_sg
             * because this a count of dma-mappings used to map the use_sg
             * pages.  They are not guaranteed to be the same for those
             * architectures that implement an IOMMU.
             */

            nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd),
                          scsi_sg_count(scsi_cmnd), datadir);
            if (unlikely(!nseg))
                  return 1;

            lpfc_cmd->seg_cnt = nseg;
            if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
                  printk(KERN_ERR "%s: Too many sg segments from "
                         "dma_map_sg.  Config %d, seg_cnt %d\n",
                         __func__, phba->cfg_sg_seg_cnt,
                         lpfc_cmd->seg_cnt);
                  scsi_dma_unmap(scsi_cmnd);
                  return 1;
            }

            /*
             * The driver established a maximum scatter-gather segment count
             * during probe that limits the number of sg elements in any
             * single scsi command.  Just run through the seg_cnt and format
             * the bde's.
             * When using SLI-3 the driver will try to fit all the BDEs into
             * the IOCB. If it can't then the BDEs get added to a BPL as it
             * does for SLI-2 mode.
             */
            scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
                  physaddr = sg_dma_address(sgel);
                  if (phba->sli_rev == 3 &&
                      !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
                      nseg <= LPFC_EXT_DATA_BDE_COUNT) {
                        data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
                        data_bde->tus.f.bdeSize = sg_dma_len(sgel);
                        data_bde->addrLow = putPaddrLow(physaddr);
                        data_bde->addrHigh = putPaddrHigh(physaddr);
                        data_bde++;
                  } else {
                        bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
                        bpl->tus.f.bdeSize = sg_dma_len(sgel);
                        bpl->tus.w = le32_to_cpu(bpl->tus.w);
                        bpl->addrLow =
                              le32_to_cpu(putPaddrLow(physaddr));
                        bpl->addrHigh =
                              le32_to_cpu(putPaddrHigh(physaddr));
                        bpl++;
                  }
            }
      }

      /*
       * Finish initializing those IOCB fields that are dependent on the
       * scsi_cmnd request_buffer.  Note that for SLI-2 the bdeSize is
       * explicitly reinitialized and for SLI-3 the extended bde count is
       * explicitly reinitialized since all iocb memory resources are reused.
       */
      if (phba->sli_rev == 3 &&
          !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
            if (num_bde > LPFC_EXT_DATA_BDE_COUNT) {
                  /*
                   * The extended IOCB format can only fit 3 BDE or a BPL.
                   * This I/O has more than 3 BDE so the 1st data bde will
                   * be a BPL that is filled in here.
                   */
                  physaddr = lpfc_cmd->dma_handle;
                  data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64;
                  data_bde->tus.f.bdeSize = (num_bde *
                                       sizeof(struct ulp_bde64));
                  physaddr += (sizeof(struct fcp_cmnd) +
                             sizeof(struct fcp_rsp) +
                             (2 * sizeof(struct ulp_bde64)));
                  data_bde->addrHigh = putPaddrHigh(physaddr);
                  data_bde->addrLow = putPaddrLow(physaddr);
                  /* ebde count includes the responce bde and data bpl */
                  iocb_cmd->unsli3.fcp_ext.ebde_count = 2;
            } else {
                  /* ebde count includes the responce bde and data bdes */
                  iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
            }
      } else {
            iocb_cmd->un.fcpi64.bdl.bdeSize =
                  ((num_bde + 2) * sizeof(struct ulp_bde64));
      }
      fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));

      /*
       * Due to difference in data length between DIF/non-DIF paths,
       * we need to set word 4 of IOCB here
       */
      iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
      return 0;
}

/*
 * Given a scsi cmnd, determine the BlockGuard profile to be used
 * with the cmd
 */
static int
lpfc_sc_to_sli_prof(struct scsi_cmnd *sc)
{
      uint8_t guard_type = scsi_host_get_guard(sc->device->host);
      uint8_t ret_prof = LPFC_PROF_INVALID;

      if (guard_type == SHOST_DIX_GUARD_IP) {
            switch (scsi_get_prot_op(sc)) {
            case SCSI_PROT_READ_INSERT:
            case SCSI_PROT_WRITE_STRIP:
                  ret_prof = LPFC_PROF_AST2;
                  break;

            case SCSI_PROT_READ_STRIP:
            case SCSI_PROT_WRITE_INSERT:
                  ret_prof = LPFC_PROF_A1;
                  break;

            case SCSI_PROT_READ_CONVERT:
            case SCSI_PROT_WRITE_CONVERT:
                  ret_prof = LPFC_PROF_AST1;
                  break;

            case SCSI_PROT_READ_PASS:
            case SCSI_PROT_WRITE_PASS:
            case SCSI_PROT_NORMAL:
            default:
                  printk(KERN_ERR "Bad op/guard:%d/%d combination\n",
                              scsi_get_prot_op(sc), guard_type);
                  break;

            }
      } else if (guard_type == SHOST_DIX_GUARD_CRC) {
            switch (scsi_get_prot_op(sc)) {
            case SCSI_PROT_READ_STRIP:
            case SCSI_PROT_WRITE_INSERT:
                  ret_prof = LPFC_PROF_A1;
                  break;

            case SCSI_PROT_READ_PASS:
            case SCSI_PROT_WRITE_PASS:
                  ret_prof = LPFC_PROF_C1;
                  break;

            case SCSI_PROT_READ_CONVERT:
            case SCSI_PROT_WRITE_CONVERT:
            case SCSI_PROT_READ_INSERT:
            case SCSI_PROT_WRITE_STRIP:
            case SCSI_PROT_NORMAL:
            default:
                  printk(KERN_ERR "Bad op/guard:%d/%d combination\n",
                              scsi_get_prot_op(sc), guard_type);
                  break;
            }
      } else {
            /* unsupported format */
            BUG();
      }

      return ret_prof;
}

01178 struct scsi_dif_tuple {
      __be16 guard_tag;       /* Checksum */
      __be16 app_tag;         /* Opaque storage */
      __be32 ref_tag;         /* Target LBA or indirect LBA */
};

static inline unsigned
lpfc_cmd_blksize(struct scsi_cmnd *sc)
{
      return sc->device->sector_size;
}

/**
 * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command
 * @sc:             in: SCSI command
 * @apptagmask:     out: app tag mask
 * @apptagval:      out: app tag value
 * @reftag:         out: ref tag (reference tag)
 *
 * Description:
 *   Extract DIF parameters from the command if possible.  Otherwise,
 *   use default parameters.
 *
 **/
static inline void
lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask,
            uint16_t *apptagval, uint32_t *reftag)
{
      struct  scsi_dif_tuple *spt;
      unsigned char op = scsi_get_prot_op(sc);
      unsigned int protcnt = scsi_prot_sg_count(sc);
      static int cnt;

      if (protcnt && (op == SCSI_PROT_WRITE_STRIP ||
                        op == SCSI_PROT_WRITE_PASS ||
                        op == SCSI_PROT_WRITE_CONVERT)) {

            cnt++;
            spt = page_address(sg_page(scsi_prot_sglist(sc))) +
                  scsi_prot_sglist(sc)[0].offset;
            *apptagmask = 0;
            *apptagval = 0;
            *reftag = cpu_to_be32(spt->ref_tag);

      } else {
            /* SBC defines ref tag to be lower 32bits of LBA */
            *reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc));
            *apptagmask = 0;
            *apptagval = 0;
      }
}

/*
 * This function sets up buffer list for protection groups of
 * type LPFC_PG_TYPE_NO_DIF
 *
 * This is usually used when the HBA is instructed to generate
 * DIFs and insert them into data stream (or strip DIF from
 * incoming data stream)
 *
 * The buffer list consists of just one protection group described
 * below:
 *                                +-------------------------+
 *   start of prot group  -->     |          PDE_1          |
 *                                +-------------------------+
 *                                |         Data BDE        |
 *                                +-------------------------+
 *                                |more Data BDE's ... (opt)|
 *                                +-------------------------+
 *
 * @sc: pointer to scsi command we're working on
 * @bpl: pointer to buffer list for protection groups
 * @datacnt: number of segments of data that have been dma mapped
 *
 * Note: Data s/g buffers have been dma mapped
 */
static int
lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc,
            struct ulp_bde64 *bpl, int datasegcnt)
{
      struct scatterlist *sgde = NULL; /* s/g data entry */
      struct lpfc_pde *pde1 = NULL;
      dma_addr_t physaddr;
      int i = 0, num_bde = 0;
      int datadir = sc->sc_data_direction;
      int prof = LPFC_PROF_INVALID;
      unsigned blksize;
      uint32_t reftag;
      uint16_t apptagmask, apptagval;

      pde1 = (struct lpfc_pde *) bpl;
      prof = lpfc_sc_to_sli_prof(sc);

      if (prof == LPFC_PROF_INVALID)
            goto out;

      /* extract some info from the scsi command for PDE1*/
      blksize = lpfc_cmd_blksize(sc);
      lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);

      /* setup PDE1 with what we have */
      lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize,
                  BG_EC_STOP_ERR);
      lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag);

      num_bde++;
      bpl++;

      /* assumption: caller has already run dma_map_sg on command data */
      scsi_for_each_sg(sc, sgde, datasegcnt, i) {
            physaddr = sg_dma_address(sgde);
            bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr));
            bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
            bpl->tus.f.bdeSize = sg_dma_len(sgde);
            if (datadir == DMA_TO_DEVICE)
                  bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
            else
                  bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
            bpl->tus.w = le32_to_cpu(bpl->tus.w);
            bpl++;
            num_bde++;
      }

out:
      return num_bde;
}

/*
 * This function sets up buffer list for protection groups of
 * type LPFC_PG_TYPE_DIF_BUF
 *
 * This is usually used when DIFs are in their own buffers,
 * separate from the data. The HBA can then by instructed
 * to place the DIFs in the outgoing stream.  For read operations,
 * The HBA could extract the DIFs and place it in DIF buffers.
 *
 * The buffer list for this type consists of one or more of the
 * protection groups described below:
 *                                    +-------------------------+
 *   start of first prot group  -->   |          PDE_1          |
 *                                    +-------------------------+
 *                                    |      PDE_3 (Prot BDE)   |
 *                                    +-------------------------+
 *                                    |        Data BDE         |
 *                                    +-------------------------+
 *                                    |more Data BDE's ... (opt)|
 *                                    +-------------------------+
 *   start of new  prot group  -->    |          PDE_1          |
 *                                    +-------------------------+
 *                                    |          ...            |
 *                                    +-------------------------+
 *
 * @sc: pointer to scsi command we're working on
 * @bpl: pointer to buffer list for protection groups
 * @datacnt: number of segments of data that have been dma mapped
 * @protcnt: number of segment of protection data that have been dma mapped
 *
 * Note: It is assumed that both data and protection s/g buffers have been
 *       mapped for DMA
 */
static int
lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc,
            struct ulp_bde64 *bpl, int datacnt, int protcnt)
{
      struct scatterlist *sgde = NULL; /* s/g data entry */
      struct scatterlist *sgpe = NULL; /* s/g prot entry */
      struct lpfc_pde *pde1 = NULL;
      struct ulp_bde64 *prot_bde = NULL;
      dma_addr_t dataphysaddr, protphysaddr;
      unsigned short curr_data = 0, curr_prot = 0;
      unsigned int split_offset, protgroup_len;
      unsigned int protgrp_blks, protgrp_bytes;
      unsigned int remainder, subtotal;
      int prof = LPFC_PROF_INVALID;
      int datadir = sc->sc_data_direction;
      unsigned char pgdone = 0, alldone = 0;
      unsigned blksize;
      uint32_t reftag;
      uint16_t apptagmask, apptagval;
      int num_bde = 0;

      sgpe = scsi_prot_sglist(sc);
      sgde = scsi_sglist(sc);

      if (!sgpe || !sgde) {
            lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
                        "9020 Invalid s/g entry: data=0x%p prot=0x%p\n",
                        sgpe, sgde);
            return 0;
      }

      prof = lpfc_sc_to_sli_prof(sc);
      if (prof == LPFC_PROF_INVALID)
            goto out;

