Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

phy.c

/*
 * PHY functions
 *
 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#define _ATH5K_PHY

#include <linux/delay.h>

#include "ath5k.h"
#include "reg.h"
#include "base.h"
#include "rfbuffer.h"
#include "rfgain.h"

/*
 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
 */
static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
                              const struct ath5k_rf_reg *rf_regs,
                              u32 val, u8 reg_id, bool set)
{
      const struct ath5k_rf_reg *rfreg = NULL;
      u8 offset, bank, num_bits, col, position;
      u16 entry;
      u32 mask, data, last_bit, bits_shifted, first_bit;
      u32 *rfb;
      s32 bits_left;
      int i;

      data = 0;
      rfb = ah->ah_rf_banks;

      for (i = 0; i < ah->ah_rf_regs_count; i++) {
            if (rf_regs[i].index == reg_id) {
                  rfreg = &rf_regs[i];
                  break;
            }
      }

      if (rfb == NULL || rfreg == NULL) {
            ATH5K_PRINTF("Rf register not found!\n");
            /* should not happen */
            return 0;
      }

      bank = rfreg->bank;
      num_bits = rfreg->field.len;
      first_bit = rfreg->field.pos;
      col = rfreg->field.col;

      /* first_bit is an offset from bank's
       * start. Since we have all banks on
       * the same array, we use this offset
       * to mark each bank's start */
      offset = ah->ah_offset[bank];

      /* Boundary check */
      if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
            ATH5K_PRINTF("invalid values at offset %u\n", offset);
            return 0;
      }

      entry = ((first_bit - 1) / 8) + offset;
      position = (first_bit - 1) % 8;

      if (set)
            data = ath5k_hw_bitswap(val, num_bits);

      for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
      position = 0, entry++) {

            last_bit = (position + bits_left > 8) ? 8 :
                              position + bits_left;

            mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
                                                (col * 8);

            if (set) {
                  rfb[entry] &= ~mask;
                  rfb[entry] |= ((data << position) << (col * 8)) & mask;
                  data >>= (8 - position);
            } else {
                  data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
                        << bits_shifted;
                  bits_shifted += last_bit - position;
            }

            bits_left -= 8 - position;
      }

      data = set ? 1 : ath5k_hw_bitswap(data, num_bits);

      return data;
}

/**********************\
* RF Gain optimization *
\**********************/

/*
 * This code is used to optimize rf gain on different environments
 * (temprature mostly) based on feedback from a power detector.
 *
 * It's only used on RF5111 and RF5112, later RF chips seem to have
 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 * no gain optimization ladder-.
 *
 * For more infos check out this patent doc
 * http://www.freepatentsonline.com/7400691.html
 *
 * This paper describes power drops as seen on the receiver due to
 * probe packets
 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 * %20of%20Power%20Control.pdf
 *
 * And this is the MadWiFi bug entry related to the above
 * http://madwifi-project.org/ticket/1659
 * with various measurements and diagrams
 *
 * TODO: Deal with power drops due to probes by setting an apropriate
 * tx power on the probe packets ! Make this part of the calibration process.
 */

/* Initialize ah_gain durring attach */
int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
{
      /* Initialize the gain optimization values */
      switch (ah->ah_radio) {
      case AR5K_RF5111:
            ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
            ah->ah_gain.g_low = 20;
            ah->ah_gain.g_high = 35;
            ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
            break;
      case AR5K_RF5112:
            ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
            ah->ah_gain.g_low = 20;
            ah->ah_gain.g_high = 85;
            ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
            break;
      default:
            return -EINVAL;
      }

      return 0;
}

/* Schedule a gain probe check on the next transmited packet.
 * That means our next packet is going to be sent with lower
 * tx power and a Peak to Average Power Detector (PAPD) will try
 * to measure the gain.
 *
 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
 * just after we enable the probe so that we don't mess with
 * standard traffic ? Maybe it's time to use sw interrupts and
 * a probe tasklet !!!
 */
static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
{

      /* Skip if gain calibration is inactive or
       * we already handle a probe request */
      if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
            return;

      /* Send the packet with 2dB below max power as
       * patent doc suggest */
      ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
                  AR5K_PHY_PAPD_PROBE_TXPOWER) |
                  AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);

      ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;

}

/* Calculate gain_F measurement correction
 * based on the current step for RF5112 rev. 2 */
static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
{
      u32 mix, step;
      u32 *rf;
      const struct ath5k_gain_opt *go;
      const struct ath5k_gain_opt_step *g_step;
      const struct ath5k_rf_reg *rf_regs;

      /* Only RF5112 Rev. 2 supports it */
      if ((ah->ah_radio != AR5K_RF5112) ||
      (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
            return 0;

      go = &rfgain_opt_5112;
      rf_regs = rf_regs_5112a;
      ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);

      g_step = &go->go_step[ah->ah_gain.g_step_idx];

      if (ah->ah_rf_banks == NULL)
            return 0;

      rf = ah->ah_rf_banks;
      ah->ah_gain.g_f_corr = 0;

      /* No VGA (Variable Gain Amplifier) override, skip */
      if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
            return 0;

      /* Mix gain stepping */
      step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);

      /* Mix gain override */
      mix = g_step->gos_param[0];

      switch (mix) {
      case 3:
            ah->ah_gain.g_f_corr = step * 2;
            break;
      case 2:
            ah->ah_gain.g_f_corr = (step - 5) * 2;
            break;
      case 1:
            ah->ah_gain.g_f_corr = step;
            break;
      default:
            ah->ah_gain.g_f_corr = 0;
            break;
      }

      return ah->ah_gain.g_f_corr;
}

/* Check if current gain_F measurement is in the range of our
 * power detector windows. If we get a measurement outside range
 * we know it's not accurate (detectors can't measure anything outside
 * their detection window) so we must ignore it */
static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
{
      const struct ath5k_rf_reg *rf_regs;
      u32 step, mix_ovr, level[4];
      u32 *rf;

      if (ah->ah_rf_banks == NULL)
            return false;

      rf = ah->ah_rf_banks;

      if (ah->ah_radio == AR5K_RF5111) {

            rf_regs = rf_regs_5111;
            ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);

            step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
                  false);

            level[0] = 0;
            level[1] = (step == 63) ? 50 : step + 4;
            level[2] = (step != 63) ? 64 : level[0];
            level[3] = level[2] + 50 ;

            ah->ah_gain.g_high = level[3] -
                  (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
            ah->ah_gain.g_low = level[0] +
                  (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
      } else {

            rf_regs = rf_regs_5112;
            ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);

            mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
                  false);

            level[0] = level[2] = 0;

            if (mix_ovr == 1) {
                  level[1] = level[3] = 83;
            } else {
                  level[1] = level[3] = 107;
                  ah->ah_gain.g_high = 55;
            }
      }

      return (ah->ah_gain.g_current >= level[0] &&
                  ah->ah_gain.g_current <= level[1]) ||
            (ah->ah_gain.g_current >= level[2] &&
                  ah->ah_gain.g_current <= level[3]);
}

/* Perform gain_F adjustment by choosing the right set
 * of parameters from rf gain optimization ladder */
static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
{
      const struct ath5k_gain_opt *go;
      const struct ath5k_gain_opt_step *g_step;
      int ret = 0;

      switch (ah->ah_radio) {
      case AR5K_RF5111:
            go = &rfgain_opt_5111;
            break;
      case AR5K_RF5112:
            go = &rfgain_opt_5112;
            break;
      default:
            return 0;
      }

      g_step = &go->go_step[ah->ah_gain.g_step_idx];

      if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {

            /* Reached maximum */
            if (ah->ah_gain.g_step_idx == 0)
                  return -1;

            for (ah->ah_gain.g_target = ah->ah_gain.g_current;
                        ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
                        ah->ah_gain.g_step_idx > 0;
                        g_step = &go->go_step[ah->ah_gain.g_step_idx])
                  ah->ah_gain.g_target -= 2 *
                      (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
                      g_step->gos_gain);

            ret = 1;
            goto done;
      }

      if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {

            /* Reached minimum */
            if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
                  return -2;

            for (ah->ah_gain.g_target = ah->ah_gain.g_current;
                        ah->ah_gain.g_target <= ah->ah_gain.g_low &&
                        ah->ah_gain.g_step_idx < go->go_steps_count-1;
                        g_step = &go->go_step[ah->ah_gain.g_step_idx])
                  ah->ah_gain.g_target -= 2 *
                      (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
                      g_step->gos_gain);

            ret = 2;
            goto done;
      }

done:
      ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
            "ret %d, gain step %u, current gain %u, target gain %u\n",
            ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
            ah->ah_gain.g_target);

      return ret;
}

/* Main callback for thermal rf gain calibration engine
 * Check for a new gain reading and schedule an adjustment
 * if needed.
 *
 * TODO: Use sw interrupt to schedule reset if gain_F needs
 * adjustment */
enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
{
      u32 data, type;
      struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;

      ATH5K_TRACE(ah->ah_sc);

      if (ah->ah_rf_banks == NULL ||
      ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
            return AR5K_RFGAIN_INACTIVE;

      /* No check requested, either engine is inactive
       * or an adjustment is already requested */
      if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
            goto done;

      /* Read the PAPD (Peak to Average Power Detector)
       * register */
      data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);

      /* No probe is scheduled, read gain_F measurement */
      if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
            ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
            type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);

            /* If tx packet is CCK correct the gain_F measurement
             * by cck ofdm gain delta */
            if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
                  if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
                        ah->ah_gain.g_current +=
                              ee->ee_cck_ofdm_gain_delta;
                  else
                        ah->ah_gain.g_current +=
                              AR5K_GAIN_CCK_PROBE_CORR;
            }

            /* Further correct gain_F measurement for
             * RF5112A radios */
            if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
                  ath5k_hw_rf_gainf_corr(ah);
                  ah->ah_gain.g_current =
                        ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
                        (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
                        0;
            }

