Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

nfs4proc.c

/*
 *  fs/nfs/nfs4proc.c
 *
 *  Client-side procedure declarations for NFSv4.
 *
 *  Copyright (c) 2002 The Regents of the University of Michigan.
 *  All rights reserved.
 *
 *  Kendrick Smith <kmsmith@umich.edu>
 *  Andy Adamson   <andros@umich.edu>
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *  1. Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *  3. Neither the name of the University nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <linux/mm.h>
#include <linux/utsname.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/sunrpc/clnt.h>
#include <linux/nfs.h>
#include <linux/nfs4.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_page.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/module.h>
#include <linux/sunrpc/bc_xprt.h>

#include "nfs4_fs.h"
#include "delegation.h"
#include "internal.h"
#include "iostat.h"
#include "callback.h"

#define NFSDBG_FACILITY       NFSDBG_PROC

#define NFS4_POLL_RETRY_MIN   (HZ/10)
#define NFS4_POLL_RETRY_MAX   (15*HZ)

struct nfs4_opendata;
static int _nfs4_proc_open(struct nfs4_opendata *data);
static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *, struct nfs4_state *);
static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr);

/* Prevent leaks of NFSv4 errors into userland */
static int nfs4_map_errors(int err)
{
      if (err < -1000) {
            dprintk("%s could not handle NFSv4 error %d\n",
                        __func__, -err);
            return -EIO;
      }
      return err;
}

/*
 * This is our standard bitmap for GETATTR requests.
 */
const u32 nfs4_fattr_bitmap[2] = {
      FATTR4_WORD0_TYPE
      | FATTR4_WORD0_CHANGE
      | FATTR4_WORD0_SIZE
      | FATTR4_WORD0_FSID
      | FATTR4_WORD0_FILEID,
      FATTR4_WORD1_MODE
      | FATTR4_WORD1_NUMLINKS
      | FATTR4_WORD1_OWNER
      | FATTR4_WORD1_OWNER_GROUP
      | FATTR4_WORD1_RAWDEV
      | FATTR4_WORD1_SPACE_USED
      | FATTR4_WORD1_TIME_ACCESS
      | FATTR4_WORD1_TIME_METADATA
      | FATTR4_WORD1_TIME_MODIFY
};

const u32 nfs4_statfs_bitmap[2] = {
      FATTR4_WORD0_FILES_AVAIL
      | FATTR4_WORD0_FILES_FREE
      | FATTR4_WORD0_FILES_TOTAL,
      FATTR4_WORD1_SPACE_AVAIL
      | FATTR4_WORD1_SPACE_FREE
      | FATTR4_WORD1_SPACE_TOTAL
};

const u32 nfs4_pathconf_bitmap[2] = {
      FATTR4_WORD0_MAXLINK
      | FATTR4_WORD0_MAXNAME,
      0
};

const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
                  | FATTR4_WORD0_MAXREAD
                  | FATTR4_WORD0_MAXWRITE
                  | FATTR4_WORD0_LEASE_TIME,
                  0
};

const u32 nfs4_fs_locations_bitmap[2] = {
      FATTR4_WORD0_TYPE
      | FATTR4_WORD0_CHANGE
      | FATTR4_WORD0_SIZE
      | FATTR4_WORD0_FSID
      | FATTR4_WORD0_FILEID
      | FATTR4_WORD0_FS_LOCATIONS,
      FATTR4_WORD1_MODE
      | FATTR4_WORD1_NUMLINKS
      | FATTR4_WORD1_OWNER
      | FATTR4_WORD1_OWNER_GROUP
      | FATTR4_WORD1_RAWDEV
      | FATTR4_WORD1_SPACE_USED
      | FATTR4_WORD1_TIME_ACCESS
      | FATTR4_WORD1_TIME_METADATA
      | FATTR4_WORD1_TIME_MODIFY
      | FATTR4_WORD1_MOUNTED_ON_FILEID
};

static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
            struct nfs4_readdir_arg *readdir)
{
      __be32 *start, *p;

      BUG_ON(readdir->count < 80);
      if (cookie > 2) {
            readdir->cookie = cookie;
            memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
            return;
      }

      readdir->cookie = 0;
      memset(&readdir->verifier, 0, sizeof(readdir->verifier));
      if (cookie == 2)
            return;
      
      /*
       * NFSv4 servers do not return entries for '.' and '..'
       * Therefore, we fake these entries here.  We let '.'
       * have cookie 0 and '..' have cookie 1.  Note that
       * when talking to the server, we always send cookie 0
       * instead of 1 or 2.
       */
      start = p = kmap_atomic(*readdir->pages, KM_USER0);
      
      if (cookie == 0) {
            *p++ = xdr_one;                                  /* next */
            *p++ = xdr_zero;                   /* cookie, first word */
            *p++ = xdr_one;                   /* cookie, second word */
            *p++ = xdr_one;                             /* entry len */
            memcpy(p, ".\0\0\0", 4);                        /* entry */
            p++;
            *p++ = xdr_one;                         /* bitmap length */
            *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
            *p++ = htonl(8);              /* attribute buffer length */
            p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_inode));
      }
      
      *p++ = xdr_one;                                  /* next */
      *p++ = xdr_zero;                   /* cookie, first word */
      *p++ = xdr_two;                   /* cookie, second word */
      *p++ = xdr_two;                             /* entry len */
      memcpy(p, "..\0\0", 4);                         /* entry */
      p++;
      *p++ = xdr_one;                         /* bitmap length */
      *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
      *p++ = htonl(8);              /* attribute buffer length */
      p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_parent->d_inode));

      readdir->pgbase = (char *)p - (char *)start;
      readdir->count -= readdir->pgbase;
      kunmap_atomic(start, KM_USER0);
}

static int nfs4_wait_clnt_recover(struct nfs_client *clp)
{
      int res;

      might_sleep();

      res = wait_on_bit(&clp->cl_state, NFS4CLNT_MANAGER_RUNNING,
                  nfs_wait_bit_killable, TASK_KILLABLE);
      return res;
}

static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
{
      int res = 0;

      might_sleep();

      if (*timeout <= 0)
            *timeout = NFS4_POLL_RETRY_MIN;
      if (*timeout > NFS4_POLL_RETRY_MAX)
            *timeout = NFS4_POLL_RETRY_MAX;
      schedule_timeout_killable(*timeout);
      if (fatal_signal_pending(current))
            res = -ERESTARTSYS;
      *timeout <<= 1;
      return res;
}