      /* extract some info from the scsi command for PDE1*/
      blksize = lpfc_cmd_blksize(sc);
      lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);

      split_offset = 0;
      do {
            /* setup the first PDE_1 */
            pde1 = (struct lpfc_pde *) bpl;

            lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize,
                        BG_EC_STOP_ERR);
            lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag);

            num_bde++;
            bpl++;

            /* setup the first BDE that points to protection buffer */
            prot_bde = (struct ulp_bde64 *) bpl;
            protphysaddr = sg_dma_address(sgpe);
            prot_bde->addrLow = le32_to_cpu(putPaddrLow(protphysaddr));
            prot_bde->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr));
            protgroup_len = sg_dma_len(sgpe);


            /* must be integer multiple of the DIF block length */
            BUG_ON(protgroup_len % 8);

            protgrp_blks = protgroup_len / 8;
            protgrp_bytes = protgrp_blks * blksize;

            prot_bde->tus.f.bdeSize = protgroup_len;
            if (datadir == DMA_TO_DEVICE)
                  prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
            else
                  prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
            prot_bde->tus.w = le32_to_cpu(bpl->tus.w);

            curr_prot++;
            num_bde++;

            /* setup BDE's for data blocks associated with DIF data */
            pgdone = 0;
            subtotal = 0; /* total bytes processed for current prot grp */
            while (!pgdone) {
                  if (!sgde) {
                        printk(KERN_ERR "%s Invalid data segment\n",
                                    __func__);
                        return 0;
                  }
                  bpl++;
                  dataphysaddr = sg_dma_address(sgde) + split_offset;
                  bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr));
                  bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr));

                  remainder = sg_dma_len(sgde) - split_offset;

                  if ((subtotal + remainder) <= protgrp_bytes) {
                        /* we can use this whole buffer */
                        bpl->tus.f.bdeSize = remainder;
                        split_offset = 0;

                        if ((subtotal + remainder) == protgrp_bytes)
                              pgdone = 1;
                  } else {
                        /* must split this buffer with next prot grp */
                        bpl->tus.f.bdeSize = protgrp_bytes - subtotal;
                        split_offset += bpl->tus.f.bdeSize;
                  }

                  subtotal += bpl->tus.f.bdeSize;

                  if (datadir == DMA_TO_DEVICE)
                        bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
                  else
                        bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
                  bpl->tus.w = le32_to_cpu(bpl->tus.w);

                  num_bde++;
                  curr_data++;

                  if (split_offset)
                        break;

                  /* Move to the next s/g segment if possible */
                  sgde = sg_next(sgde);
            }

            /* are we done ? */
            if (curr_prot == protcnt) {
                  alldone = 1;
            } else if (curr_prot < protcnt) {
                  /* advance to next prot buffer */
                  sgpe = sg_next(sgpe);
                  bpl++;

                  /* update the reference tag */
                  reftag += protgrp_blks;
            } else {
                  /* if we're here, we have a bug */
                  printk(KERN_ERR "BLKGRD: bug in %s\n", __func__);
            }

      } while (!alldone);

out:


      return num_bde;
}
/*
 * Given a SCSI command that supports DIF, determine composition of protection
 * groups involved in setting up buffer lists
 *
 * Returns:
 *                      for DIF (for both read and write)
 * */
static int
lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc)
{
      int ret = LPFC_PG_TYPE_INVALID;
      unsigned char op = scsi_get_prot_op(sc);

      switch (op) {
      case SCSI_PROT_READ_STRIP:
      case SCSI_PROT_WRITE_INSERT:
            ret = LPFC_PG_TYPE_NO_DIF;
            break;
      case SCSI_PROT_READ_INSERT:
      case SCSI_PROT_WRITE_STRIP:
      case SCSI_PROT_READ_PASS:
      case SCSI_PROT_WRITE_PASS:
      case SCSI_PROT_WRITE_CONVERT:
      case SCSI_PROT_READ_CONVERT:
            ret = LPFC_PG_TYPE_DIF_BUF;
            break;
      default:
            lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
                        "9021 Unsupported protection op:%d\n", op);
            break;
      }

      return ret;
}

/*
 * This is the protection/DIF aware version of
 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
 * two functions eventually, but for now, it's here
 */
static int
lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba,
            struct lpfc_scsi_buf *lpfc_cmd)
{
      struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
      struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
      struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
      IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
      uint32_t num_bde = 0;
      int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction;
      int prot_group_type = 0;
      int diflen, fcpdl;
      unsigned blksize;

      /*
       * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd
       *  fcp_rsp regions to the first data bde entry
       */
      bpl += 2;
      if (scsi_sg_count(scsi_cmnd)) {
            /*
             * The driver stores the segment count returned from pci_map_sg
             * because this a count of dma-mappings used to map the use_sg
             * pages.  They are not guaranteed to be the same for those
             * architectures that implement an IOMMU.
             */
            datasegcnt = dma_map_sg(&phba->pcidev->dev,
                              scsi_sglist(scsi_cmnd),
                              scsi_sg_count(scsi_cmnd), datadir);
            if (unlikely(!datasegcnt))
                  return 1;

            lpfc_cmd->seg_cnt = datasegcnt;
            if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
                  printk(KERN_ERR "%s: Too many sg segments from "
                              "dma_map_sg.  Config %d, seg_cnt %d\n",
                              __func__, phba->cfg_sg_seg_cnt,
                              lpfc_cmd->seg_cnt);
                  scsi_dma_unmap(scsi_cmnd);
                  return 1;
            }

            prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd);

            switch (prot_group_type) {
            case LPFC_PG_TYPE_NO_DIF:
                  num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl,
                              datasegcnt);
                  /* we shoud have 2 or more entries in buffer list */
                  if (num_bde < 2)
                        goto err;
                  break;
            case LPFC_PG_TYPE_DIF_BUF:{
                  /*
                   * This type indicates that protection buffers are
                   * passed to the driver, so that needs to be prepared
                   * for DMA
                   */
                  protsegcnt = dma_map_sg(&phba->pcidev->dev,
                              scsi_prot_sglist(scsi_cmnd),
                              scsi_prot_sg_count(scsi_cmnd), datadir);
                  if (unlikely(!protsegcnt)) {
                        scsi_dma_unmap(scsi_cmnd);
                        return 1;
                  }

                  lpfc_cmd->prot_seg_cnt = protsegcnt;
                  if (lpfc_cmd->prot_seg_cnt
                      > phba->cfg_prot_sg_seg_cnt) {
                        printk(KERN_ERR "%s: Too many prot sg segments "
                                    "from dma_map_sg.  Config %d,"
                                    "prot_seg_cnt %d\n", __func__,
                                    phba->cfg_prot_sg_seg_cnt,
                                    lpfc_cmd->prot_seg_cnt);
                        dma_unmap_sg(&phba->pcidev->dev,
                                   scsi_prot_sglist(scsi_cmnd),
                                   scsi_prot_sg_count(scsi_cmnd),
                                   datadir);
                        scsi_dma_unmap(scsi_cmnd);
                        return 1;
                  }

                  num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl,
                              datasegcnt, protsegcnt);
                  /* we shoud have 3 or more entries in buffer list */
                  if (num_bde < 3)
                        goto err;
                  break;
            }
            case LPFC_PG_TYPE_INVALID:
            default:
                  lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
                              "9022 Unexpected protection group %i\n",
                              prot_group_type);
                  return 1;
            }
      }

      /*
       * Finish initializing those IOCB fields that are dependent on the
       * scsi_cmnd request_buffer.  Note that the bdeSize is explicitly
       * reinitialized since all iocb memory resources are used many times
       * for transmit, receive, and continuation bpl's.
       */
      iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
      iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64));
      iocb_cmd->ulpBdeCount = 1;
      iocb_cmd->ulpLe = 1;

      fcpdl = scsi_bufflen(scsi_cmnd);

      if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) {
            /*
             * We are in DIF Type 1 mode
             * Every data block has a 8 byte DIF (trailer)
             * attached to it.  Must ajust FCP data length
             */
            blksize = lpfc_cmd_blksize(scsi_cmnd);
            diflen = (fcpdl / blksize) * 8;
            fcpdl += diflen;
      }
      fcp_cmnd->fcpDl = be32_to_cpu(fcpdl);

      /*
       * Due to difference in data length between DIF/non-DIF paths,
       * we need to set word 4 of IOCB here
       */
      iocb_cmd->un.fcpi.fcpi_parm = fcpdl;

      return 0;
err:
      lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
                  "9023 Could not setup all needed BDE's"
                  "prot_group_type=%d, num_bde=%d\n",
                  prot_group_type, num_bde);
      return 1;
}

/*
 * This function checks for BlockGuard errors detected by
 * the HBA.  In case of errors, the ASC/ASCQ fields in the
 * sense buffer will be set accordingly, paired with
 * ILLEGAL_REQUEST to signal to the kernel that the HBA
 * detected corruption.
 *
 * Returns:
 *  0 - No error found
 *  1 - BlockGuard error found
 * -1 - Internal error (bad profile, ...etc)
 */
static int
lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd,
                  struct lpfc_iocbq *pIocbOut)
{
      struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
      struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg;
      int ret = 0;
      uint32_t bghm = bgf->bghm;
      uint32_t bgstat = bgf->bgstat;
      uint64_t failing_sector = 0;

      printk(KERN_ERR "BG ERROR in cmd 0x%x lba 0x%llx blk cnt 0x%x "
                  "bgstat=0x%x bghm=0x%x\n",
                  cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd),
                  blk_rq_sectors(cmd->request), bgstat, bghm);

      spin_lock(&_dump_buf_lock);
      if (!_dump_buf_done) {
            printk(KERN_ERR "Saving Data for %u blocks to debugfs\n",
                        (cmd->cmnd[7] << 8 | cmd->cmnd[8]));
            lpfc_debug_save_data(cmd);