            /* Check if measurement is ok and if we need
             * to adjust gain, schedule a gain adjustment,
             * else switch back to the acive state */
            if (ath5k_hw_rf_check_gainf_readback(ah) &&
            AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
            ath5k_hw_rf_gainf_adjust(ah)) {
                  ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
            } else {
                  ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
            }
      }

done:
      return ah->ah_gain.g_state;
}

/* Write initial rf gain table to set the RF sensitivity
 * this one works on all RF chips and has nothing to do
 * with gain_F calibration */
int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
{
      const struct ath5k_ini_rfgain *ath5k_rfg;
      unsigned int i, size;

      switch (ah->ah_radio) {
      case AR5K_RF5111:
            ath5k_rfg = rfgain_5111;
            size = ARRAY_SIZE(rfgain_5111);
            break;
      case AR5K_RF5112:
            ath5k_rfg = rfgain_5112;
            size = ARRAY_SIZE(rfgain_5112);
            break;
      case AR5K_RF2413:
            ath5k_rfg = rfgain_2413;
            size = ARRAY_SIZE(rfgain_2413);
            break;
      case AR5K_RF2316:
            ath5k_rfg = rfgain_2316;
            size = ARRAY_SIZE(rfgain_2316);
            break;
      case AR5K_RF5413:
            ath5k_rfg = rfgain_5413;
            size = ARRAY_SIZE(rfgain_5413);
            break;
      case AR5K_RF2317:
      case AR5K_RF2425:
            ath5k_rfg = rfgain_2425;
            size = ARRAY_SIZE(rfgain_2425);
            break;
      default:
            return -EINVAL;
      }

      switch (freq) {
      case AR5K_INI_RFGAIN_2GHZ:
      case AR5K_INI_RFGAIN_5GHZ:
            break;
      default:
            return -EINVAL;
      }

      for (i = 0; i < size; i++) {
            AR5K_REG_WAIT(i);
            ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
                  (u32)ath5k_rfg[i].rfg_register);
      }

      return 0;
}



/********************\
* RF Registers setup *
\********************/


/*
 * Setup RF registers by writing rf buffer on hw
 */
int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
            unsigned int mode)
{
      const struct ath5k_rf_reg *rf_regs;
      const struct ath5k_ini_rfbuffer *ini_rfb;
      const struct ath5k_gain_opt *go = NULL;
      const struct ath5k_gain_opt_step *g_step;
      struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
      u8 ee_mode = 0;
      u32 *rfb;
      int i, obdb = -1, bank = -1;

      switch (ah->ah_radio) {
      case AR5K_RF5111:
            rf_regs = rf_regs_5111;
            ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
            ini_rfb = rfb_5111;
            ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
            go = &rfgain_opt_5111;
            break;
      case AR5K_RF5112:
            if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
                  rf_regs = rf_regs_5112a;
                  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
                  ini_rfb = rfb_5112a;
                  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
            } else {
                  rf_regs = rf_regs_5112;
                  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
                  ini_rfb = rfb_5112;
                  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
            }
            go = &rfgain_opt_5112;
            break;
      case AR5K_RF2413:
            rf_regs = rf_regs_2413;
            ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
            ini_rfb = rfb_2413;
            ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
            break;
      case AR5K_RF2316:
            rf_regs = rf_regs_2316;
            ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
            ini_rfb = rfb_2316;
            ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
            break;
      case AR5K_RF5413:
            rf_regs = rf_regs_5413;
            ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
            ini_rfb = rfb_5413;
            ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
            break;
      case AR5K_RF2317:
            rf_regs = rf_regs_2425;
            ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
            ini_rfb = rfb_2317;
            ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
            break;
      case AR5K_RF2425:
            rf_regs = rf_regs_2425;
            ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
            if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
                  ini_rfb = rfb_2425;
                  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
            } else {
                  ini_rfb = rfb_2417;
                  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
            }
            break;
      default:
            return -EINVAL;
      }

      /* If it's the first time we set rf buffer, allocate
       * ah->ah_rf_banks based on ah->ah_rf_banks_size
       * we set above */
      if (ah->ah_rf_banks == NULL) {
            ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
                                                GFP_KERNEL);
            if (ah->ah_rf_banks == NULL) {
                  ATH5K_ERR(ah->ah_sc, "out of memory\n");
                  return -ENOMEM;
            }
      }

      /* Copy values to modify them */
      rfb = ah->ah_rf_banks;

      for (i = 0; i < ah->ah_rf_banks_size; i++) {
            if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
                  ATH5K_ERR(ah->ah_sc, "invalid bank\n");
                  return -EINVAL;
            }

            /* Bank changed, write down the offset */
            if (bank != ini_rfb[i].rfb_bank) {
                  bank = ini_rfb[i].rfb_bank;
                  ah->ah_offset[bank] = i;
            }

            rfb[i] = ini_rfb[i].rfb_mode_data[mode];
      }

      /* Set Output and Driver bias current (OB/DB) */
      if (channel->hw_value & CHANNEL_2GHZ) {

            if (channel->hw_value & CHANNEL_CCK)
                  ee_mode = AR5K_EEPROM_MODE_11B;
            else
                  ee_mode = AR5K_EEPROM_MODE_11G;

            /* For RF511X/RF211X combination we
             * use b_OB and b_DB parameters stored
             * in eeprom on ee->ee_ob[ee_mode][0]
             *
             * For all other chips we use OB/DB for 2Ghz
             * stored in the b/g modal section just like
             * 802.11a on ee->ee_ob[ee_mode][1] */
            if ((ah->ah_radio == AR5K_RF5111) ||
            (ah->ah_radio == AR5K_RF5112))
                  obdb = 0;
            else
                  obdb = 1;

            ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
                                    AR5K_RF_OB_2GHZ, true);

            ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
                                    AR5K_RF_DB_2GHZ, true);

      /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
      } else if ((channel->hw_value & CHANNEL_5GHZ) ||
                  (ah->ah_radio == AR5K_RF5111)) {

            /* For 11a, Turbo and XR we need to choose
             * OB/DB based on frequency range */
            ee_mode = AR5K_EEPROM_MODE_11A;
            obdb =       channel->center_freq >= 5725 ? 3 :
                  (channel->center_freq >= 5500 ? 2 :
                  (channel->center_freq >= 5260 ? 1 :
                   (channel->center_freq > 4000 ? 0 : -1)));

            if (obdb < 0)
                  return -EINVAL;

            ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
                                    AR5K_RF_OB_5GHZ, true);

            ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
                                    AR5K_RF_DB_5GHZ, true);
      }

      g_step = &go->go_step[ah->ah_gain.g_step_idx];

      /* Bank Modifications (chip-specific) */
      if (ah->ah_radio == AR5K_RF5111) {

            /* Set gain_F settings according to current step */
            if (channel->hw_value & CHANNEL_OFDM) {

                  AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
                              AR5K_PHY_FRAME_CTL_TX_CLIP,
                              g_step->gos_param[0]);

                  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
                                          AR5K_RF_PWD_90, true);

                  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
                                          AR5K_RF_PWD_84, true);

                  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
                                    AR5K_RF_RFGAIN_SEL, true);

                  /* We programmed gain_F parameters, switch back
                   * to active state */
                  ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;

            }

            /* Bank 6/7 setup */

            ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
                                    AR5K_RF_PWD_XPD, true);

            ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
                                    AR5K_RF_XPD_GAIN, true);

            ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
                                    AR5K_RF_GAIN_I, true);

            ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
                                    AR5K_RF_PLO_SEL, true);

            /* TODO: Half/quarter channel support */
      }

      if (ah->ah_radio == AR5K_RF5112) {

            /* Set gain_F settings according to current step */
            if (channel->hw_value & CHANNEL_OFDM) {

                  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
                                    AR5K_RF_MIXGAIN_OVR, true);

                  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
                                    AR5K_RF_PWD_138, true);

                  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
                                    AR5K_RF_PWD_137, true);

                  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
                                    AR5K_RF_PWD_136, true);

                  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
                                    AR5K_RF_PWD_132, true);

                  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
                                    AR5K_RF_PWD_131, true);

                  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
                                    AR5K_RF_PWD_130, true);

                  /* We programmed gain_F parameters, switch back
                   * to active state */
                  ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
            }

            /* Bank 6/7 setup */

            ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
                                    AR5K_RF_XPD_SEL, true);

            if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
                  /* Rev. 1 supports only one xpd */
                  ath5k_hw_rfb_op(ah, rf_regs,
                                    ee->ee_x_gain[ee_mode],
                                    AR5K_RF_XPD_GAIN, true);

            } else {
                  /* TODO: Set high and low gain bits */
                  ath5k_hw_rfb_op(ah, rf_regs,
                                    ee->ee_x_gain[ee_mode],
                                    AR5K_RF_PD_GAIN_LO, true);
                  ath5k_hw_rfb_op(ah, rf_regs,
                                    ee->ee_x_gain[ee_mode],
                                    AR5K_RF_PD_GAIN_HI, true);

                  /* Lower synth voltage on Rev 2 */
                  ath5k_hw_rfb_op(ah, rf_regs, 2,
                              AR5K_RF_HIGH_VC_CP, true);

                  ath5k_hw_rfb_op(ah, rf_regs, 2,
                              AR5K_RF_MID_VC_CP, true);

                  ath5k_hw_rfb_op(ah, rf_regs, 2,
                              AR5K_RF_LOW_VC_CP, true);

                  ath5k_hw_rfb_op(ah, rf_regs, 2,
                              AR5K_RF_PUSH_UP, true);

                  /* Decrease power consumption on 5213+ BaseBand */
                  if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
                        ath5k_hw_rfb_op(ah, rf_regs, 1,
                                    AR5K_RF_PAD2GND, true);

                        ath5k_hw_rfb_op(ah, rf_regs, 1,
                                    AR5K_RF_XB2_LVL, true);

                        ath5k_hw_rfb_op(ah, rf_regs, 1,
                                    AR5K_RF_XB5_LVL, true);

                        ath5k_hw_rfb_op(ah, rf_regs, 1,
                                    AR5K_RF_PWD_167, true);