/* This is the error handling routine for processes that are allowed
 * to sleep.
 */
static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
{
      struct nfs_client *clp = server->nfs_client;
      struct nfs4_state *state = exception->state;
      int ret = errorcode;

      exception->retry = 0;
      switch(errorcode) {
            case 0:
                  return 0;
            case -NFS4ERR_ADMIN_REVOKED:
            case -NFS4ERR_BAD_STATEID:
            case -NFS4ERR_OPENMODE:
                  if (state == NULL)
                        break;
                  nfs4_state_mark_reclaim_nograce(clp, state);
            case -NFS4ERR_STALE_CLIENTID:
            case -NFS4ERR_STALE_STATEID:
            case -NFS4ERR_EXPIRED:
                  nfs4_schedule_state_recovery(clp);
                  ret = nfs4_wait_clnt_recover(clp);
                  if (ret == 0)
                        exception->retry = 1;
#if !defined(CONFIG_NFS_V4_1)
                  break;
#else /* !defined(CONFIG_NFS_V4_1) */
                  if (!nfs4_has_session(server->nfs_client))
                        break;
                  /* FALLTHROUGH */
            case -NFS4ERR_BADSESSION:
            case -NFS4ERR_BADSLOT:
            case -NFS4ERR_BAD_HIGH_SLOT:
            case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
            case -NFS4ERR_DEADSESSION:
            case -NFS4ERR_SEQ_FALSE_RETRY:
            case -NFS4ERR_SEQ_MISORDERED:
                  dprintk("%s ERROR: %d Reset session\n", __func__,
                        errorcode);
                  set_bit(NFS4CLNT_SESSION_SETUP, &clp->cl_state);
                  exception->retry = 1;
                  /* FALLTHROUGH */
#endif /* !defined(CONFIG_NFS_V4_1) */
            case -NFS4ERR_FILE_OPEN:
            case -NFS4ERR_GRACE:
            case -NFS4ERR_DELAY:
                  ret = nfs4_delay(server->client, &exception->timeout);
                  if (ret != 0)
                        break;
            case -NFS4ERR_OLD_STATEID:
                  exception->retry = 1;
      }
      /* We failed to handle the error */
      return nfs4_map_errors(ret);
}


static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
{
      struct nfs_client *clp = server->nfs_client;
      spin_lock(&clp->cl_lock);
      if (time_before(clp->cl_last_renewal,timestamp))
            clp->cl_last_renewal = timestamp;
      spin_unlock(&clp->cl_lock);
}

#if defined(CONFIG_NFS_V4_1)

/*
 * nfs4_free_slot - free a slot and efficiently update slot table.
 *
 * freeing a slot is trivially done by clearing its respective bit
 * in the bitmap.
 * If the freed slotid equals highest_used_slotid we want to update it
 * so that the server would be able to size down the slot table if needed,
 * otherwise we know that the highest_used_slotid is still in use.
 * When updating highest_used_slotid there may be "holes" in the bitmap
 * so we need to scan down from highest_used_slotid to 0 looking for the now
 * highest slotid in use.
 * If none found, highest_used_slotid is set to -1.
 */
static void
nfs4_free_slot(struct nfs4_slot_table *tbl, u8 free_slotid)
{
      int slotid = free_slotid;

      spin_lock(&tbl->slot_tbl_lock);
      /* clear used bit in bitmap */
      __clear_bit(slotid, tbl->used_slots);

      /* update highest_used_slotid when it is freed */
      if (slotid == tbl->highest_used_slotid) {
            slotid = find_last_bit(tbl->used_slots, tbl->max_slots);
            if (slotid >= 0 && slotid < tbl->max_slots)
                  tbl->highest_used_slotid = slotid;
            else
                  tbl->highest_used_slotid = -1;
      }
      rpc_wake_up_next(&tbl->slot_tbl_waitq);
      spin_unlock(&tbl->slot_tbl_lock);
      dprintk("%s: free_slotid %u highest_used_slotid %d\n", __func__,
            free_slotid, tbl->highest_used_slotid);
}

void nfs41_sequence_free_slot(const struct nfs_client *clp,
                        struct nfs4_sequence_res *res)
{
      struct nfs4_slot_table *tbl;

      if (!nfs4_has_session(clp)) {
            dprintk("%s: No session\n", __func__);
            return;
      }
      tbl = &clp->cl_session->fc_slot_table;
      if (res->sr_slotid == NFS4_MAX_SLOT_TABLE) {
            dprintk("%s: No slot\n", __func__);
            /* just wake up the next guy waiting since
             * we may have not consumed a slot after all */
            rpc_wake_up_next(&tbl->slot_tbl_waitq);
            return;
      }
      nfs4_free_slot(tbl, res->sr_slotid);
      res->sr_slotid = NFS4_MAX_SLOT_TABLE;
}

static void nfs41_sequence_done(struct nfs_client *clp,
                        struct nfs4_sequence_res *res,
                        int rpc_status)
{
      unsigned long timestamp;
      struct nfs4_slot_table *tbl;
      struct nfs4_slot *slot;

      /*
       * sr_status remains 1 if an RPC level error occurred. The server
       * may or may not have processed the sequence operation..
       * Proceed as if the server received and processed the sequence
       * operation.
       */
      if (res->sr_status == 1)
            res->sr_status = NFS_OK;

      /* -ERESTARTSYS can result in skipping nfs41_sequence_setup */
      if (res->sr_slotid == NFS4_MAX_SLOT_TABLE)
            goto out;

      tbl = &clp->cl_session->fc_slot_table;
      slot = tbl->slots + res->sr_slotid;

      if (res->sr_status == 0) {
            /* Update the slot's sequence and clientid lease timer */
            ++slot->seq_nr;
            timestamp = res->sr_renewal_time;
            spin_lock(&clp->cl_lock);
            if (time_before(clp->cl_last_renewal, timestamp))
                  clp->cl_last_renewal = timestamp;
            spin_unlock(&clp->cl_lock);
            return;
      }
out:
      /* The session may be reset by one of the error handlers. */
      dprintk("%s: Error %d free the slot \n", __func__, res->sr_status);
      nfs41_sequence_free_slot(clp, res);
}

/*
 * nfs4_find_slot - efficiently look for a free slot
 *
 * nfs4_find_slot looks for an unset bit in the used_slots bitmap.
 * If found, we mark the slot as used, update the highest_used_slotid,
 * and respectively set up the sequence operation args.
 * The slot number is returned if found, or NFS4_MAX_SLOT_TABLE otherwise.
 *
 * Note: must be called with under the slot_tbl_lock.
 */
static u8
nfs4_find_slot(struct nfs4_slot_table *tbl, struct rpc_task *task)
{
      int slotid;
      u8 ret_id = NFS4_MAX_SLOT_TABLE;
      BUILD_BUG_ON((u8)NFS4_MAX_SLOT_TABLE != (int)NFS4_MAX_SLOT_TABLE);

      dprintk("--> %s used_slots=%04lx highest_used=%d max_slots=%d\n",
            __func__, tbl->used_slots[0], tbl->highest_used_slotid,
            tbl->max_slots);
      slotid = find_first_zero_bit(tbl->used_slots, tbl->max_slots);
      if (slotid >= tbl->max_slots)
            goto out;
      __set_bit(slotid, tbl->used_slots);
      if (slotid > tbl->highest_used_slotid)
            tbl->highest_used_slotid = slotid;
      ret_id = slotid;
out:
      dprintk("<-- %s used_slots=%04lx highest_used=%d slotid=%d \n",
            __func__, tbl->used_slots[0], tbl->highest_used_slotid, ret_id);
      return ret_id;
}

static int nfs4_recover_session(struct nfs4_session *session)
{
      struct nfs_client *clp = session->clp;
      int ret;

      for (;;) {
            ret = nfs4_wait_clnt_recover(clp);
            if (ret != 0)
                        return ret;
            if (!test_bit(NFS4CLNT_SESSION_SETUP, &clp->cl_state))
                  break;
            nfs4_schedule_state_manager(clp);
      }
      return 0;
}

static int nfs41_setup_sequence(struct nfs4_session *session,
                        struct nfs4_sequence_args *args,
                        struct nfs4_sequence_res *res,
                        int cache_reply,
                        struct rpc_task *task)
{
      struct nfs4_slot *slot;
      struct nfs4_slot_table *tbl;
      int status = 0;
      u8 slotid;

      dprintk("--> %s\n", __func__);
      /* slot already allocated? */
      if (res->sr_slotid != NFS4_MAX_SLOT_TABLE)
            return 0;

      memset(res, 0, sizeof(*res));
      res->sr_slotid = NFS4_MAX_SLOT_TABLE;
      tbl = &session->fc_slot_table;

      spin_lock(&tbl->slot_tbl_lock);
      if (test_bit(NFS4CLNT_SESSION_SETUP, &session->clp->cl_state)) {
            if (tbl->highest_used_slotid != -1) {
                  rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL);
                  spin_unlock(&tbl->slot_tbl_lock);
                  dprintk("<-- %s: Session reset: draining\n", __func__);
                  return -EAGAIN;
            }