            /* If we have a prot sgl, save the DIF buffer */
            if (lpfc_prot_group_type(phba, cmd) ==
                        LPFC_PG_TYPE_DIF_BUF) {
                  printk(KERN_ERR "Saving DIF for %u blocks to debugfs\n",
                              (cmd->cmnd[7] << 8 | cmd->cmnd[8]));
                  lpfc_debug_save_dif(cmd);
            }

            _dump_buf_done = 1;
      }
      spin_unlock(&_dump_buf_lock);

      if (lpfc_bgs_get_invalid_prof(bgstat)) {
            cmd->result = ScsiResult(DID_ERROR, 0);
            printk(KERN_ERR "Invalid BlockGuard profile. bgstat:0x%x\n",
                        bgstat);
            ret = (-1);
            goto out;
      }

      if (lpfc_bgs_get_uninit_dif_block(bgstat)) {
            cmd->result = ScsiResult(DID_ERROR, 0);
            printk(KERN_ERR "Invalid BlockGuard DIF Block. bgstat:0x%x\n",
                        bgstat);
            ret = (-1);
            goto out;
      }

      if (lpfc_bgs_get_guard_err(bgstat)) {
            ret = 1;

            scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
                        0x10, 0x1);
            cmd->result = DRIVER_SENSE << 24
                  | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
            phba->bg_guard_err_cnt++;
            printk(KERN_ERR "BLKGRD: guard_tag error\n");
      }

      if (lpfc_bgs_get_reftag_err(bgstat)) {
            ret = 1;

            scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
                        0x10, 0x3);
            cmd->result = DRIVER_SENSE << 24
                  | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);

            phba->bg_reftag_err_cnt++;
            printk(KERN_ERR "BLKGRD: ref_tag error\n");
      }

      if (lpfc_bgs_get_apptag_err(bgstat)) {
            ret = 1;

            scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
                        0x10, 0x2);
            cmd->result = DRIVER_SENSE << 24
                  | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);

            phba->bg_apptag_err_cnt++;
            printk(KERN_ERR "BLKGRD: app_tag error\n");
      }

      if (lpfc_bgs_get_hi_water_mark_present(bgstat)) {
            /*
             * setup sense data descriptor 0 per SPC-4 as an information
             * field, and put the failing LBA in it
             */
            cmd->sense_buffer[8] = 0;     /* Information */
            cmd->sense_buffer[9] = 0xa;   /* Add. length */
            bghm /= cmd->device->sector_size;

            failing_sector = scsi_get_lba(cmd);
            failing_sector += bghm;

            put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]);
      }

      if (!ret) {
            /* No error was reported - problem in FW? */
            cmd->result = ScsiResult(DID_ERROR, 0);
            printk(KERN_ERR "BLKGRD: no errors reported!\n");
      }

out:
      return ret;
}

/**
 * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec
 * @phba: The Hba for which this call is being executed.
 * @lpfc_cmd: The scsi buffer which is going to be mapped.
 *
 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
 * field of @lpfc_cmd for device with SLI-4 interface spec.
 *
 * Return codes:
 *    1 - Error
 *    0 - Success
 **/
static int
lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
{
      struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
      struct scatterlist *sgel = NULL;
      struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
      struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
      IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
      dma_addr_t physaddr;
      uint32_t num_bde = 0;
      uint32_t dma_len;
      uint32_t dma_offset = 0;
      int nseg;

      /*
       * There are three possibilities here - use scatter-gather segment, use
       * the single mapping, or neither.  Start the lpfc command prep by
       * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
       * data bde entry.
       */
      if (scsi_sg_count(scsi_cmnd)) {
            /*
             * The driver stores the segment count returned from pci_map_sg
             * because this a count of dma-mappings used to map the use_sg
             * pages.  They are not guaranteed to be the same for those
             * architectures that implement an IOMMU.
             */

            nseg = scsi_dma_map(scsi_cmnd);
            if (unlikely(!nseg))
                  return 1;
            sgl += 1;
            /* clear the last flag in the fcp_rsp map entry */
            sgl->word2 = le32_to_cpu(sgl->word2);
            bf_set(lpfc_sli4_sge_last, sgl, 0);
            sgl->word2 = cpu_to_le32(sgl->word2);
            sgl += 1;

            lpfc_cmd->seg_cnt = nseg;
            if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
                  printk(KERN_ERR "%s: Too many sg segments from "
                         "dma_map_sg.  Config %d, seg_cnt %d\n",
                         __func__, phba->cfg_sg_seg_cnt,
                         lpfc_cmd->seg_cnt);
                  scsi_dma_unmap(scsi_cmnd);
                  return 1;
            }

            /*
             * The driver established a maximum scatter-gather segment count
             * during probe that limits the number of sg elements in any
             * single scsi command.  Just run through the seg_cnt and format
             * the sge's.
             * When using SLI-3 the driver will try to fit all the BDEs into
             * the IOCB. If it can't then the BDEs get added to a BPL as it
             * does for SLI-2 mode.
             */
            scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
                  physaddr = sg_dma_address(sgel);
                  dma_len = sg_dma_len(sgel);
                  bf_set(lpfc_sli4_sge_len, sgl, sg_dma_len(sgel));
                  sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr));
                  sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr));
                  if ((num_bde + 1) == nseg)
                        bf_set(lpfc_sli4_sge_last, sgl, 1);
                  else
                        bf_set(lpfc_sli4_sge_last, sgl, 0);
                  bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
                  sgl->word2 = cpu_to_le32(sgl->word2);
                  sgl->word3 = cpu_to_le32(sgl->word3);
                  dma_offset += dma_len;
                  sgl++;
            }
      } else {
            sgl += 1;
            /* clear the last flag in the fcp_rsp map entry */
            sgl->word2 = le32_to_cpu(sgl->word2);
            bf_set(lpfc_sli4_sge_last, sgl, 1);
            sgl->word2 = cpu_to_le32(sgl->word2);
      }

      /*
       * Finish initializing those IOCB fields that are dependent on the
       * scsi_cmnd request_buffer.  Note that for SLI-2 the bdeSize is
       * explicitly reinitialized.
       * all iocb memory resources are reused.
       */
      fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));

      /*
       * Due to difference in data length between DIF/non-DIF paths,
       * we need to set word 4 of IOCB here
       */
      iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
      return 0;
}

/**
 * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer
 * @phba: The Hba for which this call is being executed.
 * @lpfc_cmd: The scsi buffer which is going to be mapped.
 *
 * This routine wraps the actual DMA mapping function pointer from the
 * lpfc_hba struct.
 *
 * Return codes:
 *    1 - Error
 *    0 - Success
 **/
static inline int
lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
{
      return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
}

/**
 * lpfc_send_scsi_error_event - Posts an event when there is SCSI error
 * @phba: Pointer to hba context object.
 * @vport: Pointer to vport object.
 * @lpfc_cmd: Pointer to lpfc scsi command which reported the error.
 * @rsp_iocb: Pointer to response iocb object which reported error.
 *
 * This function posts an event when there is a SCSI command reporting
 * error from the scsi device.
 **/
static void
lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport,
            struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) {
      struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
      struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
      uint32_t resp_info = fcprsp->rspStatus2;
      uint32_t scsi_status = fcprsp->rspStatus3;
      uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
      struct lpfc_fast_path_event *fast_path_evt = NULL;
      struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode;
      unsigned long flags;

      /* If there is queuefull or busy condition send a scsi event */
      if ((cmnd->result == SAM_STAT_TASK_SET_FULL) ||
            (cmnd->result == SAM_STAT_BUSY)) {
            fast_path_evt = lpfc_alloc_fast_evt(phba);
            if (!fast_path_evt)
                  return;
            fast_path_evt->un.scsi_evt.event_type =
                  FC_REG_SCSI_EVENT;
            fast_path_evt->un.scsi_evt.subcategory =
            (cmnd->result == SAM_STAT_TASK_SET_FULL) ?
            LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY;
            fast_path_evt->un.scsi_evt.lun = cmnd->device->lun;
            memcpy(&fast_path_evt->un.scsi_evt.wwpn,
                  &pnode->nlp_portname, sizeof(struct lpfc_name));
            memcpy(&fast_path_evt->un.scsi_evt.wwnn,
                  &pnode->nlp_nodename, sizeof(struct lpfc_name));
      } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen &&
            ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) {
            fast_path_evt = lpfc_alloc_fast_evt(phba);
            if (!fast_path_evt)
                  return;
            fast_path_evt->un.check_cond_evt.scsi_event.event_type =
                  FC_REG_SCSI_EVENT;
            fast_path_evt->un.check_cond_evt.scsi_event.subcategory =
                  LPFC_EVENT_CHECK_COND;
            fast_path_evt->un.check_cond_evt.scsi_event.lun =
                  cmnd->device->lun;
            memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn,
                  &pnode->nlp_portname, sizeof(struct lpfc_name));
            memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn,
                  &pnode->nlp_nodename, sizeof(struct lpfc_name));
            fast_path_evt->un.check_cond_evt.sense_key =
                  cmnd->sense_buffer[2] & 0xf;
            fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12];
            fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13];
      } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
                 fcpi_parm &&
                 ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) ||
                  ((scsi_status == SAM_STAT_GOOD) &&
                  !(resp_info & (RESID_UNDER | RESID_OVER))))) {
            /*
             * If status is good or resid does not match with fcp_param and
             * there is valid fcpi_parm, then there is a read_check error
             */
            fast_path_evt = lpfc_alloc_fast_evt(phba);
            if (!fast_path_evt)
                  return;
            fast_path_evt->un.read_check_error.header.event_type =
                  FC_REG_FABRIC_EVENT;
            fast_path_evt->un.read_check_error.header.subcategory =
                  LPFC_EVENT_FCPRDCHKERR;
            memcpy(&fast_path_evt->un.read_check_error.header.wwpn,
                  &pnode->nlp_portname, sizeof(struct lpfc_name));
            memcpy(&fast_path_evt->un.read_check_error.header.wwnn,
                  &pnode->nlp_nodename, sizeof(struct lpfc_name));
            fast_path_evt->un.read_check_error.lun = cmnd->device->lun;
            fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0];
            fast_path_evt->un.read_check_error.fcpiparam =
                  fcpi_parm;
      } else
            return;

      fast_path_evt->vport = vport;
      spin_lock_irqsave(&phba->hbalock, flags);
      list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
      spin_unlock_irqrestore(&phba->hbalock, flags);
      lpfc_worker_wake_up(phba);
      return;
}