                        ath5k_hw_rfb_op(ah, rf_regs, 1,
                                    AR5K_RF_PWD_166, true);
                  }
            }

            ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
                                    AR5K_RF_GAIN_I, true);

            /* TODO: Half/quarter channel support */

      }

      if (ah->ah_radio == AR5K_RF5413 &&
      channel->hw_value & CHANNEL_2GHZ) {

            ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
                                                      true);

            /* Set optimum value for early revisions (on pci-e chips) */
            if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
            ah->ah_mac_srev < AR5K_SREV_AR5413)
                  ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
                                    AR5K_RF_PWD_ICLOBUF_2G, true);

      }

      /* Write RF banks on hw */
      for (i = 0; i < ah->ah_rf_banks_size; i++) {
            AR5K_REG_WAIT(i);
            ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
      }

      return 0;
}


/**************************\
  PHY/RF channel functions
\**************************/

/*
 * Check if a channel is supported
 */
bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
{
      /* Check if the channel is in our supported range */
      if (flags & CHANNEL_2GHZ) {
            if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
                (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
                  return true;
      } else if (flags & CHANNEL_5GHZ)
            if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
                (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
                  return true;

      return false;
}

/*
 * Convertion needed for RF5110
 */
static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
{
      u32 athchan;

      /*
       * Convert IEEE channel/MHz to an internal channel value used
       * by the AR5210 chipset. This has not been verified with
       * newer chipsets like the AR5212A who have a completely
       * different RF/PHY part.
       */
      athchan = (ath5k_hw_bitswap(
                  (ieee80211_frequency_to_channel(
                        channel->center_freq) - 24) / 2, 5)
                        << 1) | (1 << 6) | 0x1;
      return athchan;
}

/*
 * Set channel on RF5110
 */
static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
            struct ieee80211_channel *channel)
{
      u32 data;

      /*
       * Set the channel and wait
       */
      data = ath5k_hw_rf5110_chan2athchan(channel);
      ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
      ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
      mdelay(1);

      return 0;
}

/*
 * Convertion needed for 5111
 */
static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
            struct ath5k_athchan_2ghz *athchan)
{
      int channel;

      /* Cast this value to catch negative channel numbers (>= -19) */
      channel = (int)ieee;

      /*
       * Map 2GHz IEEE channel to 5GHz Atheros channel
       */
      if (channel <= 13) {
            athchan->a2_athchan = 115 + channel;
            athchan->a2_flags = 0x46;
      } else if (channel == 14) {
            athchan->a2_athchan = 124;
            athchan->a2_flags = 0x44;
      } else if (channel >= 15 && channel <= 26) {
            athchan->a2_athchan = ((channel - 14) * 4) + 132;
            athchan->a2_flags = 0x46;
      } else
            return -EINVAL;

      return 0;
}

/*
 * Set channel on 5111
 */
static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
            struct ieee80211_channel *channel)
{
      struct ath5k_athchan_2ghz ath5k_channel_2ghz;
      unsigned int ath5k_channel =
            ieee80211_frequency_to_channel(channel->center_freq);
      u32 data0, data1, clock;
      int ret;

      /*
       * Set the channel on the RF5111 radio
       */
      data0 = data1 = 0;

      if (channel->hw_value & CHANNEL_2GHZ) {
            /* Map 2GHz channel to 5GHz Atheros channel ID */
            ret = ath5k_hw_rf5111_chan2athchan(
                  ieee80211_frequency_to_channel(channel->center_freq),
                  &ath5k_channel_2ghz);
            if (ret)
                  return ret;

            ath5k_channel = ath5k_channel_2ghz.a2_athchan;
            data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
                << 5) | (1 << 4);
      }

      if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
            clock = 1;
            data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
                  (clock << 1) | (1 << 10) | 1;
      } else {
            clock = 0;
            data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
                  << 2) | (clock << 1) | (1 << 10) | 1;
      }

      ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
                  AR5K_RF_BUFFER);
      ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
                  AR5K_RF_BUFFER_CONTROL_3);

      return 0;
}

/*
 * Set channel on 5112 and newer
 */
static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
            struct ieee80211_channel *channel)
{
      u32 data, data0, data1, data2;
      u16 c;

      data = data0 = data1 = data2 = 0;
      c = channel->center_freq;

      if (c < 4800) {
            if (!((c - 2224) % 5)) {
                  data0 = ((2 * (c - 704)) - 3040) / 10;
                  data1 = 1;
            } else if (!((c - 2192) % 5)) {
                  data0 = ((2 * (c - 672)) - 3040) / 10;
                  data1 = 0;
            } else
                  return -EINVAL;

            data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
      } else if ((c - (c % 5)) != 2 || c > 5435) {
            if (!(c % 20) && c >= 5120) {
                  data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
                  data2 = ath5k_hw_bitswap(3, 2);
            } else if (!(c % 10)) {
                  data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
                  data2 = ath5k_hw_bitswap(2, 2);
            } else if (!(c % 5)) {
                  data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
                  data2 = ath5k_hw_bitswap(1, 2);
            } else
                  return -EINVAL;
      } else {
            data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
            data2 = ath5k_hw_bitswap(0, 2);
      }

      data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;

      ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
      ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);

      return 0;
}

/*
 * Set the channel on the RF2425
 */
static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
            struct ieee80211_channel *channel)
{
      u32 data, data0, data2;
      u16 c;

      data = data0 = data2 = 0;
      c = channel->center_freq;

      if (c < 4800) {
            data0 = ath5k_hw_bitswap((c - 2272), 8);
            data2 = 0;
      /* ? 5GHz ? */
      } else if ((c - (c % 5)) != 2 || c > 5435) {
            if (!(c % 20) && c < 5120)
                  data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
            else if (!(c % 10))
                  data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
            else if (!(c % 5))
                  data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
            else
                  return -EINVAL;
            data2 = ath5k_hw_bitswap(1, 2);
      } else {
            data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
            data2 = ath5k_hw_bitswap(0, 2);
      }

      data = (data0 << 4) | data2 << 2 | 0x1001;

      ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
      ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);

      return 0;
}

/*
 * Set a channel on the radio chip
 */
int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
{
      int ret;
      /*
       * Check bounds supported by the PHY (we don't care about regultory
       * restrictions at this point). Note: hw_value already has the band
       * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
       * of the band by that */
      if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
            ATH5K_ERR(ah->ah_sc,
                  "channel frequency (%u MHz) out of supported "
                  "band range\n",
                  channel->center_freq);
                  return -EINVAL;
      }

      /*
       * Set the channel and wait
       */
      switch (ah->ah_radio) {
      case AR5K_RF5110:
            ret = ath5k_hw_rf5110_channel(ah, channel);
            break;
      case AR5K_RF5111:
            ret = ath5k_hw_rf5111_channel(ah, channel);
            break;
      case AR5K_RF2425:
            ret = ath5k_hw_rf2425_channel(ah, channel);
            break;
      default:
            ret = ath5k_hw_rf5112_channel(ah, channel);
            break;
      }

      if (ret)
            return ret;

      /* Set JAPAN setting for channel 14 */
      if (channel->center_freq == 2484) {
            AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
                        AR5K_PHY_CCKTXCTL_JAPAN);
      } else {
            AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
                        AR5K_PHY_CCKTXCTL_WORLD);
      }

      ah->ah_current_channel.center_freq = channel->center_freq;
      ah->ah_current_channel.hw_value = channel->hw_value;
      ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;

      return 0;
}

/*****************\
  PHY calibration
\*****************/

/**
 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
 *
 * @ah: struct ath5k_hw pointer we are operating on
 * @freq: the channel frequency, just used for error logging
 *
 * This function performs a noise floor calibration of the PHY and waits for
 * it to complete. Then the noise floor value is compared to some maximum
 * noise floor we consider valid.
 *
 * Note that this is different from what the madwifi HAL does: it reads the
 * noise floor and afterwards initiates the calibration. Since the noise floor
 * calibration can take some time to finish, depending on the current channel
 * use, that avoids the occasional timeout warnings we are seeing now.
 *
 * See the following link for an Atheros patent on noise floor calibration:
 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
 *
 * XXX: Since during noise floor calibration antennas are detached according to
 * the patent, we should stop tx queues here.
 */
int
ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
{
      int ret;
      unsigned int i;
      s32 noise_floor;

      /*
       * Enable noise floor calibration
       */
      AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
                        AR5K_PHY_AGCCTL_NF);

      ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
                  AR5K_PHY_AGCCTL_NF, 0, false);
      if (ret) {
            ATH5K_ERR(ah->ah_sc,
                  "noise floor calibration timeout (%uMHz)\n", freq);
            return -EAGAIN;
      }

      /* Wait until the noise floor is calibrated and read the value */
      for (i = 20; i > 0; i--) {
            mdelay(1);
            noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
            noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
            if (noise_floor & AR5K_PHY_NF_ACTIVE) {
                  noise_floor = AR5K_PHY_NF_AVAL(noise_floor);

                  if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
                        break;
            }
      }

      ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
            "noise floor %d\n", noise_floor);

      if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
            ATH5K_ERR(ah->ah_sc,
                  "noise floor calibration failed (%uMHz)\n", freq);
            return -EAGAIN;
      }

      ah->ah_noise_floor = noise_floor;

      return 0;
}

/*
 * Perform a PHY calibration on RF5110
 * -Fix BPSK/QAM Constellation (I/Q correction)
 * -Calculate Noise Floor
 */
static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
            struct ieee80211_channel *channel)
{
      u32 phy_sig, phy_agc, phy_sat, beacon;
      int ret;

      /*
       * Disable beacons and RX/TX queues, wait
       */
      AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
            AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
      beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
      ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);

      mdelay(2);

      /*
       * Set the channel (with AGC turned off)
       */
      AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
      udelay(10);
      ret = ath5k_hw_channel(ah, channel);

      /*
       * Activate PHY and wait
       */
      ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
      mdelay(1);

      AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);

      if (ret)
            return ret;

      /*
       * Calibrate the radio chip
       */

      /* Remember normal state */
      phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
      phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
      phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);