            /* The slot table is empty; start the reset thread */
            dprintk("%s Session Reset\n", __func__);
            spin_unlock(&tbl->slot_tbl_lock);
            status = nfs4_recover_session(session);
            if (status)
                  return status;
            spin_lock(&tbl->slot_tbl_lock);
      }

      slotid = nfs4_find_slot(tbl, task);
      if (slotid == NFS4_MAX_SLOT_TABLE) {
            rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL);
            spin_unlock(&tbl->slot_tbl_lock);
            dprintk("<-- %s: no free slots\n", __func__);
            return -EAGAIN;
      }
      spin_unlock(&tbl->slot_tbl_lock);

      slot = tbl->slots + slotid;
      args->sa_session = session;
      args->sa_slotid = slotid;
      args->sa_cache_this = cache_reply;

      dprintk("<-- %s slotid=%d seqid=%d\n", __func__, slotid, slot->seq_nr);

      res->sr_session = session;
      res->sr_slotid = slotid;
      res->sr_renewal_time = jiffies;
      /*
       * sr_status is only set in decode_sequence, and so will remain
       * set to 1 if an rpc level failure occurs.
       */
      res->sr_status = 1;
      return 0;
}

int nfs4_setup_sequence(struct nfs_client *clp,
                  struct nfs4_sequence_args *args,
                  struct nfs4_sequence_res *res,
                  int cache_reply,
                  struct rpc_task *task)
{
      int ret = 0;

      dprintk("--> %s clp %p session %p sr_slotid %d\n",
            __func__, clp, clp->cl_session, res->sr_slotid);

      if (!nfs4_has_session(clp))
            goto out;
      ret = nfs41_setup_sequence(clp->cl_session, args, res, cache_reply,
                           task);
      if (ret != -EAGAIN) {
            /* terminate rpc task */
            task->tk_status = ret;
            task->tk_action = NULL;
      }
out:
      dprintk("<-- %s status=%d\n", __func__, ret);
      return ret;
}

struct nfs41_call_sync_data {
      struct nfs_client *clp;
      struct nfs4_sequence_args *seq_args;
      struct nfs4_sequence_res *seq_res;
      int cache_reply;
};

static void nfs41_call_sync_prepare(struct rpc_task *task, void *calldata)
{
      struct nfs41_call_sync_data *data = calldata;

      dprintk("--> %s data->clp->cl_session %p\n", __func__,
            data->clp->cl_session);
      if (nfs4_setup_sequence(data->clp, data->seq_args,
                        data->seq_res, data->cache_reply, task))
            return;
      rpc_call_start(task);
}

static void nfs41_call_sync_done(struct rpc_task *task, void *calldata)
{
      struct nfs41_call_sync_data *data = calldata;

      nfs41_sequence_done(data->clp, data->seq_res, task->tk_status);
      nfs41_sequence_free_slot(data->clp, data->seq_res);
}

struct rpc_call_ops nfs41_call_sync_ops = {
      .rpc_call_prepare = nfs41_call_sync_prepare,
      .rpc_call_done = nfs41_call_sync_done,
};

static int nfs4_call_sync_sequence(struct nfs_client *clp,
                           struct rpc_clnt *clnt,
                           struct rpc_message *msg,
                           struct nfs4_sequence_args *args,
                           struct nfs4_sequence_res *res,
                           int cache_reply)
{
      int ret;
      struct rpc_task *task;
      struct nfs41_call_sync_data data = {
            .clp = clp,
            .seq_args = args,
            .seq_res = res,
            .cache_reply = cache_reply,
      };
      struct rpc_task_setup task_setup = {
            .rpc_client = clnt,
            .rpc_message = msg,
            .callback_ops = &nfs41_call_sync_ops,
            .callback_data = &data
      };

      res->sr_slotid = NFS4_MAX_SLOT_TABLE;
      task = rpc_run_task(&task_setup);
      if (IS_ERR(task))
            ret = PTR_ERR(task);
      else {
            ret = task->tk_status;
            rpc_put_task(task);
      }
      return ret;
}

int _nfs4_call_sync_session(struct nfs_server *server,
                      struct rpc_message *msg,
                      struct nfs4_sequence_args *args,
                      struct nfs4_sequence_res *res,
                      int cache_reply)
{
      return nfs4_call_sync_sequence(server->nfs_client, server->client,
                               msg, args, res, cache_reply);
}

#endif /* CONFIG_NFS_V4_1 */

int _nfs4_call_sync(struct nfs_server *server,
                struct rpc_message *msg,
                struct nfs4_sequence_args *args,
                struct nfs4_sequence_res *res,
                int cache_reply)
{
      args->sa_session = res->sr_session = NULL;
      return rpc_call_sync(server->client, msg, 0);
}

#define nfs4_call_sync(server, msg, args, res, cache_reply) \
      (server)->nfs_client->cl_call_sync((server), (msg), &(args)->seq_args, \
                  &(res)->seq_res, (cache_reply))

static void nfs4_sequence_done(const struct nfs_server *server,
                         struct nfs4_sequence_res *res, int rpc_status)
{
#ifdef CONFIG_NFS_V4_1
      if (nfs4_has_session(server->nfs_client))
            nfs41_sequence_done(server->nfs_client, res, rpc_status);
#endif /* CONFIG_NFS_V4_1 */
}

/* no restart, therefore free slot here */
static void nfs4_sequence_done_free_slot(const struct nfs_server *server,
                               struct nfs4_sequence_res *res,
                               int rpc_status)
{
      nfs4_sequence_done(server, res, rpc_status);
      nfs4_sequence_free_slot(server->nfs_client, res);
}

static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
{
      struct nfs_inode *nfsi = NFS_I(dir);

      spin_lock(&dir->i_lock);
      nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
      if (!cinfo->atomic || cinfo->before != nfsi->change_attr)
            nfs_force_lookup_revalidate(dir);
      nfsi->change_attr = cinfo->after;
      spin_unlock(&dir->i_lock);
}