/**
 * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev
 * @phba: The HBA for which this call is being executed.
 * @psb: The scsi buffer which is going to be un-mapped.
 *
 * This routine does DMA un-mapping of scatter gather list of scsi command
 * field of @lpfc_cmd for device with SLI-3 interface spec.
 **/
static void
lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
{
      /*
       * There are only two special cases to consider.  (1) the scsi command
       * requested scatter-gather usage or (2) the scsi command allocated
       * a request buffer, but did not request use_sg.  There is a third
       * case, but it does not require resource deallocation.
       */
      if (psb->seg_cnt > 0)
            scsi_dma_unmap(psb->pCmd);
      if (psb->prot_seg_cnt > 0)
            dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd),
                        scsi_prot_sg_count(psb->pCmd),
                        psb->pCmd->sc_data_direction);
}

/**
 * lpfc_handler_fcp_err - FCP response handler
 * @vport: The virtual port for which this call is being executed.
 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
 * @rsp_iocb: The response IOCB which contains FCP error.
 *
 * This routine is called to process response IOCB with status field
 * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command
 * based upon SCSI and FCP error.
 **/
static void
lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
                struct lpfc_iocbq *rsp_iocb)
{
      struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
      struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd;
      struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
      uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
      uint32_t resp_info = fcprsp->rspStatus2;
      uint32_t scsi_status = fcprsp->rspStatus3;
      uint32_t *lp;
      uint32_t host_status = DID_OK;
      uint32_t rsplen = 0;
      uint32_t logit = LOG_FCP | LOG_FCP_ERROR;


      /*
       *  If this is a task management command, there is no
       *  scsi packet associated with this lpfc_cmd.  The driver
       *  consumes it.
       */
      if (fcpcmd->fcpCntl2) {
            scsi_status = 0;
            goto out;
      }

      if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) {
            uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen);
            if (snslen > SCSI_SENSE_BUFFERSIZE)
                  snslen = SCSI_SENSE_BUFFERSIZE;

            if (resp_info & RSP_LEN_VALID)
              rsplen = be32_to_cpu(fcprsp->rspRspLen);
            memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen);
      }
      lp = (uint32_t *)cmnd->sense_buffer;

      if (!scsi_status && (resp_info & RESID_UNDER))
            logit = LOG_FCP;

      lpfc_printf_vlog(vport, KERN_WARNING, logit,
                   "9024 FCP command x%x failed: x%x SNS x%x x%x "
                   "Data: x%x x%x x%x x%x x%x\n",
                   cmnd->cmnd[0], scsi_status,
                   be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info,
                   be32_to_cpu(fcprsp->rspResId),
                   be32_to_cpu(fcprsp->rspSnsLen),
                   be32_to_cpu(fcprsp->rspRspLen),
                   fcprsp->rspInfo3);

      if (resp_info & RSP_LEN_VALID) {
            rsplen = be32_to_cpu(fcprsp->rspRspLen);
            if ((rsplen != 0 && rsplen != 4 && rsplen != 8) ||
                (fcprsp->rspInfo3 != RSP_NO_FAILURE)) {
                  host_status = DID_ERROR;
                  goto out;
            }
      }

      scsi_set_resid(cmnd, 0);
      if (resp_info & RESID_UNDER) {
            scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId));

            lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
                         "9025 FCP Read Underrun, expected %d, "
                         "residual %d Data: x%x x%x x%x\n",
                         be32_to_cpu(fcpcmd->fcpDl),
                         scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0],
                         cmnd->underflow);

            /*
             * If there is an under run check if under run reported by
             * storage array is same as the under run reported by HBA.
             * If this is not same, there is a dropped frame.
             */
            if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
                  fcpi_parm &&
                  (scsi_get_resid(cmnd) != fcpi_parm)) {
                  lpfc_printf_vlog(vport, KERN_WARNING,
                               LOG_FCP | LOG_FCP_ERROR,
                               "9026 FCP Read Check Error "
                               "and Underrun Data: x%x x%x x%x x%x\n",
                               be32_to_cpu(fcpcmd->fcpDl),
                               scsi_get_resid(cmnd), fcpi_parm,
                               cmnd->cmnd[0]);
                  scsi_set_resid(cmnd, scsi_bufflen(cmnd));
                  host_status = DID_ERROR;
            }
            /*
             * The cmnd->underflow is the minimum number of bytes that must
             * be transfered for this command.  Provided a sense condition
             * is not present, make sure the actual amount transferred is at
             * least the underflow value or fail.
             */
            if (!(resp_info & SNS_LEN_VALID) &&
                (scsi_status == SAM_STAT_GOOD) &&
                (scsi_bufflen(cmnd) - scsi_get_resid(cmnd)
                 < cmnd->underflow)) {
                  lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
                               "9027 FCP command x%x residual "
                               "underrun converted to error "
                               "Data: x%x x%x x%x\n",
                               cmnd->cmnd[0], scsi_bufflen(cmnd),
                               scsi_get_resid(cmnd), cmnd->underflow);
                  host_status = DID_ERROR;
            }
      } else if (resp_info & RESID_OVER) {
            lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
                         "9028 FCP command x%x residual overrun error. "
                         "Data: x%x x%x \n", cmnd->cmnd[0],
                         scsi_bufflen(cmnd), scsi_get_resid(cmnd));
            host_status = DID_ERROR;

      /*
       * Check SLI validation that all the transfer was actually done
       * (fcpi_parm should be zero). Apply check only to reads.
       */
      } else if ((scsi_status == SAM_STAT_GOOD) && fcpi_parm &&
                  (cmnd->sc_data_direction == DMA_FROM_DEVICE)) {
            lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR,
                         "9029 FCP Read Check Error Data: "
                         "x%x x%x x%x x%x\n",
                         be32_to_cpu(fcpcmd->fcpDl),
                         be32_to_cpu(fcprsp->rspResId),
                         fcpi_parm, cmnd->cmnd[0]);
            host_status = DID_ERROR;
            scsi_set_resid(cmnd, scsi_bufflen(cmnd));
      }

 out:
      cmnd->result = ScsiResult(host_status, scsi_status);
      lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb);
}

/**
 * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine
 * @phba: The Hba for which this call is being executed.
 * @pIocbIn: The command IOCBQ for the scsi cmnd.
 * @pIocbOut: The response IOCBQ for the scsi cmnd.
 *
 * This routine assigns scsi command result by looking into response IOCB
 * status field appropriately. This routine handles QUEUE FULL condition as
 * well by ramping down device queue depth.
 **/
static void
lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn,
                  struct lpfc_iocbq *pIocbOut)
{
      struct lpfc_scsi_buf *lpfc_cmd =
            (struct lpfc_scsi_buf *) pIocbIn->context1;
      struct lpfc_vport      *vport = pIocbIn->vport;
      struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
      struct lpfc_nodelist *pnode = rdata->pnode;
      struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
      int result;
      struct scsi_device *tmp_sdev;
      int depth = 0;
      unsigned long flags;
      struct lpfc_fast_path_event *fast_path_evt;
      struct Scsi_Host *shost = cmd->device->host;
      uint32_t queue_depth, scsi_id;

      lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4];
      lpfc_cmd->status = pIocbOut->iocb.ulpStatus;
      if (pnode && NLP_CHK_NODE_ACT(pnode))
            atomic_dec(&pnode->cmd_pending);

      if (lpfc_cmd->status) {
            if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT &&
                (lpfc_cmd->result & IOERR_DRVR_MASK))
                  lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
            else if (lpfc_cmd->status >= IOSTAT_CNT)
                  lpfc_cmd->status = IOSTAT_DEFAULT;

            lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
                         "9030 FCP cmd x%x failed <%d/%d> "
                         "status: x%x result: x%x Data: x%x x%x\n",
                         cmd->cmnd[0],
                         cmd->device ? cmd->device->id : 0xffff,
                         cmd->device ? cmd->device->lun : 0xffff,
                         lpfc_cmd->status, lpfc_cmd->result,
                         pIocbOut->iocb.ulpContext,
                         lpfc_cmd->cur_iocbq.iocb.ulpIoTag);

            switch (lpfc_cmd->status) {
            case IOSTAT_FCP_RSP_ERROR:
                  /* Call FCP RSP handler to determine result */
                  lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut);
                  break;
            case IOSTAT_NPORT_BSY:
            case IOSTAT_FABRIC_BSY:
                  cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
                  fast_path_evt = lpfc_alloc_fast_evt(phba);
                  if (!fast_path_evt)
                        break;
                  fast_path_evt->un.fabric_evt.event_type =
                        FC_REG_FABRIC_EVENT;
                  fast_path_evt->un.fabric_evt.subcategory =
                        (lpfc_cmd->status == IOSTAT_NPORT_BSY) ?
                        LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY;
                  if (pnode && NLP_CHK_NODE_ACT(pnode)) {
                        memcpy(&fast_path_evt->un.fabric_evt.wwpn,
                              &pnode->nlp_portname,
                              sizeof(struct lpfc_name));
                        memcpy(&fast_path_evt->un.fabric_evt.wwnn,
                              &pnode->nlp_nodename,
                              sizeof(struct lpfc_name));
                  }
                  fast_path_evt->vport = vport;
                  fast_path_evt->work_evt.evt =
                        LPFC_EVT_FASTPATH_MGMT_EVT;
                  spin_lock_irqsave(&phba->hbalock, flags);
                  list_add_tail(&fast_path_evt->work_evt.evt_listp,
                        &phba->work_list);
                  spin_unlock_irqrestore(&phba->hbalock, flags);
                  lpfc_worker_wake_up(phba);
                  break;
            case IOSTAT_LOCAL_REJECT:
                  if (lpfc_cmd->result == IOERR_INVALID_RPI ||
                      lpfc_cmd->result == IOERR_NO_RESOURCES ||
                      lpfc_cmd->result == IOERR_ABORT_REQUESTED) {
                        cmd->result = ScsiResult(DID_REQUEUE, 0);
                        break;
                  }

                  if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED ||
                       lpfc_cmd->result == IOERR_TX_DMA_FAILED) &&
                       pIocbOut->iocb.unsli3.sli3_bg.bgstat) {
                        if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) {
                              /*
                               * This is a response for a BG enabled
                               * cmd. Parse BG error
                               */
                              lpfc_parse_bg_err(phba, lpfc_cmd,
                                          pIocbOut);
                              break;
                        } else {
                              lpfc_printf_vlog(vport, KERN_WARNING,
                                          LOG_BG,
                                          "9031 non-zero BGSTAT "
                                          "on unprotected cmd");
                        }
                  }