      /* Update radio registers */
      ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
            AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);

      ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
                  AR5K_PHY_AGCCOARSE_LO)) |
            AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
            AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);

      ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
                  AR5K_PHY_ADCSAT_THR)) |
            AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
            AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);

      udelay(20);

      AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
      udelay(10);
      ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
      AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);

      mdelay(1);

      /*
       * Enable calibration and wait until completion
       */
      AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);

      ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
                  AR5K_PHY_AGCCTL_CAL, 0, false);

      /* Reset to normal state */
      ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
      ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
      ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);

      if (ret) {
            ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
                        channel->center_freq);
            return ret;
      }

      ath5k_hw_noise_floor_calibration(ah, channel->center_freq);

      /*
       * Re-enable RX/TX and beacons
       */
      AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
            AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
      ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);

      return 0;
}

/*
 * Perform a PHY calibration on RF5111/5112 and newer chips
 */
static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
            struct ieee80211_channel *channel)
{
      u32 i_pwr, q_pwr;
      s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
      int i;
      ATH5K_TRACE(ah->ah_sc);

      if (!ah->ah_calibration ||
            ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
            goto done;

      /* Calibration has finished, get the results and re-run */
      for (i = 0; i <= 10; i++) {
            iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
            i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
            q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
      }

      i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
      q_coffd = q_pwr >> 7;

      /* No correction */
      if (i_coffd == 0 || q_coffd == 0)
            goto done;

      i_coff = ((-iq_corr) / i_coffd) & 0x3f;

      /* Boundary check */
      if (i_coff > 31)
            i_coff = 31;
      if (i_coff < -32)
            i_coff = -32;

      q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;

      /* Boundary check */
      if (q_coff > 15)
            q_coff = 15;
      if (q_coff < -16)
            q_coff = -16;

      /* Commit new I/Q value */
      AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
            ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));

      /* Re-enable calibration -if we don't we'll commit
       * the same values again and again */
      AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
                  AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
      AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);

done:

      /* TODO: Separate noise floor calibration from I/Q calibration
       * since noise floor calibration interrupts rx path while I/Q
       * calibration doesn't. We don't need to run noise floor calibration
       * as often as I/Q calibration.*/
      ath5k_hw_noise_floor_calibration(ah, channel->center_freq);

      /* Initiate a gain_F calibration */
      ath5k_hw_request_rfgain_probe(ah);

      return 0;
}

/*
 * Perform a PHY calibration
 */
int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
            struct ieee80211_channel *channel)
{
      int ret;

      if (ah->ah_radio == AR5K_RF5110)
            ret = ath5k_hw_rf5110_calibrate(ah, channel);
      else
            ret = ath5k_hw_rf511x_calibrate(ah, channel);

      return ret;
}

/***************************\
* Spur mitigation functions *
\***************************/

bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
                        struct ieee80211_channel *channel)
{
      u8 refclk_freq;

      if ((ah->ah_radio == AR5K_RF5112) ||
      (ah->ah_radio == AR5K_RF5413) ||
      (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
            refclk_freq = 40;
      else
            refclk_freq = 32;

      if ((channel->center_freq % refclk_freq != 0) &&
      ((channel->center_freq % refclk_freq < 10) ||
      (channel->center_freq % refclk_freq > 22)))
            return true;
      else
            return false;
}

void
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
                        struct ieee80211_channel *channel)
{
      struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
      u32 mag_mask[4] = {0, 0, 0, 0};
      u32 pilot_mask[2] = {0, 0};
      /* Note: fbin values are scaled up by 2 */
      u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
      s32 spur_delta_phase, spur_freq_sigma_delta;
      s32 spur_offset, num_symbols_x16;
      u8 num_symbol_offsets, i, freq_band;

      /* Convert current frequency to fbin value (the same way channels
       * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
       * up by 2 so we can compare it later */
      if (channel->hw_value & CHANNEL_2GHZ) {
            chan_fbin = (channel->center_freq - 2300) * 10;
            freq_band = AR5K_EEPROM_BAND_2GHZ;
      } else {
            chan_fbin = (channel->center_freq - 4900) * 10;
            freq_band = AR5K_EEPROM_BAND_5GHZ;
      }

      /* Check if any spur_chan_fbin from EEPROM is
       * within our current channel's spur detection range */
      spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
      spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
      /* XXX: Half/Quarter channels ?*/
      if (channel->hw_value & CHANNEL_TURBO)
            spur_detection_window *= 2;

      for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
            spur_chan_fbin = ee->ee_spur_chans[i][freq_band];

            /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
             * so it's zero if we got nothing from EEPROM */
            if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
                  spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
                  break;
            }

            if ((chan_fbin - spur_detection_window <=
            (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
            (chan_fbin + spur_detection_window >=
            (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
                  spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
                  break;
            }
      }

      /* We need to enable spur filter for this channel */
      if (spur_chan_fbin) {
            spur_offset = spur_chan_fbin - chan_fbin;
            /*
             * Calculate deltas:
             * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
             * spur_delta_phase -> spur_offset / chip_freq << 11
             * Note: Both values have 100KHz resolution
             */
            /* XXX: Half/Quarter rate channels ? */
            switch (channel->hw_value) {
            case CHANNEL_A:
                  /* Both sample_freq and chip_freq are 40MHz */
                  spur_delta_phase = (spur_offset << 17) / 25;
                  spur_freq_sigma_delta = (spur_delta_phase >> 10);
                  symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
                  break;
            case CHANNEL_G:
                  /* sample_freq -> 40MHz chip_freq -> 44MHz
                   * (for b compatibility) */
                  spur_freq_sigma_delta = (spur_offset << 8) / 55;
                  spur_delta_phase = (spur_offset << 17) / 25;
                  symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
                  break;
            case CHANNEL_T:
            case CHANNEL_TG:
                  /* Both sample_freq and chip_freq are 80MHz */
                  spur_delta_phase = (spur_offset << 16) / 25;
                  spur_freq_sigma_delta = (spur_delta_phase >> 10);
                  symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
                  break;
            default:
                  return;
            }

            /* Calculate pilot and magnitude masks */

            /* Scale up spur_offset by 1000 to switch to 100HZ resolution
             * and divide by symbol_width to find how many symbols we have
             * Note: number of symbols is scaled up by 16 */
            num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;

            /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
            if (!(num_symbols_x16 & 0xF))
                  /* _X_ */
                  num_symbol_offsets = 3;
            else
                  /* _xx_ */
                  num_symbol_offsets = 4;

            for (i = 0; i < num_symbol_offsets; i++) {

                  /* Calculate pilot mask */
                  s32 curr_sym_off =
                        (num_symbols_x16 / 16) + i + 25;

                  /* Pilot magnitude mask seems to be a way to
                   * declare the boundaries for our detection
                   * window or something, it's 2 for the middle
                   * value(s) where the symbol is expected to be
                   * and 1 on the boundary values */
                  u8 plt_mag_map =
                        (i == 0 || i == (num_symbol_offsets - 1))
                                                ? 1 : 2;

                  if (curr_sym_off >= 0 && curr_sym_off <= 32) {
                        if (curr_sym_off <= 25)
                              pilot_mask[0] |= 1 << curr_sym_off;
                        else if (curr_sym_off >= 27)
                              pilot_mask[0] |= 1 << (curr_sym_off - 1);
                  } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
                        pilot_mask[1] |= 1 << (curr_sym_off - 33);

                  /* Calculate magnitude mask (for viterbi decoder) */
                  if (curr_sym_off >= -1 && curr_sym_off <= 14)
                        mag_mask[0] |=
                              plt_mag_map << (curr_sym_off + 1) * 2;
                  else if (curr_sym_off >= 15 && curr_sym_off <= 30)
                        mag_mask[1] |=
                              plt_mag_map << (curr_sym_off - 15) * 2;
                  else if (curr_sym_off >= 31 && curr_sym_off <= 46)
                        mag_mask[2] |=
                              plt_mag_map << (curr_sym_off - 31) * 2;
                  else if (curr_sym_off >= 46 && curr_sym_off <= 53)
                        mag_mask[3] |=
                              plt_mag_map << (curr_sym_off - 47) * 2;

            }

            /* Write settings on hw to enable spur filter */
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
                              AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
            /* XXX: Self correlator also ? */
            AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
                              AR5K_PHY_IQ_PILOT_MASK_EN |
                              AR5K_PHY_IQ_CHAN_MASK_EN |
                              AR5K_PHY_IQ_SPUR_FILT_EN);

            /* Set delta phase and freq sigma delta */
            ath5k_hw_reg_write(ah,
                        AR5K_REG_SM(spur_delta_phase,
                              AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
                        AR5K_REG_SM(spur_freq_sigma_delta,
                        AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
                        AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
                        AR5K_PHY_TIMING_11);

            /* Write pilot masks */
            ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
                              AR5K_PHY_TIMING_8_PILOT_MASK_2,
                              pilot_mask[1]);

            ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
                              AR5K_PHY_TIMING_10_PILOT_MASK_2,
                              pilot_mask[1]);

            /* Write magnitude masks */
            ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
            ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
            ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
                              AR5K_PHY_BIN_MASK_CTL_MASK_4,
                              mag_mask[3]);

            ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
            ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
            ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
                              AR5K_PHY_BIN_MASK2_4_MASK_4,
                              mag_mask[3]);

      } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
      AR5K_PHY_IQ_SPUR_FILT_EN) {
            /* Clean up spur mitigation settings and disable fliter */
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
                              AR5K_PHY_BIN_MASK_CTL_RATE, 0);
            AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
                              AR5K_PHY_IQ_PILOT_MASK_EN |
                              AR5K_PHY_IQ_CHAN_MASK_EN |
                              AR5K_PHY_IQ_SPUR_FILT_EN);
            ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);

            /* Clear pilot masks */
            ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
                              AR5K_PHY_TIMING_8_PILOT_MASK_2,
                              0);

            ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
                              AR5K_PHY_TIMING_10_PILOT_MASK_2,
                              0);