00653 struct nfs4_opendata {
      struct kref kref;
      struct nfs_openargs o_arg;
      struct nfs_openres o_res;
      struct nfs_open_confirmargs c_arg;
      struct nfs_open_confirmres c_res;
      struct nfs_fattr f_attr;
      struct nfs_fattr dir_attr;
      struct path path;
      struct dentry *dir;
      struct nfs4_state_owner *owner;
      struct nfs4_state *state;
      struct iattr attrs;
      unsigned long timestamp;
      unsigned int rpc_done : 1;
      int rpc_status;
      int cancelled;
};


static void nfs4_init_opendata_res(struct nfs4_opendata *p)
{
      p->o_res.f_attr = &p->f_attr;
      p->o_res.dir_attr = &p->dir_attr;
      p->o_res.seqid = p->o_arg.seqid;
      p->c_res.seqid = p->c_arg.seqid;
      p->o_res.server = p->o_arg.server;
      nfs_fattr_init(&p->f_attr);
      nfs_fattr_init(&p->dir_attr);
      p->o_res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
}

static struct nfs4_opendata *nfs4_opendata_alloc(struct path *path,
            struct nfs4_state_owner *sp, fmode_t fmode, int flags,
            const struct iattr *attrs)
{
      struct dentry *parent = dget_parent(path->dentry);
      struct inode *dir = parent->d_inode;
      struct nfs_server *server = NFS_SERVER(dir);
      struct nfs4_opendata *p;

      p = kzalloc(sizeof(*p), GFP_KERNEL);
      if (p == NULL)
            goto err;
      p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
      if (p->o_arg.seqid == NULL)
            goto err_free;
      p->path.mnt = mntget(path->mnt);
      p->path.dentry = dget(path->dentry);
      p->dir = parent;
      p->owner = sp;
      atomic_inc(&sp->so_count);
      p->o_arg.fh = NFS_FH(dir);
      p->o_arg.open_flags = flags;
      p->o_arg.fmode = fmode & (FMODE_READ|FMODE_WRITE);
      p->o_arg.clientid = server->nfs_client->cl_clientid;
      p->o_arg.id = sp->so_owner_id.id;
      p->o_arg.name = &p->path.dentry->d_name;
      p->o_arg.server = server;
      p->o_arg.bitmask = server->attr_bitmask;
      p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
      if (flags & O_EXCL) {
            u32 *s = (u32 *) p->o_arg.u.verifier.data;
            s[0] = jiffies;
            s[1] = current->pid;
      } else if (flags & O_CREAT) {
            p->o_arg.u.attrs = &p->attrs;
            memcpy(&p->attrs, attrs, sizeof(p->attrs));
      }
      p->c_arg.fh = &p->o_res.fh;
      p->c_arg.stateid = &p->o_res.stateid;
      p->c_arg.seqid = p->o_arg.seqid;
      nfs4_init_opendata_res(p);
      kref_init(&p->kref);
      return p;
err_free:
      kfree(p);
err:
      dput(parent);
      return NULL;
}

static void nfs4_opendata_free(struct kref *kref)
{
      struct nfs4_opendata *p = container_of(kref,
                  struct nfs4_opendata, kref);

      nfs_free_seqid(p->o_arg.seqid);
      if (p->state != NULL)
            nfs4_put_open_state(p->state);
      nfs4_put_state_owner(p->owner);
      dput(p->dir);
      path_put(&p->path);
      kfree(p);
}

static void nfs4_opendata_put(struct nfs4_opendata *p)
{
      if (p != NULL)
            kref_put(&p->kref, nfs4_opendata_free);
}

static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
{
      int ret;

      ret = rpc_wait_for_completion_task(task);
      return ret;
}

static int can_open_cached(struct nfs4_state *state, fmode_t mode, int open_mode)
{
      int ret = 0;

      if (open_mode & O_EXCL)
            goto out;
      switch (mode & (FMODE_READ|FMODE_WRITE)) {
            case FMODE_READ:
                  ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0;
                  break;
            case FMODE_WRITE:
                  ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0;
                  break;
            case FMODE_READ|FMODE_WRITE:
                  ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0;
      }
out:
      return ret;
}

static int can_open_delegated(struct nfs_delegation *delegation, fmode_t fmode)
{
      if ((delegation->type & fmode) != fmode)
            return 0;
      if (test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags))
            return 0;
      nfs_mark_delegation_referenced(delegation);
      return 1;
}

static void update_open_stateflags(struct nfs4_state *state, fmode_t fmode)
{
      switch (fmode) {
            case FMODE_WRITE:
                  state->n_wronly++;
                  break;
            case FMODE_READ:
                  state->n_rdonly++;
                  break;
            case FMODE_READ|FMODE_WRITE:
                  state->n_rdwr++;
      }
      nfs4_state_set_mode_locked(state, state->state | fmode);
}

static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode)
{
      if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
            memcpy(state->stateid.data, stateid->data, sizeof(state->stateid.data));
      memcpy(state->open_stateid.data, stateid->data, sizeof(state->open_stateid.data));
      switch (fmode) {
            case FMODE_READ:
                  set_bit(NFS_O_RDONLY_STATE, &state->flags);
                  break;
            case FMODE_WRITE:
                  set_bit(NFS_O_WRONLY_STATE, &state->flags);
                  break;
            case FMODE_READ|FMODE_WRITE:
                  set_bit(NFS_O_RDWR_STATE, &state->flags);
      }
}

static void nfs_set_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode)
{
      write_seqlock(&state->seqlock);
      nfs_set_open_stateid_locked(state, stateid, fmode);
      write_sequnlock(&state->seqlock);
}

static void __update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, const nfs4_stateid *deleg_stateid, fmode_t fmode)
{
      /*
       * Protect the call to nfs4_state_set_mode_locked and
       * serialise the stateid update
       */
      write_seqlock(&state->seqlock);
      if (deleg_stateid != NULL) {
            memcpy(state->stateid.data, deleg_stateid->data, sizeof(state->stateid.data));
            set_bit(NFS_DELEGATED_STATE, &state->flags);
      }
      if (open_stateid != NULL)
            nfs_set_open_stateid_locked(state, open_stateid, fmode);
      write_sequnlock(&state->seqlock);
      spin_lock(&state->owner->so_lock);
      update_open_stateflags(state, fmode);
      spin_unlock(&state->owner->so_lock);
}

static int update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *delegation, fmode_t fmode)
{
      struct nfs_inode *nfsi = NFS_I(state->inode);
      struct nfs_delegation *deleg_cur;
      int ret = 0;

      fmode &= (FMODE_READ|FMODE_WRITE);

      rcu_read_lock();
      deleg_cur = rcu_dereference(nfsi->delegation);
      if (deleg_cur == NULL)
            goto no_delegation;

      spin_lock(&deleg_cur->lock);
      if (nfsi->delegation != deleg_cur ||
          (deleg_cur->type & fmode) != fmode)
            goto no_delegation_unlock;

      if (delegation == NULL)
            delegation = &deleg_cur->stateid;
      else if (memcmp(deleg_cur->stateid.data, delegation->data, NFS4_STATEID_SIZE) != 0)
            goto no_delegation_unlock;

      nfs_mark_delegation_referenced(deleg_cur);
      __update_open_stateid(state, open_stateid, &deleg_cur->stateid, fmode);
      ret = 1;
no_delegation_unlock:
      spin_unlock(&deleg_cur->lock);
no_delegation:
      rcu_read_unlock();

      if (!ret && open_stateid != NULL) {
            __update_open_stateid(state, open_stateid, NULL, fmode);
            ret = 1;
      }

      return ret;
}


static void nfs4_return_incompatible_delegation(struct inode *inode, fmode_t fmode)
{
      struct nfs_delegation *delegation;

      rcu_read_lock();
      delegation = rcu_dereference(NFS_I(inode)->delegation);
      if (delegation == NULL || (delegation->type & fmode) == fmode) {
            rcu_read_unlock();
            return;
      }
      rcu_read_unlock();
      nfs_inode_return_delegation(inode);
}