            /* else: fall through */
            default:
                  cmd->result = ScsiResult(DID_ERROR, 0);
                  break;
            }

            if (!pnode || !NLP_CHK_NODE_ACT(pnode)
                || (pnode->nlp_state != NLP_STE_MAPPED_NODE))
                  cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED,
                                     SAM_STAT_BUSY);
      } else {
            cmd->result = ScsiResult(DID_OK, 0);
      }

      if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) {
            uint32_t *lp = (uint32_t *)cmd->sense_buffer;

            lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
                         "0710 Iodone <%d/%d> cmd %p, error "
                         "x%x SNS x%x x%x Data: x%x x%x\n",
                         cmd->device->id, cmd->device->lun, cmd,
                         cmd->result, *lp, *(lp + 3), cmd->retries,
                         scsi_get_resid(cmd));
      }

      lpfc_update_stats(phba, lpfc_cmd);
      result = cmd->result;
      if (vport->cfg_max_scsicmpl_time &&
         time_after(jiffies, lpfc_cmd->start_time +
            msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) {
            spin_lock_irqsave(shost->host_lock, flags);
            if (pnode && NLP_CHK_NODE_ACT(pnode)) {
                  if (pnode->cmd_qdepth >
                        atomic_read(&pnode->cmd_pending) &&
                        (atomic_read(&pnode->cmd_pending) >
                        LPFC_MIN_TGT_QDEPTH) &&
                        ((cmd->cmnd[0] == READ_10) ||
                        (cmd->cmnd[0] == WRITE_10)))
                        pnode->cmd_qdepth =
                              atomic_read(&pnode->cmd_pending);

                  pnode->last_change_time = jiffies;
            }
            spin_unlock_irqrestore(shost->host_lock, flags);
      } else if (pnode && NLP_CHK_NODE_ACT(pnode)) {
            if ((pnode->cmd_qdepth < LPFC_MAX_TGT_QDEPTH) &&
               time_after(jiffies, pnode->last_change_time +
                        msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) {
                  spin_lock_irqsave(shost->host_lock, flags);
                  pnode->cmd_qdepth += pnode->cmd_qdepth *
                        LPFC_TGTQ_RAMPUP_PCENT / 100;
                  if (pnode->cmd_qdepth > LPFC_MAX_TGT_QDEPTH)
                        pnode->cmd_qdepth = LPFC_MAX_TGT_QDEPTH;
                  pnode->last_change_time = jiffies;
                  spin_unlock_irqrestore(shost->host_lock, flags);
            }
      }

      lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);

      /* The sdev is not guaranteed to be valid post scsi_done upcall. */
      queue_depth = cmd->device->queue_depth;
      scsi_id = cmd->device->id;
      cmd->scsi_done(cmd);

      if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
            /*
             * If there is a thread waiting for command completion
             * wake up the thread.
             */
            spin_lock_irqsave(shost->host_lock, flags);
            lpfc_cmd->pCmd = NULL;
            if (lpfc_cmd->waitq)
                  wake_up(lpfc_cmd->waitq);
            spin_unlock_irqrestore(shost->host_lock, flags);
            lpfc_release_scsi_buf(phba, lpfc_cmd);
            return;
      }


      if (!result)
            lpfc_rampup_queue_depth(vport, queue_depth);

      if (!result && pnode && NLP_CHK_NODE_ACT(pnode) &&
         ((jiffies - pnode->last_ramp_up_time) >
            LPFC_Q_RAMP_UP_INTERVAL * HZ) &&
         ((jiffies - pnode->last_q_full_time) >
            LPFC_Q_RAMP_UP_INTERVAL * HZ) &&
         (vport->cfg_lun_queue_depth > queue_depth)) {
            shost_for_each_device(tmp_sdev, shost) {
                  if (vport->cfg_lun_queue_depth > tmp_sdev->queue_depth){
                        if (tmp_sdev->id != scsi_id)
                              continue;
                        if (tmp_sdev->ordered_tags)
                              scsi_adjust_queue_depth(tmp_sdev,
                                    MSG_ORDERED_TAG,
                                    tmp_sdev->queue_depth+1);
                        else
                              scsi_adjust_queue_depth(tmp_sdev,
                                    MSG_SIMPLE_TAG,
                                    tmp_sdev->queue_depth+1);

                        pnode->last_ramp_up_time = jiffies;
                  }
            }
            lpfc_send_sdev_queuedepth_change_event(phba, vport, pnode,
                  0xFFFFFFFF,
                  queue_depth , queue_depth + 1);
      }

      /*
       * Check for queue full.  If the lun is reporting queue full, then
       * back off the lun queue depth to prevent target overloads.
       */
      if (result == SAM_STAT_TASK_SET_FULL && pnode &&
          NLP_CHK_NODE_ACT(pnode)) {
            pnode->last_q_full_time = jiffies;

            shost_for_each_device(tmp_sdev, shost) {
                  if (tmp_sdev->id != scsi_id)
                        continue;
                  depth = scsi_track_queue_full(tmp_sdev,
                              tmp_sdev->queue_depth - 1);
            }
            /*
             * The queue depth cannot be lowered any more.
             * Modify the returned error code to store
             * the final depth value set by
             * scsi_track_queue_full.
             */
            if (depth == -1)
                  depth = shost->cmd_per_lun;

            if (depth) {
                  lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
                               "0711 detected queue full - lun queue "
                               "depth adjusted to %d.\n", depth);
                  lpfc_send_sdev_queuedepth_change_event(phba, vport,
                        pnode, 0xFFFFFFFF,
                        depth+1, depth);
            }
      }

      /*
       * If there is a thread waiting for command completion
       * wake up the thread.
       */
      spin_lock_irqsave(shost->host_lock, flags);
      lpfc_cmd->pCmd = NULL;
      if (lpfc_cmd->waitq)
            wake_up(lpfc_cmd->waitq);
      spin_unlock_irqrestore(shost->host_lock, flags);

      lpfc_release_scsi_buf(phba, lpfc_cmd);
}

/**
 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB
 * @data: A pointer to the immediate command data portion of the IOCB.
 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer.
 *
 * The routine copies the entire FCP command from @fcp_cmnd to @data while
 * byte swapping the data to big endian format for transmission on the wire.
 **/
static void
lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd)
{
      int i, j;
      for (i = 0, j = 0; i < sizeof(struct fcp_cmnd);
           i += sizeof(uint32_t), j++) {
            ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]);
      }
}

/**
 * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit
 * @vport: The virtual port for which this call is being executed.
 * @lpfc_cmd: The scsi command which needs to send.
 * @pnode: Pointer to lpfc_nodelist.
 *
 * This routine initializes fcp_cmnd and iocb data structure from scsi command
 * to transfer for device with SLI3 interface spec.
 **/
static void
lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
                struct lpfc_nodelist *pnode)
{
      struct lpfc_hba *phba = vport->phba;
      struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
      struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
      IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
      struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq);
      int datadir = scsi_cmnd->sc_data_direction;
      char tag[2];

      if (!pnode || !NLP_CHK_NODE_ACT(pnode))
            return;

      lpfc_cmd->fcp_rsp->rspSnsLen = 0;
      /* clear task management bits */
      lpfc_cmd->fcp_cmnd->fcpCntl2 = 0;

      int_to_scsilun(lpfc_cmd->pCmd->device->lun,
                  &lpfc_cmd->fcp_cmnd->fcp_lun);

      memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16);

      if (scsi_populate_tag_msg(scsi_cmnd, tag)) {
            switch (tag[0]) {
            case HEAD_OF_QUEUE_TAG:
                  fcp_cmnd->fcpCntl1 = HEAD_OF_Q;
                  break;
            case ORDERED_QUEUE_TAG:
                  fcp_cmnd->fcpCntl1 = ORDERED_Q;
                  break;
            default:
                  fcp_cmnd->fcpCntl1 = SIMPLE_Q;
                  break;
            }
      } else
            fcp_cmnd->fcpCntl1 = 0;

      /*
       * There are three possibilities here - use scatter-gather segment, use
       * the single mapping, or neither.  Start the lpfc command prep by
       * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
       * data bde entry.
       */
      if (scsi_sg_count(scsi_cmnd)) {
            if (datadir == DMA_TO_DEVICE) {
                  iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR;
                  if (phba->sli_rev < LPFC_SLI_REV4) {
                        iocb_cmd->un.fcpi.fcpi_parm = 0;
                        iocb_cmd->ulpPU = 0;
                  } else
                        iocb_cmd->ulpPU = PARM_READ_CHECK;
                  fcp_cmnd->fcpCntl3 = WRITE_DATA;
                  phba->fc4OutputRequests++;
            } else {
                  iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR;
                  iocb_cmd->ulpPU = PARM_READ_CHECK;
                  fcp_cmnd->fcpCntl3 = READ_DATA;
                  phba->fc4InputRequests++;
            }
      } else {
            iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR;
            iocb_cmd->un.fcpi.fcpi_parm = 0;
            iocb_cmd->ulpPU = 0;
            fcp_cmnd->fcpCntl3 = 0;
            phba->fc4ControlRequests++;
      }
      if (phba->sli_rev == 3 &&
          !(phba->sli3_options & LPFC_SLI3_BG_ENABLED))
            lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd);
      /*
       * Finish initializing those IOCB fields that are independent
       * of the scsi_cmnd request_buffer
       */
      piocbq->iocb.ulpContext = pnode->nlp_rpi;
      if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE)
            piocbq->iocb.ulpFCP2Rcvy = 1;
      else
            piocbq->iocb.ulpFCP2Rcvy = 0;

      piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f);
      piocbq->context1  = lpfc_cmd;
      piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
      piocbq->iocb.ulpTimeout = lpfc_cmd->timeout;
      piocbq->vport = vport;
}

/**
 * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit
 * @vport: The virtual port for which this call is being executed.
 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
 * @lun: Logical unit number.
 * @task_mgmt_cmd: SCSI task management command.
 *
 * This routine creates FCP information unit corresponding to @task_mgmt_cmd
 * for device with SLI-3 interface spec.
 *
 * Return codes:
 *   0 - Error
 *   1 - Success
 **/
static int
lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport,
                       struct lpfc_scsi_buf *lpfc_cmd,
                       unsigned int lun,
                       uint8_t task_mgmt_cmd)
{
      struct lpfc_iocbq *piocbq;
      IOCB_t *piocb;
      struct fcp_cmnd *fcp_cmnd;
      struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
      struct lpfc_nodelist *ndlp = rdata->pnode;

      if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
          ndlp->nlp_state != NLP_STE_MAPPED_NODE)
            return 0;

      piocbq = &(lpfc_cmd->cur_iocbq);
      piocbq->vport = vport;

      piocb = &piocbq->iocb;

      fcp_cmnd = lpfc_cmd->fcp_cmnd;
      /* Clear out any old data in the FCP command area */
      memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
      int_to_scsilun(lun, &fcp_cmnd->fcp_lun);
      fcp_cmnd->fcpCntl2 = task_mgmt_cmd;
      if (vport->phba->sli_rev == 3 &&
          !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED))
            lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd);
      piocb->ulpCommand = CMD_FCP_ICMND64_CR;
      piocb->ulpContext = ndlp->nlp_rpi;
      if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) {
            piocb->ulpFCP2Rcvy = 1;
      }
      piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f);