            /* Clear magnitude masks */
            ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
            ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
            ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
                              AR5K_PHY_BIN_MASK_CTL_MASK_4,
                              0);

            ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
            ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
            ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
                              AR5K_PHY_BIN_MASK2_4_MASK_4,
                              0);
      }
}

/********************\
  Misc PHY functions
\********************/

int ath5k_hw_phy_disable(struct ath5k_hw *ah)
{
      ATH5K_TRACE(ah->ah_sc);
      /*Just a try M.F.*/
      ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);

      return 0;
}

/*
 * Get the PHY Chip revision
 */
u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
{
      unsigned int i;
      u32 srev;
      u16 ret;

      ATH5K_TRACE(ah->ah_sc);

      /*
       * Set the radio chip access register
       */
      switch (chan) {
      case CHANNEL_2GHZ:
            ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
            break;
      case CHANNEL_5GHZ:
            ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
            break;
      default:
            return 0;
      }

      mdelay(2);

      /* ...wait until PHY is ready and read the selected radio revision */
      ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));

      for (i = 0; i < 8; i++)
            ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));

      if (ah->ah_version == AR5K_AR5210) {
            srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
            ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
      } else {
            srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
            ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
                        ((srev & 0x0f) << 4), 8);
      }

      /* Reset to the 5GHz mode */
      ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));

      return ret;
}

/*****************\
* Antenna control *
\*****************/

void /*TODO:Boundary check*/
ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
{
      ATH5K_TRACE(ah->ah_sc);

      if (ah->ah_version != AR5K_AR5210)
            ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
}

unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
{
      ATH5K_TRACE(ah->ah_sc);

      if (ah->ah_version != AR5K_AR5210)
            return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;

      return false; /*XXX: What do we return for 5210 ?*/
}

/*
 * Enable/disable fast rx antenna diversity
 */
static void
ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
{
      switch (ee_mode) {
      case AR5K_EEPROM_MODE_11G:
            /* XXX: This is set to
             * disabled on initvals !!! */
      case AR5K_EEPROM_MODE_11A:
            if (enable)
                  AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
                              AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
            else
                  AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
                              AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
            break;
      case AR5K_EEPROM_MODE_11B:
            AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
                              AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
            break;
      default:
            return;
      }

      if (enable) {
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
                        AR5K_PHY_RESTART_DIV_GC, 0xc);

            AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
                              AR5K_PHY_FAST_ANT_DIV_EN);
      } else {
            AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
                        AR5K_PHY_RESTART_DIV_GC, 0x8);

            AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
                              AR5K_PHY_FAST_ANT_DIV_EN);
      }
}

/*
 * Set antenna operating mode
 */
void
ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
{
      struct ieee80211_channel *channel = &ah->ah_current_channel;
      bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
      bool use_def_for_sg;
      u8 def_ant, tx_ant, ee_mode;
      u32 sta_id1 = 0;

      def_ant = ah->ah_def_ant;

      ATH5K_TRACE(ah->ah_sc);

      switch (channel->hw_value & CHANNEL_MODES) {
      case CHANNEL_A:
      case CHANNEL_T:
      case CHANNEL_XR:
            ee_mode = AR5K_EEPROM_MODE_11A;
            break;
      case CHANNEL_G:
      case CHANNEL_TG:
            ee_mode = AR5K_EEPROM_MODE_11G;
            break;
      case CHANNEL_B:
            ee_mode = AR5K_EEPROM_MODE_11B;
            break;
      default:
            ATH5K_ERR(ah->ah_sc,
                  "invalid channel: %d\n", channel->center_freq);
            return;
      }

      switch (ant_mode) {
      case AR5K_ANTMODE_DEFAULT:
            tx_ant = 0;
            use_def_for_tx = false;
            update_def_on_tx = false;
            use_def_for_rts = false;
            use_def_for_sg = false;
            fast_div = true;
            break;
      case AR5K_ANTMODE_FIXED_A:
            def_ant = 1;
            tx_ant = 0;
            use_def_for_tx = true;
            update_def_on_tx = false;
            use_def_for_rts = true;
            use_def_for_sg = true;
            fast_div = false;
            break;
      case AR5K_ANTMODE_FIXED_B:
            def_ant = 2;
            tx_ant = 0;
            use_def_for_tx = true;
            update_def_on_tx = false;
            use_def_for_rts = true;
            use_def_for_sg = true;
            fast_div = false;
            break;
      case AR5K_ANTMODE_SINGLE_AP:
            def_ant = 1;      /* updated on tx */
            tx_ant = 0;
            use_def_for_tx = true;
            update_def_on_tx = true;
            use_def_for_rts = true;
            use_def_for_sg = true;
            fast_div = true;
            break;
      case AR5K_ANTMODE_SECTOR_AP:
            tx_ant = 1; /* variable */
            use_def_for_tx = false;
            update_def_on_tx = false;
            use_def_for_rts = true;
            use_def_for_sg = false;
            fast_div = false;
            break;
      case AR5K_ANTMODE_SECTOR_STA:
            tx_ant = 1; /* variable */
            use_def_for_tx = true;
            update_def_on_tx = false;
            use_def_for_rts = true;
            use_def_for_sg = false;
            fast_div = true;
            break;
      case AR5K_ANTMODE_DEBUG:
            def_ant = 1;
            tx_ant = 2;
            use_def_for_tx = false;
            update_def_on_tx = false;
            use_def_for_rts = false;
            use_def_for_sg = false;
            fast_div = false;
            break;
      default:
            return;
      }

      ah->ah_tx_ant = tx_ant;
      ah->ah_ant_mode = ant_mode;

      sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
      sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
      sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
      sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;

      AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);

      if (sta_id1)
            AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);

      /* Note: set diversity before default antenna
       * because it won't work correctly */
      ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
      ath5k_hw_set_def_antenna(ah, def_ant);
}


/****************\
* TX power setup *
\****************/

/*
 * Helper functions
 */

/*
 * Do linear interpolation between two given (x, y) points
 */
static s16
ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
                              s16 y_left, s16 y_right)
{
      s16 ratio, result;

      /* Avoid divide by zero and skip interpolation
       * if we have the same point */
      if ((x_left == x_right) || (y_left == y_right))
            return y_left;

      /*
       * Since we use ints and not fps, we need to scale up in
       * order to get a sane ratio value (or else we 'll eg. get
       * always 1 instead of 1.25, 1.75 etc). We scale up by 100
       * to have some accuracy both for 0.5 and 0.25 steps.
       */
      ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));

      /* Now scale down to be in range */
      result = y_left + (ratio * (target - x_left) / 100);

      return result;
}

/*
 * Find vertical boundary (min pwr) for the linear PCDAC curve.
 *
 * Since we have the top of the curve and we draw the line below
 * until we reach 1 (1 pcdac step) we need to know which point
 * (x value) that is so that we don't go below y axis and have negative
 * pcdac values when creating the curve, or fill the table with zeroes.
 */
static s16
ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
                        const s16 *pwrL, const s16 *pwrR)
{
      s8 tmp;
      s16 min_pwrL, min_pwrR;
      s16 pwr_i;

      if (WARN_ON(stepL[0] == stepL[1] || stepR[0] == stepR[1]))
            return 0;

      if (pwrL[0] == pwrL[1])
            min_pwrL = pwrL[0];
      else {
            pwr_i = pwrL[0];
            do {
                  pwr_i--;
                  tmp = (s8) ath5k_get_interpolated_value(pwr_i,
                                          pwrL[0], pwrL[1],
                                          stepL[0], stepL[1]);
            } while (tmp > 1);

            min_pwrL = pwr_i;
      }

      if (pwrR[0] == pwrR[1])
            min_pwrR = pwrR[0];
      else {
            pwr_i = pwrR[0];
            do {
                  pwr_i--;
                  tmp = (s8) ath5k_get_interpolated_value(pwr_i,
                                          pwrR[0], pwrR[1],
                                          stepR[0], stepR[1]);
            } while (tmp > 1);

            min_pwrR = pwr_i;
      }

      /* Keep the right boundary so that it works for both curves */
      return max(min_pwrL, min_pwrR);
}

/*
 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
 * Power to PCDAC curve.
 *
 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
 * steps (offsets) on y axis. Power can go up to 31.5dB and max
 * PCDAC/PDADC step for each curve is 64 but we can write more than
 * one curves on hw so we can go up to 128 (which is the max step we
 * can write on the final table).
 *
 * We write y values (PCDAC/PDADC steps) on hw.
 */
static void
ath5k_create_power_curve(s16 pmin, s16 pmax,
                  const s16 *pwr, const u8 *vpd,
                  u8 num_points,
                  u8 *vpd_table, u8 type)
{
      u8 idx[2] = { 0, 1 };
      s16 pwr_i = 2*pmin;
      int i;

      if (num_points < 2)
            return;

      /* We want the whole line, so adjust boundaries
       * to cover the entire power range. Note that
       * power values are already 0.25dB so no need
       * to multiply pwr_i by 2 */
      if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
            pwr_i = pmin;
            pmin = 0;
            pmax = 63;
      }

      /* Find surrounding turning points (TPs)
       * and interpolate between them */
      for (i = 0; (i <= (u16) (pmax - pmin)) &&
      (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {

            /* We passed the right TP, move to the next set of TPs
             * if we pass the last TP, extrapolate above using the last
             * two TPs for ratio */
            if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
                  idx[0]++;
                  idx[1]++;
            }

            vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
                                    pwr[idx[0]], pwr[idx[1]],
                                    vpd[idx[0]], vpd[idx[1]]);

            /* Increase by 0.5dB
             * (0.25 dB units) */
            pwr_i += 2;
      }
}