static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata)
{
      struct nfs4_state *state = opendata->state;
      struct nfs_inode *nfsi = NFS_I(state->inode);
      struct nfs_delegation *delegation;
      int open_mode = opendata->o_arg.open_flags & O_EXCL;
      fmode_t fmode = opendata->o_arg.fmode;
      nfs4_stateid stateid;
      int ret = -EAGAIN;

      for (;;) {
            if (can_open_cached(state, fmode, open_mode)) {
                  spin_lock(&state->owner->so_lock);
                  if (can_open_cached(state, fmode, open_mode)) {
                        update_open_stateflags(state, fmode);
                        spin_unlock(&state->owner->so_lock);
                        goto out_return_state;
                  }
                  spin_unlock(&state->owner->so_lock);
            }
            rcu_read_lock();
            delegation = rcu_dereference(nfsi->delegation);
            if (delegation == NULL ||
                !can_open_delegated(delegation, fmode)) {
                  rcu_read_unlock();
                  break;
            }
            /* Save the delegation */
            memcpy(stateid.data, delegation->stateid.data, sizeof(stateid.data));
            rcu_read_unlock();
            ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode);
            if (ret != 0)
                  goto out;
            ret = -EAGAIN;

            /* Try to update the stateid using the delegation */
            if (update_open_stateid(state, NULL, &stateid, fmode))
                  goto out_return_state;
      }
out:
      return ERR_PTR(ret);
out_return_state:
      atomic_inc(&state->count);
      return state;
}

static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
{
      struct inode *inode;
      struct nfs4_state *state = NULL;
      struct nfs_delegation *delegation;
      int ret;

      if (!data->rpc_done) {
            state = nfs4_try_open_cached(data);
            goto out;
      }

      ret = -EAGAIN;
      if (!(data->f_attr.valid & NFS_ATTR_FATTR))
            goto err;
      inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
      ret = PTR_ERR(inode);
      if (IS_ERR(inode))
            goto err;
      ret = -ENOMEM;
      state = nfs4_get_open_state(inode, data->owner);
      if (state == NULL)
            goto err_put_inode;
      if (data->o_res.delegation_type != 0) {
            int delegation_flags = 0;

            rcu_read_lock();
            delegation = rcu_dereference(NFS_I(inode)->delegation);
            if (delegation)
                  delegation_flags = delegation->flags;
            rcu_read_unlock();
            if ((delegation_flags & 1UL<<NFS_DELEGATION_NEED_RECLAIM) == 0)
                  nfs_inode_set_delegation(state->inode,
                              data->owner->so_cred,
                              &data->o_res);
            else
                  nfs_inode_reclaim_delegation(state->inode,
                              data->owner->so_cred,
                              &data->o_res);
      }

      update_open_stateid(state, &data->o_res.stateid, NULL,
                  data->o_arg.fmode);
      iput(inode);
out:
      return state;
err_put_inode:
      iput(inode);
err:
      return ERR_PTR(ret);
}

static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
{
      struct nfs_inode *nfsi = NFS_I(state->inode);
      struct nfs_open_context *ctx;

      spin_lock(&state->inode->i_lock);
      list_for_each_entry(ctx, &nfsi->open_files, list) {
            if (ctx->state != state)
                  continue;
            get_nfs_open_context(ctx);
            spin_unlock(&state->inode->i_lock);
            return ctx;
      }
      spin_unlock(&state->inode->i_lock);
      return ERR_PTR(-ENOENT);
}

static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state)
{
      struct nfs4_opendata *opendata;

      opendata = nfs4_opendata_alloc(&ctx->path, state->owner, 0, 0, NULL);
      if (opendata == NULL)
            return ERR_PTR(-ENOMEM);
      opendata->state = state;
      atomic_inc(&state->count);
      return opendata;
}

static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, fmode_t fmode, struct nfs4_state **res)
{
      struct nfs4_state *newstate;
      int ret;

      opendata->o_arg.open_flags = 0;
      opendata->o_arg.fmode = fmode;
      memset(&opendata->o_res, 0, sizeof(opendata->o_res));
      memset(&opendata->c_res, 0, sizeof(opendata->c_res));
      nfs4_init_opendata_res(opendata);
      ret = _nfs4_proc_open(opendata);
      if (ret != 0)
            return ret; 
      newstate = nfs4_opendata_to_nfs4_state(opendata);
      if (IS_ERR(newstate))
            return PTR_ERR(newstate);
      nfs4_close_state(&opendata->path, newstate, fmode);
      *res = newstate;
      return 0;
}

static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
{
      struct nfs4_state *newstate;
      int ret;

      /* memory barrier prior to reading state->n_* */
      clear_bit(NFS_DELEGATED_STATE, &state->flags);
      smp_rmb();
      if (state->n_rdwr != 0) {
            ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate);
            if (ret != 0)
                  return ret;
            if (newstate != state)
                  return -ESTALE;
      }
      if (state->n_wronly != 0) {
            ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate);
            if (ret != 0)
                  return ret;
            if (newstate != state)
                  return -ESTALE;
      }
      if (state->n_rdonly != 0) {
            ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate);
            if (ret != 0)
                  return ret;
            if (newstate != state)
                  return -ESTALE;
      }
      /*
       * We may have performed cached opens for all three recoveries.
       * Check if we need to update the current stateid.
       */
      if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 &&
          memcmp(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)) != 0) {
            write_seqlock(&state->seqlock);
            if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
                  memcpy(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data));
            write_sequnlock(&state->seqlock);
      }
      return 0;
}

/*
 * OPEN_RECLAIM:
 *    reclaim state on the server after a reboot.
 */
static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
{
      struct nfs_delegation *delegation;
      struct nfs4_opendata *opendata;
      fmode_t delegation_type = 0;
      int status;

      opendata = nfs4_open_recoverdata_alloc(ctx, state);
      if (IS_ERR(opendata))
            return PTR_ERR(opendata);
      opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
      opendata->o_arg.fh = NFS_FH(state->inode);
      rcu_read_lock();
      delegation = rcu_dereference(NFS_I(state->inode)->delegation);
      if (delegation != NULL && test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) != 0)
            delegation_type = delegation->type;
      rcu_read_unlock();
      opendata->o_arg.u.delegation_type = delegation_type;
      status = nfs4_open_recover(opendata, state);
      nfs4_opendata_put(opendata);
      return status;
}

static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
{
      struct nfs_server *server = NFS_SERVER(state->inode);
      struct nfs4_exception exception = { };
      int err;
      do {
            err = _nfs4_do_open_reclaim(ctx, state);
            if (err != -NFS4ERR_DELAY)
                  break;
            nfs4_handle_exception(server, err, &exception);
      } while (exception.retry);
      return err;
}

static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
      struct nfs_open_context *ctx;
      int ret;

      ctx = nfs4_state_find_open_context(state);
      if (IS_ERR(ctx))
            return PTR_ERR(ctx);
      ret = nfs4_do_open_reclaim(ctx, state);
      put_nfs_open_context(ctx);
      return ret;
}

static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
{
      struct nfs4_opendata *opendata;
      int ret;

      opendata = nfs4_open_recoverdata_alloc(ctx, state);
      if (IS_ERR(opendata))
            return PTR_ERR(opendata);
      opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
      memcpy(opendata->o_arg.u.delegation.data, stateid->data,
                  sizeof(opendata->o_arg.u.delegation.data));
      ret = nfs4_open_recover(opendata, state);
      nfs4_opendata_put(opendata);
      return ret;
}