      /* ulpTimeout is only one byte */
      if (lpfc_cmd->timeout > 0xff) {
            /*
             * Do not timeout the command at the firmware level.
             * The driver will provide the timeout mechanism.
             */
            piocb->ulpTimeout = 0;
      } else
            piocb->ulpTimeout = lpfc_cmd->timeout;

      if (vport->phba->sli_rev == LPFC_SLI_REV4)
            lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd);

      return 1;
}

/**
 * lpfc_scsi_api_table_setup - Set up scsi api fucntion jump table
 * @phba: The hba struct for which this call is being executed.
 * @dev_grp: The HBA PCI-Device group number.
 *
 * This routine sets up the SCSI interface API function jump table in @phba
 * struct.
 * Returns: 0 - success, -ENODEV - failure.
 **/
int
lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
{

      phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf;
      phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd;
      phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf;

      switch (dev_grp) {
      case LPFC_PCI_DEV_LP:
            phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3;
            phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3;
            phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3;
            break;
      case LPFC_PCI_DEV_OC:
            phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4;
            phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4;
            phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4;
            break;
      default:
            lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
                        "1418 Invalid HBA PCI-device group: 0x%x\n",
                        dev_grp);
            return -ENODEV;
            break;
      }
      phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf;
      phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth;
      return 0;
}

/**
 * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command
 * @phba: The Hba for which this call is being executed.
 * @cmdiocbq: Pointer to lpfc_iocbq data structure.
 * @rspiocbq: Pointer to lpfc_iocbq data structure.
 *
 * This routine is IOCB completion routine for device reset and target reset
 * routine. This routine release scsi buffer associated with lpfc_cmd.
 **/
static void
lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba,
                  struct lpfc_iocbq *cmdiocbq,
                  struct lpfc_iocbq *rspiocbq)
{
      struct lpfc_scsi_buf *lpfc_cmd =
            (struct lpfc_scsi_buf *) cmdiocbq->context1;
      if (lpfc_cmd)
            lpfc_release_scsi_buf(phba, lpfc_cmd);
      return;
}

/**
 * lpfc_info - Info entry point of scsi_host_template data structure
 * @host: The scsi host for which this call is being executed.
 *
 * This routine provides module information about hba.
 *
 * Reutrn code:
 *   Pointer to char - Success.
 **/
const char *
lpfc_info(struct Scsi_Host *host)
{
      struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata;
      struct lpfc_hba   *phba = vport->phba;
      int len;
      static char  lpfcinfobuf[384];

      memset(lpfcinfobuf,0,384);
      if (phba && phba->pcidev){
            strncpy(lpfcinfobuf, phba->ModelDesc, 256);
            len = strlen(lpfcinfobuf);
            snprintf(lpfcinfobuf + len,
                  384-len,
                  " on PCI bus %02x device %02x irq %d",
                  phba->pcidev->bus->number,
                  phba->pcidev->devfn,
                  phba->pcidev->irq);
            len = strlen(lpfcinfobuf);
            if (phba->Port[0]) {
                  snprintf(lpfcinfobuf + len,
                         384-len,
                         " port %s",
                         phba->Port);
            }
      }
      return lpfcinfobuf;
}

/**
 * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba
 * @phba: The Hba for which this call is being executed.
 *
 * This routine modifies fcp_poll_timer  field of @phba by cfg_poll_tmo.
 * The default value of cfg_poll_tmo is 10 milliseconds.
 **/
static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba)
{
      unsigned long  poll_tmo_expires =
            (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo));

      if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt)
            mod_timer(&phba->fcp_poll_timer,
                    poll_tmo_expires);
}

/**
 * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA
 * @phba: The Hba for which this call is being executed.
 *
 * This routine starts the fcp_poll_timer of @phba.
 **/
void lpfc_poll_start_timer(struct lpfc_hba * phba)
{
      lpfc_poll_rearm_timer(phba);
}

/**
 * lpfc_poll_timeout - Restart polling timer
 * @ptr: Map to lpfc_hba data structure pointer.
 *
 * This routine restarts fcp_poll timer, when FCP ring  polling is enable
 * and FCP Ring interrupt is disable.
 **/

void lpfc_poll_timeout(unsigned long ptr)
{
      struct lpfc_hba *phba = (struct lpfc_hba *) ptr;

      if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
            lpfc_sli_poll_fcp_ring (phba);
            if (phba->cfg_poll & DISABLE_FCP_RING_INT)
                  lpfc_poll_rearm_timer(phba);
      }
}

/**
 * lpfc_queuecommand - scsi_host_template queuecommand entry point
 * @cmnd: Pointer to scsi_cmnd data structure.
 * @done: Pointer to done routine.
 *
 * Driver registers this routine to scsi midlayer to submit a @cmd to process.
 * This routine prepares an IOCB from scsi command and provides to firmware.
 * The @done callback is invoked after driver finished processing the command.
 *
 * Return value :
 *   0 - Success
 *   SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily.
 **/
static int
lpfc_queuecommand(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *))
{
      struct Scsi_Host  *shost = cmnd->device->host;
      struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
      struct lpfc_hba   *phba = vport->phba;
      struct lpfc_rport_data *rdata = cmnd->device->hostdata;
      struct lpfc_nodelist *ndlp = rdata->pnode;
      struct lpfc_scsi_buf *lpfc_cmd;
      struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
      int err;

      err = fc_remote_port_chkready(rport);
      if (err) {
            cmnd->result = err;
            goto out_fail_command;
      }

      if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
            scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {

            printk(KERN_ERR "BLKGRD ERROR: rcvd protected cmd:%02x op:%02x "
                        "str=%s without registering for BlockGuard - "
                        "Rejecting command\n",
                        cmnd->cmnd[0], scsi_get_prot_op(cmnd),
                        dif_op_str[scsi_get_prot_op(cmnd)]);
            goto out_fail_command;
      }

      /*
       * Catch race where our node has transitioned, but the
       * transport is still transitioning.
       */
      if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
            cmnd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
            goto out_fail_command;
      }
      if (vport->cfg_max_scsicmpl_time &&
            (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth))
            goto out_host_busy;

      lpfc_cmd = lpfc_get_scsi_buf(phba);
      if (lpfc_cmd == NULL) {
            lpfc_rampdown_queue_depth(phba);

            lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
                         "0707 driver's buffer pool is empty, "
                         "IO busied\n");
            goto out_host_busy;
      }

      /*
       * Store the midlayer's command structure for the completion phase
       * and complete the command initialization.
       */
      lpfc_cmd->pCmd  = cmnd;
      lpfc_cmd->rdata = rdata;
      lpfc_cmd->timeout = 0;
      lpfc_cmd->start_time = jiffies;
      cmnd->host_scribble = (unsigned char *)lpfc_cmd;
      cmnd->scsi_done = done;

      if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
            lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
                        "9033 BLKGRD: rcvd protected cmd:%02x op:%02x "
                        "str=%s\n",
                        cmnd->cmnd[0], scsi_get_prot_op(cmnd),
                        dif_op_str[scsi_get_prot_op(cmnd)]);
            lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
                        "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x "
                        "%02x %02x %02x %02x %02x \n",
                        cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2],
                        cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5],
                        cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8],
                        cmnd->cmnd[9]);
            if (cmnd->cmnd[0] == READ_10)
                  lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
                              "9035 BLKGRD: READ @ sector %llu, "
                              "count %u\n",
                              (unsigned long long)scsi_get_lba(cmnd),
                              blk_rq_sectors(cmnd->request));
            else if (cmnd->cmnd[0] == WRITE_10)
                  lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
                              "9036 BLKGRD: WRITE @ sector %llu, "
                              "count %u cmd=%p\n",
                              (unsigned long long)scsi_get_lba(cmnd),
                              blk_rq_sectors(cmnd->request),
                              cmnd);

            err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd);
      } else {
            lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
                        "9038 BLKGRD: rcvd unprotected cmd:%02x op:%02x"
                        " str=%s\n",
                        cmnd->cmnd[0], scsi_get_prot_op(cmnd),
                        dif_op_str[scsi_get_prot_op(cmnd)]);
            lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
                         "9039 BLKGRD: CDB: %02x %02x %02x %02x %02x "
                         "%02x %02x %02x %02x %02x \n",
                         cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2],
                         cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5],
                         cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8],
                         cmnd->cmnd[9]);
            if (cmnd->cmnd[0] == READ_10)
                  lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
                               "9040 dbg: READ @ sector %llu, "
                               "count %u\n",
                               (unsigned long long)scsi_get_lba(cmnd),
                               blk_rq_sectors(cmnd->request));
            else if (cmnd->cmnd[0] == WRITE_10)
                  lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
                               "9041 dbg: WRITE @ sector %llu, "
                               "count %u cmd=%p\n",
                               (unsigned long long)scsi_get_lba(cmnd),
                               blk_rq_sectors(cmnd->request), cmnd);
            else
                  lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
                               "9042 dbg: parser not implemented\n");
            err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
      }

      if (err)
            goto out_host_busy_free_buf;

      lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp);

      atomic_inc(&ndlp->cmd_pending);
      err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING,
                          &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB);
      if (err) {
            atomic_dec(&ndlp->cmd_pending);
            goto out_host_busy_free_buf;
      }
      if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
            lpfc_sli_poll_fcp_ring(phba);
            if (phba->cfg_poll & DISABLE_FCP_RING_INT)
                  lpfc_poll_rearm_timer(phba);
      }

      return 0;

 out_host_busy_free_buf:
      lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
      lpfc_release_scsi_buf(phba, lpfc_cmd);
 out_host_busy:
      return SCSI_MLQUEUE_HOST_BUSY;

 out_fail_command:
      done(cmnd);
      return 0;
}

/**
 * lpfc_block_error_handler - Routine to block error  handler
 * @cmnd: Pointer to scsi_cmnd data structure.
 *
 *  This routine blocks execution till fc_rport state is not FC_PORSTAT_BLCOEKD.
 **/
static void
lpfc_block_error_handler(struct scsi_cmnd *cmnd)
{
      struct Scsi_Host *shost = cmnd->device->host;
      struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));

      spin_lock_irq(shost->host_lock);
      while (rport->port_state == FC_PORTSTATE_BLOCKED) {
            spin_unlock_irq(shost->host_lock);
            msleep(1000);
            spin_lock_irq(shost->host_lock);
      }
      spin_unlock_irq(shost->host_lock);
      return;
}