/*
 * Get the surrounding per-channel power calibration piers
 * for a given frequency so that we can interpolate between
 * them and come up with an apropriate dataset for our current
 * channel.
 */
static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
                  struct ieee80211_channel *channel,
                  struct ath5k_chan_pcal_info **pcinfo_l,
                  struct ath5k_chan_pcal_info **pcinfo_r)
{
      struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
      struct ath5k_chan_pcal_info *pcinfo;
      u8 idx_l, idx_r;
      u8 mode, max, i;
      u32 target = channel->center_freq;

      idx_l = 0;
      idx_r = 0;

      if (!(channel->hw_value & CHANNEL_OFDM)) {
            pcinfo = ee->ee_pwr_cal_b;
            mode = AR5K_EEPROM_MODE_11B;
      } else if (channel->hw_value & CHANNEL_2GHZ) {
            pcinfo = ee->ee_pwr_cal_g;
            mode = AR5K_EEPROM_MODE_11G;
      } else {
            pcinfo = ee->ee_pwr_cal_a;
            mode = AR5K_EEPROM_MODE_11A;
      }
      max = ee->ee_n_piers[mode] - 1;

      /* Frequency is below our calibrated
       * range. Use the lowest power curve
       * we have */
      if (target < pcinfo[0].freq) {
            idx_l = idx_r = 0;
            goto done;
      }

      /* Frequency is above our calibrated
       * range. Use the highest power curve
       * we have */
      if (target > pcinfo[max].freq) {
            idx_l = idx_r = max;
            goto done;
      }

      /* Frequency is inside our calibrated
       * channel range. Pick the surrounding
       * calibration piers so that we can
       * interpolate */
      for (i = 0; i <= max; i++) {

            /* Frequency matches one of our calibration
             * piers, no need to interpolate, just use
             * that calibration pier */
            if (pcinfo[i].freq == target) {
                  idx_l = idx_r = i;
                  goto done;
            }

            /* We found a calibration pier that's above
             * frequency, use this pier and the previous
             * one to interpolate */
            if (target < pcinfo[i].freq) {
                  idx_r = i;
                  idx_l = idx_r - 1;
                  goto done;
            }
      }

done:
      *pcinfo_l = &pcinfo[idx_l];
      *pcinfo_r = &pcinfo[idx_r];

      return;
}

/*
 * Get the surrounding per-rate power calibration data
 * for a given frequency and interpolate between power
 * values to set max target power supported by hw for
 * each rate.
 */
static void
ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
                  struct ieee80211_channel *channel,
                  struct ath5k_rate_pcal_info *rates)
{
      struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
      struct ath5k_rate_pcal_info *rpinfo;
      u8 idx_l, idx_r;
      u8 mode, max, i;
      u32 target = channel->center_freq;

      idx_l = 0;
      idx_r = 0;

      if (!(channel->hw_value & CHANNEL_OFDM)) {
            rpinfo = ee->ee_rate_tpwr_b;
            mode = AR5K_EEPROM_MODE_11B;
      } else if (channel->hw_value & CHANNEL_2GHZ) {
            rpinfo = ee->ee_rate_tpwr_g;
            mode = AR5K_EEPROM_MODE_11G;
      } else {
            rpinfo = ee->ee_rate_tpwr_a;
            mode = AR5K_EEPROM_MODE_11A;
      }
      max = ee->ee_rate_target_pwr_num[mode] - 1;

      /* Get the surrounding calibration
       * piers - same as above */
      if (target < rpinfo[0].freq) {
            idx_l = idx_r = 0;
            goto done;
      }

      if (target > rpinfo[max].freq) {
            idx_l = idx_r = max;
            goto done;
      }

      for (i = 0; i <= max; i++) {

            if (rpinfo[i].freq == target) {
                  idx_l = idx_r = i;
                  goto done;
            }

            if (target < rpinfo[i].freq) {
                  idx_r = i;
                  idx_l = idx_r - 1;
                  goto done;
            }
      }

done:
      /* Now interpolate power value, based on the frequency */
      rates->freq = target;

      rates->target_power_6to24 =
            ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
                              rpinfo[idx_r].freq,
                              rpinfo[idx_l].target_power_6to24,
                              rpinfo[idx_r].target_power_6to24);

      rates->target_power_36 =
            ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
                              rpinfo[idx_r].freq,
                              rpinfo[idx_l].target_power_36,
                              rpinfo[idx_r].target_power_36);

      rates->target_power_48 =
            ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
                              rpinfo[idx_r].freq,
                              rpinfo[idx_l].target_power_48,
                              rpinfo[idx_r].target_power_48);

      rates->target_power_54 =
            ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
                              rpinfo[idx_r].freq,
                              rpinfo[idx_l].target_power_54,
                              rpinfo[idx_r].target_power_54);
}

/*
 * Get the max edge power for this channel if
 * we have such data from EEPROM's Conformance Test
 * Limits (CTL), and limit max power if needed.
 */
static void
ath5k_get_max_ctl_power(struct ath5k_hw *ah,
                  struct ieee80211_channel *channel)
{
      struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
      struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
      u8 *ctl_val = ee->ee_ctl;
      s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
      s16 edge_pwr = 0;
      u8 rep_idx;
      u8 i, ctl_mode;
      u8 ctl_idx = 0xFF;
      u32 target = channel->center_freq;

      ctl_mode = ath_regd_get_band_ctl(&ah->ah_regulatory, channel->band);

      switch (channel->hw_value & CHANNEL_MODES) {
      case CHANNEL_A:
            ctl_mode |= AR5K_CTL_11A;
            break;
      case CHANNEL_G:
            ctl_mode |= AR5K_CTL_11G;
            break;
      case CHANNEL_B:
            ctl_mode |= AR5K_CTL_11B;
            break;
      case CHANNEL_T:
            ctl_mode |= AR5K_CTL_TURBO;
            break;
      case CHANNEL_TG:
            ctl_mode |= AR5K_CTL_TURBOG;
            break;
      case CHANNEL_XR:
            /* Fall through */
      default:
            return;
      }

      for (i = 0; i < ee->ee_ctls; i++) {
            if (ctl_val[i] == ctl_mode) {
                  ctl_idx = i;
                  break;
            }
      }

      /* If we have a CTL dataset available grab it and find the
       * edge power for our frequency */
      if (ctl_idx == 0xFF)
            return;

      /* Edge powers are sorted by frequency from lower
       * to higher. Each CTL corresponds to 8 edge power
       * measurements. */
      rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;

      /* Don't do boundaries check because we
       * might have more that one bands defined
       * for this mode */

      /* Get the edge power that's closer to our
       * frequency */
      for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
            rep_idx += i;
            if (target <= rep[rep_idx].freq)
                  edge_pwr = (s16) rep[rep_idx].edge;
      }

      if (edge_pwr)
            ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
}


/*
 * Power to PCDAC table functions
 */

/*
 * Fill Power to PCDAC table on RF5111
 *
 * No further processing is needed for RF5111, the only thing we have to
 * do is fill the values below and above calibration range since eeprom data
 * may not cover the entire PCDAC table.
 */
static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
                                          s16 *table_max)
{
      u8    *pcdac_out = ah->ah_txpower.txp_pd_table;
      u8    *pcdac_tmp = ah->ah_txpower.tmpL[0];
      u8    pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
      s16   min_pwr, max_pwr;

      /* Get table boundaries */
      min_pwr = table_min[0];
      pcdac_0 = pcdac_tmp[0];

      max_pwr = table_max[0];
      pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];

      /* Extrapolate below minimum using pcdac_0 */
      pcdac_i = 0;
      for (i = 0; i < min_pwr; i++)
            pcdac_out[pcdac_i++] = pcdac_0;

      /* Copy values from pcdac_tmp */
      pwr_idx = min_pwr;
      for (i = 0 ; pwr_idx <= max_pwr &&
      pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
            pcdac_out[pcdac_i++] = pcdac_tmp[i];
            pwr_idx++;
      }

      /* Extrapolate above maximum */
      while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
            pcdac_out[pcdac_i++] = pcdac_n;

}

/*
 * Combine available XPD Curves and fill Linear Power to PCDAC table
 * on RF5112
 *
 * RFX112 can have up to 2 curves (one for low txpower range and one for
 * higher txpower range). We need to put them both on pcdac_out and place
 * them in the correct location. In case we only have one curve available
 * just fit it on pcdac_out (it's supposed to cover the entire range of
 * available pwr levels since it's always the higher power curve). Extrapolate
 * below and above final table if needed.
 */
static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
                                    s16 *table_max, u8 pdcurves)
{
      u8    *pcdac_out = ah->ah_txpower.txp_pd_table;
      u8    *pcdac_low_pwr;
      u8    *pcdac_high_pwr;
      u8    *pcdac_tmp;
      u8    pwr;
      s16   max_pwr_idx;
      s16   min_pwr_idx;
      s16   mid_pwr_idx = 0;
      /* Edge flag turs on the 7nth bit on the PCDAC
       * to delcare the higher power curve (force values
       * to be greater than 64). If we only have one curve
       * we don't need to set this, if we have 2 curves and
       * fill the table backwards this can also be used to
       * switch from higher power curve to lower power curve */
      u8    edge_flag;
      int   i;

      /* When we have only one curve available
       * that's the higher power curve. If we have
       * two curves the first is the high power curve
       * and the next is the low power curve. */
      if (pdcurves > 1) {
            pcdac_low_pwr = ah->ah_txpower.tmpL[1];
            pcdac_high_pwr = ah->ah_txpower.tmpL[0];
            mid_pwr_idx = table_max[1] - table_min[1] - 1;
            max_pwr_idx = (table_max[0] - table_min[0]) / 2;

            /* If table size goes beyond 31.5dB, keep the
             * upper 31.5dB range when setting tx power.
             * Note: 126 = 31.5 dB in quarter dB steps */
            if (table_max[0] - table_min[1] > 126)
                  min_pwr_idx = table_max[0] - 126;
            else
                  min_pwr_idx = table_min[1];