int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
{
      struct nfs4_exception exception = { };
      struct nfs_server *server = NFS_SERVER(state->inode);
      int err;
      do {
            err = _nfs4_open_delegation_recall(ctx, state, stateid);
            switch (err) {
                  case 0:
                  case -ENOENT:
                  case -ESTALE:
                        goto out;
                  case -NFS4ERR_STALE_CLIENTID:
                  case -NFS4ERR_STALE_STATEID:
                  case -NFS4ERR_EXPIRED:
                        /* Don't recall a delegation if it was lost */
                        nfs4_schedule_state_recovery(server->nfs_client);
                        goto out;
                  case -ERESTARTSYS:
                        /*
                         * The show must go on: exit, but mark the
                         * stateid as needing recovery.
                         */
                  case -NFS4ERR_ADMIN_REVOKED:
                  case -NFS4ERR_BAD_STATEID:
                        nfs4_state_mark_reclaim_nograce(server->nfs_client, state);
                  case -ENOMEM:
                        err = 0;
                        goto out;
            }
            err = nfs4_handle_exception(server, err, &exception);
      } while (exception.retry);
out:
      return err;
}

static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
{
      struct nfs4_opendata *data = calldata;

      data->rpc_status = task->tk_status;
      if (RPC_ASSASSINATED(task))
            return;
      if (data->rpc_status == 0) {
            memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
                        sizeof(data->o_res.stateid.data));
            nfs_confirm_seqid(&data->owner->so_seqid, 0);
            renew_lease(data->o_res.server, data->timestamp);
            data->rpc_done = 1;
      }
}

static void nfs4_open_confirm_release(void *calldata)
{
      struct nfs4_opendata *data = calldata;
      struct nfs4_state *state = NULL;

      /* If this request hasn't been cancelled, do nothing */
      if (data->cancelled == 0)
            goto out_free;
      /* In case of error, no cleanup! */
      if (!data->rpc_done)
            goto out_free;
      state = nfs4_opendata_to_nfs4_state(data);
      if (!IS_ERR(state))
            nfs4_close_state(&data->path, state, data->o_arg.fmode);
out_free:
      nfs4_opendata_put(data);
}

static const struct rpc_call_ops nfs4_open_confirm_ops = {
      .rpc_call_done = nfs4_open_confirm_done,
      .rpc_release = nfs4_open_confirm_release,
};

/*
 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
 */
static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
{
      struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
      struct rpc_task *task;
      struct  rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
            .rpc_argp = &data->c_arg,
            .rpc_resp = &data->c_res,
            .rpc_cred = data->owner->so_cred,
      };
      struct rpc_task_setup task_setup_data = {
            .rpc_client = server->client,
            .rpc_message = &msg,
            .callback_ops = &nfs4_open_confirm_ops,
            .callback_data = data,
            .workqueue = nfsiod_workqueue,
            .flags = RPC_TASK_ASYNC,
      };
      int status;

      kref_get(&data->kref);
      data->rpc_done = 0;
      data->rpc_status = 0;
      data->timestamp = jiffies;
      task = rpc_run_task(&task_setup_data);
      if (IS_ERR(task))
            return PTR_ERR(task);
      status = nfs4_wait_for_completion_rpc_task(task);
      if (status != 0) {
            data->cancelled = 1;
            smp_wmb();
      } else
            status = data->rpc_status;
      rpc_put_task(task);
      return status;
}

static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
{
      struct nfs4_opendata *data = calldata;
      struct nfs4_state_owner *sp = data->owner;

      if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
            return;
      /*
       * Check if we still need to send an OPEN call, or if we can use
       * a delegation instead.
       */
      if (data->state != NULL) {
            struct nfs_delegation *delegation;

            if (can_open_cached(data->state, data->o_arg.fmode, data->o_arg.open_flags))
                  goto out_no_action;
            rcu_read_lock();
            delegation = rcu_dereference(NFS_I(data->state->inode)->delegation);
            if (delegation != NULL &&
                test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) == 0) {
                  rcu_read_unlock();
                  goto out_no_action;
            }
            rcu_read_unlock();
      }
      /* Update sequence id. */
      data->o_arg.id = sp->so_owner_id.id;
      data->o_arg.clientid = sp->so_client->cl_clientid;
      if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) {
            task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
            nfs_copy_fh(&data->o_res.fh, data->o_arg.fh);
      }
      data->timestamp = jiffies;
      if (nfs4_setup_sequence(data->o_arg.server->nfs_client,
                        &data->o_arg.seq_args,
                        &data->o_res.seq_res, 1, task))
            return;
      rpc_call_start(task);
      return;
out_no_action:
      task->tk_action = NULL;

}

static void nfs4_open_done(struct rpc_task *task, void *calldata)
{
      struct nfs4_opendata *data = calldata;

      data->rpc_status = task->tk_status;

      nfs4_sequence_done_free_slot(data->o_arg.server, &data->o_res.seq_res,
                             task->tk_status);

      if (RPC_ASSASSINATED(task))
            return;
      if (task->tk_status == 0) {
            switch (data->o_res.f_attr->mode & S_IFMT) {
                  case S_IFREG:
                        break;
                  case S_IFLNK:
                        data->rpc_status = -ELOOP;
                        break;
                  case S_IFDIR:
                        data->rpc_status = -EISDIR;
                        break;
                  default:
                        data->rpc_status = -ENOTDIR;
            }
            renew_lease(data->o_res.server, data->timestamp);
            if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM))
                  nfs_confirm_seqid(&data->owner->so_seqid, 0);
      }
      data->rpc_done = 1;
}

static void nfs4_open_release(void *calldata)
{
      struct nfs4_opendata *data = calldata;
      struct nfs4_state *state = NULL;

      /* If this request hasn't been cancelled, do nothing */
      if (data->cancelled == 0)
            goto out_free;
      /* In case of error, no cleanup! */
      if (data->rpc_status != 0 || !data->rpc_done)
            goto out_free;
      /* In case we need an open_confirm, no cleanup! */
      if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
            goto out_free;
      state = nfs4_opendata_to_nfs4_state(data);
      if (!IS_ERR(state))
            nfs4_close_state(&data->path, state, data->o_arg.fmode);
out_free:
      nfs4_opendata_put(data);
}

static const struct rpc_call_ops nfs4_open_ops = {
      .rpc_call_prepare = nfs4_open_prepare,
      .rpc_call_done = nfs4_open_done,
      .rpc_release = nfs4_open_release,
};