/**
 * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point
 * @cmnd: Pointer to scsi_cmnd data structure.
 *
 * This routine aborts @cmnd pending in base driver.
 *
 * Return code :
 *   0x2003 - Error
 *   0x2002 - Success
 **/
static int
lpfc_abort_handler(struct scsi_cmnd *cmnd)
{
      struct Scsi_Host  *shost = cmnd->device->host;
      struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
      struct lpfc_hba   *phba = vport->phba;
      struct lpfc_iocbq *iocb;
      struct lpfc_iocbq *abtsiocb;
      struct lpfc_scsi_buf *lpfc_cmd;
      IOCB_t *cmd, *icmd;
      int ret = SUCCESS;
      DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq);

      lpfc_block_error_handler(cmnd);
      lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble;
      BUG_ON(!lpfc_cmd);

      /*
       * If pCmd field of the corresponding lpfc_scsi_buf structure
       * points to a different SCSI command, then the driver has
       * already completed this command, but the midlayer did not
       * see the completion before the eh fired.  Just return
       * SUCCESS.
       */
      iocb = &lpfc_cmd->cur_iocbq;
      if (lpfc_cmd->pCmd != cmnd)
            goto out;

      BUG_ON(iocb->context1 != lpfc_cmd);

      abtsiocb = lpfc_sli_get_iocbq(phba);
      if (abtsiocb == NULL) {
            ret = FAILED;
            goto out;
      }

      /*
       * The scsi command can not be in txq and it is in flight because the
       * pCmd is still pointig at the SCSI command we have to abort. There
       * is no need to search the txcmplq. Just send an abort to the FW.
       */

      cmd = &iocb->iocb;
      icmd = &abtsiocb->iocb;
      icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
      icmd->un.acxri.abortContextTag = cmd->ulpContext;
      if (phba->sli_rev == LPFC_SLI_REV4)
            icmd->un.acxri.abortIoTag = iocb->sli4_xritag;
      else
            icmd->un.acxri.abortIoTag = cmd->ulpIoTag;

      icmd->ulpLe = 1;
      icmd->ulpClass = cmd->ulpClass;
      if (lpfc_is_link_up(phba))
            icmd->ulpCommand = CMD_ABORT_XRI_CN;
      else
            icmd->ulpCommand = CMD_CLOSE_XRI_CN;

      abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
      abtsiocb->vport = vport;
      if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) ==
          IOCB_ERROR) {
            lpfc_sli_release_iocbq(phba, abtsiocb);
            ret = FAILED;
            goto out;
      }

      if (phba->cfg_poll & DISABLE_FCP_RING_INT)
            lpfc_sli_poll_fcp_ring (phba);

      lpfc_cmd->waitq = &waitq;
      /* Wait for abort to complete */
      wait_event_timeout(waitq,
                    (lpfc_cmd->pCmd != cmnd),
                     (2*vport->cfg_devloss_tmo*HZ));

      spin_lock_irq(shost->host_lock);
      lpfc_cmd->waitq = NULL;
      spin_unlock_irq(shost->host_lock);

      if (lpfc_cmd->pCmd == cmnd) {
            ret = FAILED;
            lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
                         "0748 abort handler timed out waiting "
                         "for abort to complete: ret %#x, ID %d, "
                         "LUN %d, snum %#lx\n",
                         ret, cmnd->device->id, cmnd->device->lun,
                         cmnd->serial_number);
      }

 out:
      lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
                   "0749 SCSI Layer I/O Abort Request Status x%x ID %d "
                   "LUN %d snum %#lx\n", ret, cmnd->device->id,
                   cmnd->device->lun, cmnd->serial_number);
      return ret;
}

static char *
lpfc_taskmgmt_name(uint8_t task_mgmt_cmd)
{
      switch (task_mgmt_cmd) {
      case FCP_ABORT_TASK_SET:
            return "ABORT_TASK_SET";
      case FCP_CLEAR_TASK_SET:
            return "FCP_CLEAR_TASK_SET";
      case FCP_BUS_RESET:
            return "FCP_BUS_RESET";
      case FCP_LUN_RESET:
            return "FCP_LUN_RESET";
      case FCP_TARGET_RESET:
            return "FCP_TARGET_RESET";
      case FCP_CLEAR_ACA:
            return "FCP_CLEAR_ACA";
      case FCP_TERMINATE_TASK:
            return "FCP_TERMINATE_TASK";
      default:
            return "unknown";
      }
}

/**
 * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler
 * @vport: The virtual port for which this call is being executed.
 * @rdata: Pointer to remote port local data
 * @tgt_id: Target ID of remote device.
 * @lun_id: Lun number for the TMF
 * @task_mgmt_cmd: type of TMF to send
 *
 * This routine builds and sends a TMF (SCSI Task Mgmt Function) to
 * a remote port.
 *
 * Return Code:
 *   0x2003 - Error
 *   0x2002 - Success.
 **/
static int
lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata,
                unsigned  tgt_id, unsigned int lun_id,
                uint8_t task_mgmt_cmd)
{
      struct lpfc_hba   *phba = vport->phba;
      struct lpfc_scsi_buf *lpfc_cmd;
      struct lpfc_iocbq *iocbq;
      struct lpfc_iocbq *iocbqrsp;
      int ret;
      int status;

      if (!rdata->pnode || !NLP_CHK_NODE_ACT(rdata->pnode))
            return FAILED;

      lpfc_cmd = lpfc_get_scsi_buf(phba);
      if (lpfc_cmd == NULL)
            return FAILED;
      lpfc_cmd->timeout = 60;
      lpfc_cmd->rdata = rdata;

      status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id,
                                 task_mgmt_cmd);
      if (!status) {
            lpfc_release_scsi_buf(phba, lpfc_cmd);
            return FAILED;
      }

      iocbq = &lpfc_cmd->cur_iocbq;
      iocbqrsp = lpfc_sli_get_iocbq(phba);
      if (iocbqrsp == NULL) {
            lpfc_release_scsi_buf(phba, lpfc_cmd);
            return FAILED;
      }

      lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
                   "0702 Issue %s to TGT %d LUN %d "
                   "rpi x%x nlp_flag x%x\n",
                   lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id,
                   rdata->pnode->nlp_rpi, rdata->pnode->nlp_flag);

      status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING,
                                iocbq, iocbqrsp, lpfc_cmd->timeout);
      if (status != IOCB_SUCCESS) {
            if (status == IOCB_TIMEDOUT) {
                  iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl;
                  ret = TIMEOUT_ERROR;
            } else
                  ret = FAILED;
            lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
            lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
                   "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n",
                   lpfc_taskmgmt_name(task_mgmt_cmd),
                   tgt_id, lun_id, iocbqrsp->iocb.ulpStatus,
                   iocbqrsp->iocb.un.ulpWord[4]);
      } else
            ret = SUCCESS;

      lpfc_sli_release_iocbq(phba, iocbqrsp);

      if (ret != TIMEOUT_ERROR)
            lpfc_release_scsi_buf(phba, lpfc_cmd);

      return ret;
}

/**
 * lpfc_chk_tgt_mapped -
 * @vport: The virtual port to check on
 * @cmnd: Pointer to scsi_cmnd data structure.
 *
 * This routine delays until the scsi target (aka rport) for the
 * command exists (is present and logged in) or we declare it non-existent.
 *
 * Return code :
 *  0x2003 - Error
 *  0x2002 - Success
 **/
static int
lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd)
{
      struct lpfc_rport_data *rdata = cmnd->device->hostdata;
      struct lpfc_nodelist *pnode = rdata->pnode;
      unsigned long later;

      /*
       * If target is not in a MAPPED state, delay until
       * target is rediscovered or devloss timeout expires.
       */
      later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
      while (time_after(later, jiffies)) {
            if (!pnode || !NLP_CHK_NODE_ACT(pnode))
                  return FAILED;
            if (pnode->nlp_state == NLP_STE_MAPPED_NODE)
                  return SUCCESS;
            schedule_timeout_uninterruptible(msecs_to_jiffies(500));
            rdata = cmnd->device->hostdata;
            if (!rdata)
                  return FAILED;
            pnode = rdata->pnode;
      }
      if (!pnode || !NLP_CHK_NODE_ACT(pnode) ||
          (pnode->nlp_state != NLP_STE_MAPPED_NODE))
            return FAILED;
      return SUCCESS;
}

/**
 * lpfc_reset_flush_io_context -
 * @vport: The virtual port (scsi_host) for the flush context
 * @tgt_id: If aborting by Target contect - specifies the target id
 * @lun_id: If aborting by Lun context - specifies the lun id
 * @context: specifies the context level to flush at.
 *
 * After a reset condition via TMF, we need to flush orphaned i/o
 * contexts from the adapter. This routine aborts any contexts
 * outstanding, then waits for their completions. The wait is
 * bounded by devloss_tmo though.
 *
 * Return code :
 *  0x2003 - Error
 *  0x2002 - Success
 **/
static int
lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id,
                  uint64_t lun_id, lpfc_ctx_cmd context)
{
      struct lpfc_hba   *phba = vport->phba;
      unsigned long later;
      int cnt;

      cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
      if (cnt)
            lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring],
                            tgt_id, lun_id, context);
      later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
      while (time_after(later, jiffies) && cnt) {
            schedule_timeout_uninterruptible(msecs_to_jiffies(20));
            cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
      }
      if (cnt) {
            lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
                  "0724 I/O flush failure for context %s : cnt x%x\n",
                  ((context == LPFC_CTX_LUN) ? "LUN" :
                   ((context == LPFC_CTX_TGT) ? "TGT" :
                    ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))),
                  cnt);
            return FAILED;
      }
      return SUCCESS;
}

/**
 * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point
 * @cmnd: Pointer to scsi_cmnd data structure.
 *
 * This routine does a device reset by sending a LUN_RESET task management
 * command.
 *
 * Return code :
 *  0x2003 - Error
 *  0x2002 - Success
 **/
static int
lpfc_device_reset_handler(struct scsi_cmnd *cmnd)
{
      struct Scsi_Host  *shost = cmnd->device->host;
      struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
      struct lpfc_rport_data *rdata = cmnd->device->hostdata;
      struct lpfc_nodelist *pnode = rdata->pnode;
      unsigned tgt_id = cmnd->device->id;
      unsigned int lun_id = cmnd->device->lun;
      struct lpfc_scsi_event_header scsi_event;
      int status;

      lpfc_block_error_handler(cmnd);

      status = lpfc_chk_tgt_mapped(vport, cmnd);
      if (status == FAILED) {
            lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
                  "0721 Device Reset rport failure: rdata x%p\n", rdata);
            return FAILED;
      }

      scsi_event.event_type = FC_REG_SCSI_EVENT;
      scsi_event.subcategory = LPFC_EVENT_LUNRESET;
      scsi_event.lun = lun_id;
      memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
      memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));

      fc_host_post_vendor_event(shost, fc_get_event_number(),
            sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);

      status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
                                    FCP_LUN_RESET);

      lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
                   "0713 SCSI layer issued Device Reset (%d, %d) "
                   "return x%x\n", tgt_id, lun_id, status);