            /* Since we fill table backwards
             * start from high power curve */
            pcdac_tmp = pcdac_high_pwr;

            edge_flag = 0x40;
#if 0
            /* If both min and max power limits are in lower
             * power curve's range, only use the low power curve.
             * TODO: min/max levels are related to target
             * power values requested from driver/user
             * XXX: Is this really needed ? */
            if (min_pwr < table_max[1] &&
            max_pwr < table_max[1]) {
                  edge_flag = 0;
                  pcdac_tmp = pcdac_low_pwr;
                  max_pwr_idx = (table_max[1] - table_min[1])/2;
            }
#endif
      } else {
            pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
            pcdac_high_pwr = ah->ah_txpower.tmpL[0];
            min_pwr_idx = table_min[0];
            max_pwr_idx = (table_max[0] - table_min[0]) / 2;
            pcdac_tmp = pcdac_high_pwr;
            edge_flag = 0;
      }

      /* This is used when setting tx power*/
      ah->ah_txpower.txp_min_idx = min_pwr_idx/2;

      /* Fill Power to PCDAC table backwards */
      pwr = max_pwr_idx;
      for (i = 63; i >= 0; i--) {
            /* Entering lower power range, reset
             * edge flag and set pcdac_tmp to lower
             * power curve.*/
            if (edge_flag == 0x40 &&
            (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
                  edge_flag = 0x00;
                  pcdac_tmp = pcdac_low_pwr;
                  pwr = mid_pwr_idx/2;
            }

            /* Don't go below 1, extrapolate below if we have
             * already swithced to the lower power curve -or
             * we only have one curve and edge_flag is zero
             * anyway */
            if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
                  while (i >= 0) {
                        pcdac_out[i] = pcdac_out[i + 1];
                        i--;
                  }
                  break;
            }

            pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;

            /* Extrapolate above if pcdac is greater than
             * 126 -this can happen because we OR pcdac_out
             * value with edge_flag on high power curve */
            if (pcdac_out[i] > 126)
                  pcdac_out[i] = 126;

            /* Decrease by a 0.5dB step */
            pwr--;
      }
}

/* Write PCDAC values on hw */
static void
ath5k_setup_pcdac_table(struct ath5k_hw *ah)
{
      u8    *pcdac_out = ah->ah_txpower.txp_pd_table;
      int   i;

      /*
       * Write TX power values
       */
      for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
            ath5k_hw_reg_write(ah,
                  (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
                  (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
                  AR5K_PHY_PCDAC_TXPOWER(i));
      }
}


/*
 * Power to PDADC table functions
 */

/*
 * Set the gain boundaries and create final Power to PDADC table
 *
 * We can have up to 4 pd curves, we need to do a simmilar process
 * as we do for RF5112. This time we don't have an edge_flag but we
 * set the gain boundaries on a separate register.
 */
static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
                  s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
{
      u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
      u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
      u8 *pdadc_tmp;
      s16 pdadc_0;
      u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
      u8 pd_gain_overlap;

      /* Note: Register value is initialized on initvals
       * there is no feedback from hw.
       * XXX: What about pd_gain_overlap from EEPROM ? */
      pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
            AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;

      /* Create final PDADC table */
      for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
            pdadc_tmp = ah->ah_txpower.tmpL[pdg];

            if (pdg == pdcurves - 1)
                  /* 2 dB boundary stretch for last
                   * (higher power) curve */
                  gain_boundaries[pdg] = pwr_max[pdg] + 4;
            else
                  /* Set gain boundary in the middle
                   * between this curve and the next one */
                  gain_boundaries[pdg] =
                        (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;

            /* Sanity check in case our 2 db stretch got out of
             * range. */
            if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
                  gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;

            /* For the first curve (lower power)
             * start from 0 dB */
            if (pdg == 0)
                  pdadc_0 = 0;
            else
                  /* For the other curves use the gain overlap */
                  pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
                                          pd_gain_overlap;

            /* Force each power step to be at least 0.5 dB */
            if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
                  pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
            else
                  pwr_step = 1;

            /* If pdadc_0 is negative, we need to extrapolate
             * below this pdgain by a number of pwr_steps */
            while ((pdadc_0 < 0) && (pdadc_i < 128)) {
                  s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
                  pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
                  pdadc_0++;
            }

            /* Set last pwr level, using gain boundaries */
            pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
            /* Limit it to be inside pwr range */
            table_size = pwr_max[pdg] - pwr_min[pdg];
            max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;

            /* Fill pdadc_out table */
            while (pdadc_0 < max_idx)
                  pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];

            /* Need to extrapolate above this pdgain? */
            if (pdadc_n <= max_idx)
                  continue;

            /* Force each power step to be at least 0.5 dB */
            if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
                  pwr_step = pdadc_tmp[table_size - 1] -
                                    pdadc_tmp[table_size - 2];
            else
                  pwr_step = 1;

            /* Extrapolate above */
            while ((pdadc_0 < (s16) pdadc_n) &&
            (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
                  s16 tmp = pdadc_tmp[table_size - 1] +
                              (pdadc_0 - max_idx) * pwr_step;
                  pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
                  pdadc_0++;
            }
      }

      while (pdg < AR5K_EEPROM_N_PD_GAINS) {
            gain_boundaries[pdg] = gain_boundaries[pdg - 1];
            pdg++;
      }

      while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
            pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
            pdadc_i++;
      }

      /* Set gain boundaries */
      ath5k_hw_reg_write(ah,
            AR5K_REG_SM(pd_gain_overlap,
                  AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
            AR5K_REG_SM(gain_boundaries[0],
                  AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
            AR5K_REG_SM(gain_boundaries[1],
                  AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
            AR5K_REG_SM(gain_boundaries[2],
                  AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
            AR5K_REG_SM(gain_boundaries[3],
                  AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
            AR5K_PHY_TPC_RG5);

      /* Used for setting rate power table */
      ah->ah_txpower.txp_min_idx = pwr_min[0];

}

/* Write PDADC values on hw */
static void
ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
                  u8 pdcurves, u8 *pdg_to_idx)
{
      u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
      u32 reg;
      u8 i;

      /* Select the right pdgain curves */

      /* Clear current settings */
      reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
      reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
            AR5K_PHY_TPC_RG1_PDGAIN_2 |
            AR5K_PHY_TPC_RG1_PDGAIN_3 |
            AR5K_PHY_TPC_RG1_NUM_PD_GAIN);

      /*
       * Use pd_gains curve from eeprom
       *
       * This overrides the default setting from initvals
       * in case some vendors (e.g. Zcomax) don't use the default
       * curves. If we don't honor their settings we 'll get a
       * 5dB (1 * gain overlap ?) drop.
       */
      reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);

      switch (pdcurves) {
      case 3:
            reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
            /* Fall through */
      case 2:
            reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
            /* Fall through */
      case 1:
            reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
            break;
      }
      ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);

      /*
       * Write TX power values
       */
      for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
            ath5k_hw_reg_write(ah,
                  ((pdadc_out[4*i + 0] & 0xff) << 0) |
                  ((pdadc_out[4*i + 1] & 0xff) << 8) |
                  ((pdadc_out[4*i + 2] & 0xff) << 16) |
                  ((pdadc_out[4*i + 3] & 0xff) << 24),
                  AR5K_PHY_PDADC_TXPOWER(i));
      }
}


/*
 * Common code for PCDAC/PDADC tables
 */

/*
 * This is the main function that uses all of the above
 * to set PCDAC/PDADC table on hw for the current channel.
 * This table is used for tx power calibration on the basband,
 * without it we get weird tx power levels and in some cases
 * distorted spectral mask
 */
static int
ath5k_setup_channel_powertable(struct ath5k_hw *ah,
                  struct ieee80211_channel *channel,
                  u8 ee_mode, u8 type)
{
      struct ath5k_pdgain_info *pdg_L, *pdg_R;
      struct ath5k_chan_pcal_info *pcinfo_L;
      struct ath5k_chan_pcal_info *pcinfo_R;
      struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
      u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
      s16 table_min[AR5K_EEPROM_N_PD_GAINS];
      s16 table_max[AR5K_EEPROM_N_PD_GAINS];
      u8 *tmpL;
      u8 *tmpR;
      u32 target = channel->center_freq;
      int pdg, i;

      /* Get surounding freq piers for this channel */
      ath5k_get_chan_pcal_surrounding_piers(ah, channel,
                                    &pcinfo_L,
                                    &pcinfo_R);

      /* Loop over pd gain curves on
       * surounding freq piers by index */
      for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {

            /* Fill curves in reverse order
             * from lower power (max gain)
             * to higher power. Use curve -> idx
             * backmaping we did on eeprom init */
            u8 idx = pdg_curve_to_idx[pdg];

            /* Grab the needed curves by index */
            pdg_L = &pcinfo_L->pd_curves[idx];
            pdg_R = &pcinfo_R->pd_curves[idx];

            /* Initialize the temp tables */
            tmpL = ah->ah_txpower.tmpL[pdg];
            tmpR = ah->ah_txpower.tmpR[pdg];

            /* Set curve's x boundaries and create
             * curves so that they cover the same
             * range (if we don't do that one table
             * will have values on some range and the
             * other one won't have any so interpolation
             * will fail) */
            table_min[pdg] = min(pdg_L->pd_pwr[0],
                              pdg_R->pd_pwr[0]) / 2;

            table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
                        pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;

            /* Now create the curves on surrounding channels
             * and interpolate if needed to get the final
             * curve for this gain on this channel */
            switch (type) {
            case AR5K_PWRTABLE_LINEAR_PCDAC:
                  /* Override min/max so that we don't loose
                   * accuracy (don't divide by 2) */
                  table_min[pdg] = min(pdg_L->pd_pwr[0],
                                    pdg_R->pd_pwr[0]);

                  table_max[pdg] =
                        max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
                              pdg_R->pd_pwr[pdg_R->pd_points - 1]);

                  /* Override minimum so that we don't get
                   * out of bounds while extrapolating
                   * below. Don't do this when we have 2
                   * curves and we are on the high power curve
                   * because table_min is ok in this case */
                  if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {

                        table_min[pdg] =
                              ath5k_get_linear_pcdac_min(pdg_L->pd_step,
                                                pdg_R->pd_step,
                                                pdg_L->pd_pwr,
                                                pdg_R->pd_pwr);