/*
 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
 */
static int _nfs4_proc_open(struct nfs4_opendata *data)
{
      struct inode *dir = data->dir->d_inode;
      struct nfs_server *server = NFS_SERVER(dir);
      struct nfs_openargs *o_arg = &data->o_arg;
      struct nfs_openres *o_res = &data->o_res;
      struct rpc_task *task;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
            .rpc_argp = o_arg,
            .rpc_resp = o_res,
            .rpc_cred = data->owner->so_cred,
      };
      struct rpc_task_setup task_setup_data = {
            .rpc_client = server->client,
            .rpc_message = &msg,
            .callback_ops = &nfs4_open_ops,
            .callback_data = data,
            .workqueue = nfsiod_workqueue,
            .flags = RPC_TASK_ASYNC,
      };
      int status;

      kref_get(&data->kref);
      data->rpc_done = 0;
      data->rpc_status = 0;
      data->cancelled = 0;
      task = rpc_run_task(&task_setup_data);
      if (IS_ERR(task))
            return PTR_ERR(task);
      status = nfs4_wait_for_completion_rpc_task(task);
      if (status != 0) {
            data->cancelled = 1;
            smp_wmb();
      } else
            status = data->rpc_status;
      rpc_put_task(task);
      if (status != 0 || !data->rpc_done)
            return status;

      if (o_res->fh.size == 0)
            _nfs4_proc_lookup(dir, o_arg->name, &o_res->fh, o_res->f_attr);

      if (o_arg->open_flags & O_CREAT) {
            update_changeattr(dir, &o_res->cinfo);
            nfs_post_op_update_inode(dir, o_res->dir_attr);
      } else
            nfs_refresh_inode(dir, o_res->dir_attr);
      if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
            status = _nfs4_proc_open_confirm(data);
            if (status != 0)
                  return status;
      }
      if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
            _nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr);
      return 0;
}

static int nfs4_recover_expired_lease(struct nfs_server *server)
{
      struct nfs_client *clp = server->nfs_client;
      int ret;

      for (;;) {
            ret = nfs4_wait_clnt_recover(clp);
            if (ret != 0)
                  return ret;
            if (!test_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state) &&
                !test_bit(NFS4CLNT_CHECK_LEASE,&clp->cl_state))
                  break;
            nfs4_schedule_state_recovery(clp);
      }
      return 0;
}

/*
 * OPEN_EXPIRED:
 *    reclaim state on the server after a network partition.
 *    Assumes caller holds the appropriate lock
 */
static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
{
      struct nfs4_opendata *opendata;
      int ret;

      opendata = nfs4_open_recoverdata_alloc(ctx, state);
      if (IS_ERR(opendata))
            return PTR_ERR(opendata);
      ret = nfs4_open_recover(opendata, state);
      if (ret == -ESTALE)
            d_drop(ctx->path.dentry);
      nfs4_opendata_put(opendata);
      return ret;
}

static inline int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
{
      struct nfs_server *server = NFS_SERVER(state->inode);
      struct nfs4_exception exception = { };
      int err;

      do {
            err = _nfs4_open_expired(ctx, state);
            if (err != -NFS4ERR_DELAY)
                  break;
            nfs4_handle_exception(server, err, &exception);
      } while (exception.retry);
      return err;
}

static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
      struct nfs_open_context *ctx;
      int ret;

      ctx = nfs4_state_find_open_context(state);
      if (IS_ERR(ctx))
            return PTR_ERR(ctx);
      ret = nfs4_do_open_expired(ctx, state);
      put_nfs_open_context(ctx);
      return ret;
}

/*
 * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
 * fields corresponding to attributes that were used to store the verifier.
 * Make sure we clobber those fields in the later setattr call
 */
static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr)
{
      if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) &&
          !(sattr->ia_valid & ATTR_ATIME_SET))
            sattr->ia_valid |= ATTR_ATIME;

      if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) &&
          !(sattr->ia_valid & ATTR_MTIME_SET))
            sattr->ia_valid |= ATTR_MTIME;
}

/*
 * Returns a referenced nfs4_state
 */
static int _nfs4_do_open(struct inode *dir, struct path *path, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
{
      struct nfs4_state_owner  *sp;
      struct nfs4_state     *state = NULL;
      struct nfs_server       *server = NFS_SERVER(dir);
      struct nfs4_opendata *opendata;
      int status;

      /* Protect against reboot recovery conflicts */
      status = -ENOMEM;
      if (!(sp = nfs4_get_state_owner(server, cred))) {
            dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
            goto out_err;
      }
      status = nfs4_recover_expired_lease(server);
      if (status != 0)
            goto err_put_state_owner;
      if (path->dentry->d_inode != NULL)
            nfs4_return_incompatible_delegation(path->dentry->d_inode, fmode);
      status = -ENOMEM;
      opendata = nfs4_opendata_alloc(path, sp, fmode, flags, sattr);
      if (opendata == NULL)
            goto err_put_state_owner;

      if (path->dentry->d_inode != NULL)
            opendata->state = nfs4_get_open_state(path->dentry->d_inode, sp);

      status = _nfs4_proc_open(opendata);
      if (status != 0)
            goto err_opendata_put;

      if (opendata->o_arg.open_flags & O_EXCL)
            nfs4_exclusive_attrset(opendata, sattr);

      state = nfs4_opendata_to_nfs4_state(opendata);
      status = PTR_ERR(state);
      if (IS_ERR(state))
            goto err_opendata_put;
      nfs4_opendata_put(opendata);
      nfs4_put_state_owner(sp);
      *res = state;
      return 0;
err_opendata_put:
      nfs4_opendata_put(opendata);
err_put_state_owner:
      nfs4_put_state_owner(sp);
out_err:
      *res = NULL;
      return status;
}


static struct nfs4_state *nfs4_do_open(struct inode *dir, struct path *path, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred)
{
      struct nfs4_exception exception = { };
      struct nfs4_state *res;
      int status;

      do {
            status = _nfs4_do_open(dir, path, fmode, flags, sattr, cred, &res);
            if (status == 0)
                  break;
            /* NOTE: BAD_SEQID means the server and client disagree about the
             * book-keeping w.r.t. state-changing operations
             * (OPEN/CLOSE/LOCK/LOCKU...)
             * It is actually a sign of a bug on the client or on the server.
             *
             * If we receive a BAD_SEQID error in the particular case of
             * doing an OPEN, we assume that nfs_increment_open_seqid() will
             * have unhashed the old state_owner for us, and that we can
             * therefore safely retry using a new one. We should still warn
             * the user though...
             */
            if (status == -NFS4ERR_BAD_SEQID) {
                  printk(KERN_WARNING "NFS: v4 server %s "
                              " returned a bad sequence-id error!\n",
                              NFS_SERVER(dir)->nfs_client->cl_hostname);
                  exception.retry = 1;
                  continue;
            }
            /*
             * BAD_STATEID on OPEN means that the server cancelled our
             * state before it received the OPEN_CONFIRM.
             * Recover by retrying the request as per the discussion
             * on Page 181 of RFC3530.
             */
            if (status == -NFS4ERR_BAD_STATEID) {
                  exception.retry = 1;
                  continue;
            }
            if (status == -EAGAIN) {
                  /* We must have found a delegation */
                  exception.retry = 1;
                  continue;
            }
            res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
                              status, &exception));
      } while (exception.retry);
      return res;
}

static int _nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
                      struct nfs_fattr *fattr, struct iattr *sattr,
                      struct nfs4_state *state)
{
      struct nfs_server *server = NFS_SERVER(inode);
        struct nfs_setattrargs  arg = {
                .fh             = NFS_FH(inode),
                .iap            = sattr,
            .server           = server,
            .bitmask = server->attr_bitmask,
        };
        struct nfs_setattrres  res = {
            .fattr            = fattr,
            .server           = server,
        };
        struct rpc_message msg = {
            .rpc_proc   = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
            .rpc_argp   = &arg,
            .rpc_resp   = &res,
            .rpc_cred   = cred,
        };
      unsigned long timestamp = jiffies;
      int status;

      nfs_fattr_init(fattr);

      if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
            /* Use that stateid */
      } else if (state != NULL) {
            nfs4_copy_stateid(&arg.stateid, state, current->files);
      } else
            memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));

      status = nfs4_call_sync(server, &msg, &arg, &res, 1);
      if (status == 0 && state != NULL)
            renew_lease(server, timestamp);
      return status;
}

static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
                     struct nfs_fattr *fattr, struct iattr *sattr,
                     struct nfs4_state *state)
{
      struct nfs_server *server = NFS_SERVER(inode);
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(server,
                        _nfs4_do_setattr(inode, cred, fattr, sattr, state),
                        &exception);
      } while (exception.retry);
      return err;
}