      /*
       * We have to clean up i/o as : they may be orphaned by the TMF;
       * or if the TMF failed, they may be in an indeterminate state.
       * So, continue on.
       * We will report success if all the i/o aborts successfully.
       */
      status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
                                    LPFC_CTX_LUN);
      return status;
}

/**
 * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point
 * @cmnd: Pointer to scsi_cmnd data structure.
 *
 * This routine does a target reset by sending a TARGET_RESET task management
 * command.
 *
 * Return code :
 *  0x2003 - Error
 *  0x2002 - Success
 **/
static int
lpfc_target_reset_handler(struct scsi_cmnd *cmnd)
{
      struct Scsi_Host  *shost = cmnd->device->host;
      struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
      struct lpfc_rport_data *rdata = cmnd->device->hostdata;
      struct lpfc_nodelist *pnode = rdata->pnode;
      unsigned tgt_id = cmnd->device->id;
      unsigned int lun_id = cmnd->device->lun;
      struct lpfc_scsi_event_header scsi_event;
      int status;

      lpfc_block_error_handler(cmnd);

      status = lpfc_chk_tgt_mapped(vport, cmnd);
      if (status == FAILED) {
            lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
                  "0722 Target Reset rport failure: rdata x%p\n", rdata);
            return FAILED;
      }

      scsi_event.event_type = FC_REG_SCSI_EVENT;
      scsi_event.subcategory = LPFC_EVENT_TGTRESET;
      scsi_event.lun = 0;
      memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
      memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));

      fc_host_post_vendor_event(shost, fc_get_event_number(),
            sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);

      status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
                              FCP_TARGET_RESET);

      lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
                   "0723 SCSI layer issued Target Reset (%d, %d) "
                   "return x%x\n", tgt_id, lun_id, status);

      /*
       * We have to clean up i/o as : they may be orphaned by the TMF;
       * or if the TMF failed, they may be in an indeterminate state.
       * So, continue on.
       * We will report success if all the i/o aborts successfully.
       */
      status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
                              LPFC_CTX_TGT);
      return status;
}

/**
 * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point
 * @cmnd: Pointer to scsi_cmnd data structure.
 *
 * This routine does target reset to all targets on @cmnd->device->host.
 * This emulates Parallel SCSI Bus Reset Semantics.
 *
 * Return code :
 *  0x2003 - Error
 *  0x2002 - Success
 **/
static int
lpfc_bus_reset_handler(struct scsi_cmnd *cmnd)
{
      struct Scsi_Host  *shost = cmnd->device->host;
      struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
      struct lpfc_nodelist *ndlp = NULL;
      struct lpfc_scsi_event_header scsi_event;
      int match;
      int ret = SUCCESS, status, i;

      scsi_event.event_type = FC_REG_SCSI_EVENT;
      scsi_event.subcategory = LPFC_EVENT_BUSRESET;
      scsi_event.lun = 0;
      memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name));
      memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name));

      fc_host_post_vendor_event(shost, fc_get_event_number(),
            sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);

      lpfc_block_error_handler(cmnd);

      /*
       * Since the driver manages a single bus device, reset all
       * targets known to the driver.  Should any target reset
       * fail, this routine returns failure to the midlayer.
       */
      for (i = 0; i < LPFC_MAX_TARGET; i++) {
            /* Search for mapped node by target ID */
            match = 0;
            spin_lock_irq(shost->host_lock);
            list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
                  if (!NLP_CHK_NODE_ACT(ndlp))
                        continue;
                  if (ndlp->nlp_state == NLP_STE_MAPPED_NODE &&
                      ndlp->nlp_sid == i &&
                      ndlp->rport) {
                        match = 1;
                        break;
                  }
            }
            spin_unlock_irq(shost->host_lock);
            if (!match)
                  continue;

            status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data,
                              i, 0, FCP_TARGET_RESET);

            if (status != SUCCESS) {
                  lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
                               "0700 Bus Reset on target %d failed\n",
                               i);
                  ret = FAILED;
            }
      }
      /*
       * We have to clean up i/o as : they may be orphaned by the TMFs
       * above; or if any of the TMFs failed, they may be in an
       * indeterminate state.
       * We will report success if all the i/o aborts successfully.
       */

      status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST);
      if (status != SUCCESS)
            ret = FAILED;

      lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
                   "0714 SCSI layer issued Bus Reset Data: x%x\n", ret);
      return ret;
}

/**
 * lpfc_slave_alloc - scsi_host_template slave_alloc entry point
 * @sdev: Pointer to scsi_device.
 *
 * This routine populates the cmds_per_lun count + 2 scsi_bufs into  this host's
 * globally available list of scsi buffers. This routine also makes sure scsi
 * buffer is not allocated more than HBA limit conveyed to midlayer. This list
 * of scsi buffer exists for the lifetime of the driver.
 *
 * Return codes:
 *   non-0 - Error
 *   0 - Success
 **/
static int
lpfc_slave_alloc(struct scsi_device *sdev)
{
      struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
      struct lpfc_hba   *phba = vport->phba;
      struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
      uint32_t total = 0;
      uint32_t num_to_alloc = 0;
      int num_allocated = 0;

      if (!rport || fc_remote_port_chkready(rport))
            return -ENXIO;

      sdev->hostdata = rport->dd_data;

      /*
       * Populate the cmds_per_lun count scsi_bufs into this host's globally
       * available list of scsi buffers.  Don't allocate more than the
       * HBA limit conveyed to the midlayer via the host structure.  The
       * formula accounts for the lun_queue_depth + error handlers + 1
       * extra.  This list of scsi bufs exists for the lifetime of the driver.
       */
      total = phba->total_scsi_bufs;
      num_to_alloc = vport->cfg_lun_queue_depth + 2;

      /* Allow some exchanges to be available always to complete discovery */
      if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
            lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
                         "0704 At limitation of %d preallocated "
                         "command buffers\n", total);
            return 0;
      /* Allow some exchanges to be available always to complete discovery */
      } else if (total + num_to_alloc >
            phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
            lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
                         "0705 Allocation request of %d "
                         "command buffers will exceed max of %d.  "
                         "Reducing allocation request to %d.\n",
                         num_to_alloc, phba->cfg_hba_queue_depth,
                         (phba->cfg_hba_queue_depth - total));
            num_to_alloc = phba->cfg_hba_queue_depth - total;
      }
      num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc);
      if (num_to_alloc != num_allocated) {
                  lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
                         "0708 Allocation request of %d "
                         "command buffers did not succeed.  "
                         "Allocated %d buffers.\n",
                         num_to_alloc, num_allocated);
      }
      return 0;
}

/**
 * lpfc_slave_configure - scsi_host_template slave_configure entry point
 * @sdev: Pointer to scsi_device.
 *
 * This routine configures following items
 *   - Tag command queuing support for @sdev if supported.
 *   - Dev loss time out value of fc_rport.
 *   - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set.
 *
 * Return codes:
 *   0 - Success
 **/
static int
lpfc_slave_configure(struct scsi_device *sdev)
{
      struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
      struct lpfc_hba   *phba = vport->phba;
      struct fc_rport   *rport = starget_to_rport(sdev->sdev_target);

      if (sdev->tagged_supported)
            scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth);
      else
            scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth);

      /*
       * Initialize the fc transport attributes for the target
       * containing this scsi device.  Also note that the driver's
       * target pointer is stored in the starget_data for the
       * driver's sysfs entry point functions.
       */
      rport->dev_loss_tmo = vport->cfg_devloss_tmo;

      if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
            lpfc_sli_poll_fcp_ring(phba);
            if (phba->cfg_poll & DISABLE_FCP_RING_INT)
                  lpfc_poll_rearm_timer(phba);
      }

      return 0;
}

/**
 * lpfc_slave_destroy - slave_destroy entry point of SHT data structure
 * @sdev: Pointer to scsi_device.
 *
 * This routine sets @sdev hostatdata filed to null.
 **/
static void
lpfc_slave_destroy(struct scsi_device *sdev)
{
      sdev->hostdata = NULL;
      return;
}


struct scsi_host_template lpfc_template = {
      .module                 = THIS_MODULE,
      .name             = LPFC_DRIVER_NAME,
      .info             = lpfc_info,
      .queuecommand           = lpfc_queuecommand,
      .eh_abort_handler = lpfc_abort_handler,
      .eh_device_reset_handler = lpfc_device_reset_handler,
      .eh_target_reset_handler = lpfc_target_reset_handler,
      .eh_bus_reset_handler   = lpfc_bus_reset_handler,
      .slave_alloc            = lpfc_slave_alloc,
      .slave_configure  = lpfc_slave_configure,
      .slave_destroy          = lpfc_slave_destroy,
      .scan_finished          = lpfc_scan_finished,
      .this_id          = -1,
      .sg_tablesize           = LPFC_DEFAULT_SG_SEG_CNT,
      .cmd_per_lun            = LPFC_CMD_PER_LUN,
      .use_clustering         = ENABLE_CLUSTERING,
      .shost_attrs            = lpfc_hba_attrs,
      .max_sectors            = 0xFFFF,
};

struct scsi_host_template lpfc_vport_template = {
      .module                 = THIS_MODULE,
      .name             = LPFC_DRIVER_NAME,
      .info             = lpfc_info,
      .queuecommand           = lpfc_queuecommand,
      .eh_abort_handler = lpfc_abort_handler,
      .eh_device_reset_handler = lpfc_device_reset_handler,
      .eh_target_reset_handler = lpfc_target_reset_handler,
      .eh_bus_reset_handler   = lpfc_bus_reset_handler,
      .slave_alloc            = lpfc_slave_alloc,
      .slave_configure  = lpfc_slave_configure,
      .slave_destroy          = lpfc_slave_destroy,
      .scan_finished          = lpfc_scan_finished,
      .this_id          = -1,
      .sg_tablesize           = LPFC_DEFAULT_SG_SEG_CNT,
      .cmd_per_lun            = LPFC_CMD_PER_LUN,
      .use_clustering         = ENABLE_CLUSTERING,
      .shost_attrs            = lpfc_vport_attrs,
      .max_sectors            = 0xFFFF,
};

Generated by  Doxygen 1.6.0   Back to index