                        /* Don't go too low because we will
                         * miss the upper part of the curve.
                         * Note: 126 = 31.5dB (max power supported)
                         * in 0.25dB units */
                        if (table_max[pdg] - table_min[pdg] > 126)
                              table_min[pdg] = table_max[pdg] - 126;
                  }

                  /* Fall through */
            case AR5K_PWRTABLE_PWR_TO_PCDAC:
            case AR5K_PWRTABLE_PWR_TO_PDADC:

                  ath5k_create_power_curve(table_min[pdg],
                                    table_max[pdg],
                                    pdg_L->pd_pwr,
                                    pdg_L->pd_step,
                                    pdg_L->pd_points, tmpL, type);

                  /* We are in a calibration
                   * pier, no need to interpolate
                   * between freq piers */
                  if (pcinfo_L == pcinfo_R)
                        continue;

                  ath5k_create_power_curve(table_min[pdg],
                                    table_max[pdg],
                                    pdg_R->pd_pwr,
                                    pdg_R->pd_step,
                                    pdg_R->pd_points, tmpR, type);
                  break;
            default:
                  return -EINVAL;
            }

            /* Interpolate between curves
             * of surounding freq piers to
             * get the final curve for this
             * pd gain. Re-use tmpL for interpolation
             * output */
            for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
            (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
                  tmpL[i] = (u8) ath5k_get_interpolated_value(target,
                                          (s16) pcinfo_L->freq,
                                          (s16) pcinfo_R->freq,
                                          (s16) tmpL[i],
                                          (s16) tmpR[i]);
            }
      }

      /* Now we have a set of curves for this
       * channel on tmpL (x range is table_max - table_min
       * and y values are tmpL[pdg][]) sorted in the same
       * order as EEPROM (because we've used the backmaping).
       * So for RF5112 it's from higher power to lower power
       * and for RF2413 it's from lower power to higher power.
       * For RF5111 we only have one curve. */

      /* Fill min and max power levels for this
       * channel by interpolating the values on
       * surounding channels to complete the dataset */
      ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
                              (s16) pcinfo_L->freq,
                              (s16) pcinfo_R->freq,
                              pcinfo_L->min_pwr, pcinfo_R->min_pwr);

      ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
                              (s16) pcinfo_L->freq,
                              (s16) pcinfo_R->freq,
                              pcinfo_L->max_pwr, pcinfo_R->max_pwr);

      /* We are ready to go, fill PCDAC/PDADC
       * table and write settings on hardware */
      switch (type) {
      case AR5K_PWRTABLE_LINEAR_PCDAC:
            /* For RF5112 we can have one or two curves
             * and each curve covers a certain power lvl
             * range so we need to do some more processing */
            ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
                                    ee->ee_pd_gains[ee_mode]);

            /* Set txp.offset so that we can
             * match max power value with max
             * table index */
            ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);

            /* Write settings on hw */
            ath5k_setup_pcdac_table(ah);
            break;
      case AR5K_PWRTABLE_PWR_TO_PCDAC:
            /* We are done for RF5111 since it has only
             * one curve, just fit the curve on the table */
            ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);

            /* No rate powertable adjustment for RF5111 */
            ah->ah_txpower.txp_min_idx = 0;
            ah->ah_txpower.txp_offset = 0;

            /* Write settings on hw */
            ath5k_setup_pcdac_table(ah);
            break;
      case AR5K_PWRTABLE_PWR_TO_PDADC:
            /* Set PDADC boundaries and fill
             * final PDADC table */
            ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
                                    ee->ee_pd_gains[ee_mode]);

            /* Write settings on hw */
            ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);

            /* Set txp.offset, note that table_min
             * can be negative */
            ah->ah_txpower.txp_offset = table_min[0];
            break;
      default:
            return -EINVAL;
      }

      return 0;
}


/*
 * Per-rate tx power setting
 *
 * This is the code that sets the desired tx power (below
 * maximum) on hw for each rate (we also have TPC that sets
 * power per packet). We do that by providing an index on the
 * PCDAC/PDADC table we set up.
 */

/*
 * Set rate power table
 *
 * For now we only limit txpower based on maximum tx power
 * supported by hw (what's inside rate_info). We need to limit
 * this even more, based on regulatory domain etc.
 *
 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
 * and is indexed as follows:
 * rates[0] - rates[7] -> OFDM rates
 * rates[8] - rates[14] -> CCK rates
 * rates[15] -> XR rates (they all have the same power)
 */
static void
ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
                  struct ath5k_rate_pcal_info *rate_info,
                  u8 ee_mode)
{
      unsigned int i;
      u16 *rates;

      /* max_pwr is power level we got from driver/user in 0.5dB
       * units, switch to 0.25dB units so we can compare */
      max_pwr *= 2;
      max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;

      /* apply rate limits */
      rates = ah->ah_txpower.txp_rates_power_table;

      /* OFDM rates 6 to 24Mb/s */
      for (i = 0; i < 5; i++)
            rates[i] = min(max_pwr, rate_info->target_power_6to24);

      /* Rest OFDM rates */
      rates[5] = min(rates[0], rate_info->target_power_36);
      rates[6] = min(rates[0], rate_info->target_power_48);
      rates[7] = min(rates[0], rate_info->target_power_54);

      /* CCK rates */
      /* 1L */
      rates[8] = min(rates[0], rate_info->target_power_6to24);
      /* 2L */
      rates[9] = min(rates[0], rate_info->target_power_36);
      /* 2S */
      rates[10] = min(rates[0], rate_info->target_power_36);
      /* 5L */
      rates[11] = min(rates[0], rate_info->target_power_48);
      /* 5S */
      rates[12] = min(rates[0], rate_info->target_power_48);
      /* 11L */
      rates[13] = min(rates[0], rate_info->target_power_54);
      /* 11S */
      rates[14] = min(rates[0], rate_info->target_power_54);

      /* XR rates */
      rates[15] = min(rates[0], rate_info->target_power_6to24);

      /* CCK rates have different peak to average ratio
       * so we have to tweak their power so that gainf
       * correction works ok. For this we use OFDM to
       * CCK delta from eeprom */
      if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
      (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
            for (i = 8; i <= 15; i++)
                  rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;

      /* Now that we have all rates setup use table offset to
       * match the power range set by user with the power indices
       * on PCDAC/PDADC table */
      for (i = 0; i < 16; i++) {
            rates[i] += ah->ah_txpower.txp_offset;
            /* Don't get out of bounds */
            if (rates[i] > 63)
                  rates[i] = 63;
      }

      /* Min/max in 0.25dB units */
      ah->ah_txpower.txp_min_pwr = 2 * rates[7];
      ah->ah_txpower.txp_max_pwr = 2 * rates[0];
      ah->ah_txpower.txp_ofdm = rates[7];
}


/*
 * Set transmition power
 */
int
ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
            u8 ee_mode, u8 txpower)
{
      struct ath5k_rate_pcal_info rate_info;
      u8 type;
      int ret;

      ATH5K_TRACE(ah->ah_sc);
      if (txpower > AR5K_TUNE_MAX_TXPOWER) {
            ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
            return -EINVAL;
      }
      if (txpower == 0)
            txpower = AR5K_TUNE_DEFAULT_TXPOWER;

      /* Reset TX power values */
      memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
      ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
      ah->ah_txpower.txp_min_pwr = 0;
      ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;

      /* Initialize TX power table */
      switch (ah->ah_radio) {
      case AR5K_RF5111:
            type = AR5K_PWRTABLE_PWR_TO_PCDAC;
            break;
      case AR5K_RF5112:
            type = AR5K_PWRTABLE_LINEAR_PCDAC;
            break;
      case AR5K_RF2413:
      case AR5K_RF5413:
      case AR5K_RF2316:
      case AR5K_RF2317:
      case AR5K_RF2425:
            type = AR5K_PWRTABLE_PWR_TO_PDADC;
            break;
      default:
            return -EINVAL;
      }

      /* FIXME: Only on channel/mode change */
      ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
      if (ret)
            return ret;

      /* Limit max power if we have a CTL available */
      ath5k_get_max_ctl_power(ah, channel);

      /* FIXME: Tx power limit for this regdomain
       * XXX: Mac80211/CRDA will do that anyway ? */

      /* FIXME: Antenna reduction stuff */

      /* FIXME: Limit power on turbo modes */

      /* FIXME: TPC scale reduction */

      /* Get surounding channels for per-rate power table
       * calibration */
      ath5k_get_rate_pcal_data(ah, channel, &rate_info);

      /* Setup rate power table */
      ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);

      /* Write rate power table on hw */
      ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
            AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
            AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);

      ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
            AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
            AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);

      ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
            AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
            AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);

      ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
            AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
            AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);

      /* FIXME: TPC support */
      if (ah->ah_txpower.txp_tpc) {
            ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
                  AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);

            ath5k_hw_reg_write(ah,
                  AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
                  AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
                  AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
                  AR5K_TPC);
      } else {
            ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
                  AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
      }

      return 0;
}

int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
{
      /*Just a try M.F.*/
      struct ieee80211_channel *channel = &ah->ah_current_channel;
      u8 ee_mode;

      ATH5K_TRACE(ah->ah_sc);

      switch (channel->hw_value & CHANNEL_MODES) {
      case CHANNEL_A:
      case CHANNEL_T:
      case CHANNEL_XR:
            ee_mode = AR5K_EEPROM_MODE_11A;
            break;
      case CHANNEL_G:
      case CHANNEL_TG:
            ee_mode = AR5K_EEPROM_MODE_11G;
            break;
      case CHANNEL_B:
            ee_mode = AR5K_EEPROM_MODE_11B;
            break;
      default:
            ATH5K_ERR(ah->ah_sc,
                  "invalid channel: %d\n", channel->center_freq);
            return -EINVAL;
      }

      ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
            "changing txpower to %d\n", txpower);

      return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
}

#undef _ATH5K_PHY

Generated by  Doxygen 1.6.0   Back to index