01683 struct nfs4_closedata {
      struct path path;
      struct inode *inode;
      struct nfs4_state *state;
      struct nfs_closeargs arg;
      struct nfs_closeres res;
      struct nfs_fattr fattr;
      unsigned long timestamp;
};

static void nfs4_free_closedata(void *data)
{
      struct nfs4_closedata *calldata = data;
      struct nfs4_state_owner *sp = calldata->state->owner;

      nfs4_put_open_state(calldata->state);
      nfs_free_seqid(calldata->arg.seqid);
      nfs4_put_state_owner(sp);
      path_put(&calldata->path);
      kfree(calldata);
}

static void nfs4_close_done(struct rpc_task *task, void *data)
{
      struct nfs4_closedata *calldata = data;
      struct nfs4_state *state = calldata->state;
      struct nfs_server *server = NFS_SERVER(calldata->inode);

      nfs4_sequence_done(server, &calldata->res.seq_res, task->tk_status);
      if (RPC_ASSASSINATED(task))
            return;
        /* hmm. we are done with the inode, and in the process of freeing
       * the state_owner. we keep this around to process errors
       */
      switch (task->tk_status) {
            case 0:
                  nfs_set_open_stateid(state, &calldata->res.stateid, 0);
                  renew_lease(server, calldata->timestamp);
                  break;
            case -NFS4ERR_STALE_STATEID:
            case -NFS4ERR_OLD_STATEID:
            case -NFS4ERR_BAD_STATEID:
            case -NFS4ERR_EXPIRED:
                  if (calldata->arg.fmode == 0)
                        break;
            default:
                  if (nfs4_async_handle_error(task, server, state) == -EAGAIN) {
                        nfs4_restart_rpc(task, server->nfs_client);
                        return;
                  }
      }
      nfs4_sequence_free_slot(server->nfs_client, &calldata->res.seq_res);
      nfs_refresh_inode(calldata->inode, calldata->res.fattr);
}

static void nfs4_close_prepare(struct rpc_task *task, void *data)
{
      struct nfs4_closedata *calldata = data;
      struct nfs4_state *state = calldata->state;
      int clear_rd, clear_wr, clear_rdwr;

      if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
            return;

      clear_rd = clear_wr = clear_rdwr = 0;
      spin_lock(&state->owner->so_lock);
      /* Calculate the change in open mode */
      if (state->n_rdwr == 0) {
            if (state->n_rdonly == 0) {
                  clear_rd |= test_and_clear_bit(NFS_O_RDONLY_STATE, &state->flags);
                  clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags);
            }
            if (state->n_wronly == 0) {
                  clear_wr |= test_and_clear_bit(NFS_O_WRONLY_STATE, &state->flags);
                  clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags);
            }
      }
      spin_unlock(&state->owner->so_lock);
      if (!clear_rd && !clear_wr && !clear_rdwr) {
            /* Note: exit _without_ calling nfs4_close_done */
            task->tk_action = NULL;
            return;
      }
      nfs_fattr_init(calldata->res.fattr);
      if (test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0) {
            task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
            calldata->arg.fmode = FMODE_READ;
      } else if (test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0) {
            task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
            calldata->arg.fmode = FMODE_WRITE;
      }
      calldata->timestamp = jiffies;
      if (nfs4_setup_sequence((NFS_SERVER(calldata->inode))->nfs_client,
                        &calldata->arg.seq_args, &calldata->res.seq_res,
                        1, task))
            return;
      rpc_call_start(task);
}

static const struct rpc_call_ops nfs4_close_ops = {
      .rpc_call_prepare = nfs4_close_prepare,
      .rpc_call_done = nfs4_close_done,
      .rpc_release = nfs4_free_closedata,
};

/* 
 * It is possible for data to be read/written from a mem-mapped file 
 * after the sys_close call (which hits the vfs layer as a flush).
 * This means that we can't safely call nfsv4 close on a file until 
 * the inode is cleared. This in turn means that we are not good
 * NFSv4 citizens - we do not indicate to the server to update the file's 
 * share state even when we are done with one of the three share 
 * stateid's in the inode.
 *
 * NOTE: Caller must be holding the sp->so_owner semaphore!
 */
int nfs4_do_close(struct path *path, struct nfs4_state *state, int wait)
{
      struct nfs_server *server = NFS_SERVER(state->inode);
      struct nfs4_closedata *calldata;
      struct nfs4_state_owner *sp = state->owner;
      struct rpc_task *task;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
            .rpc_cred = state->owner->so_cred,
      };
      struct rpc_task_setup task_setup_data = {
            .rpc_client = server->client,
            .rpc_message = &msg,
            .callback_ops = &nfs4_close_ops,
            .workqueue = nfsiod_workqueue,
            .flags = RPC_TASK_ASYNC,
      };
      int status = -ENOMEM;

      calldata = kzalloc(sizeof(*calldata), GFP_KERNEL);
      if (calldata == NULL)
            goto out;
      calldata->inode = state->inode;
      calldata->state = state;
      calldata->arg.fh = NFS_FH(state->inode);
      calldata->arg.stateid = &state->open_stateid;
      if (nfs4_has_session(server->nfs_client))
            memset(calldata->arg.stateid->data, 0, 4);    /* clear seqid */
      /* Serialization for the sequence id */
      calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
      if (calldata->arg.seqid == NULL)
            goto out_free_calldata;
      calldata->arg.fmode = 0;
      calldata->arg.bitmask = server->cache_consistency_bitmask;
      calldata->res.fattr = &calldata->fattr;
      calldata->res.seqid = calldata->arg.seqid;
      calldata->res.server = server;
      calldata->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
      calldata->path.mnt = mntget(path->mnt);
      calldata->path.dentry = dget(path->dentry);

      msg.rpc_argp = &calldata->arg,
      msg.rpc_resp = &calldata->res,
      task_setup_data.callback_data = calldata;
      task = rpc_run_task(&task_setup_data);
      if (IS_ERR(task))
            return PTR_ERR(task);
      status = 0;
      if (wait)
            status = rpc_wait_for_completion_task(task);
      rpc_put_task(task);
      return status;
out_free_calldata:
      kfree(calldata);
out:
      nfs4_put_open_state(state);
      nfs4_put_state_owner(sp);
      return status;
}

static int nfs4_intent_set_file(struct nameidata *nd, struct path *path, struct nfs4_state *state, fmode_t fmode)
{
      struct file *filp;
      int ret;

      /* If the open_intent is for execute, we have an extra check to make */
      if (fmode & FMODE_EXEC) {
            ret = nfs_may_open(state->inode,
                        state->owner->so_cred,
                        nd->intent.open.flags);
            if (ret < 0)
                  goto out_close;
      }
      filp = lookup_instantiate_filp(nd, path->dentry, NULL);
      if (!IS_ERR(filp)) {
            struct nfs_open_context *ctx;
            ctx = nfs_file_open_context(filp);
            ctx->state = state;
            return 0;
      }
      ret = PTR_ERR(filp);
out_close:
      nfs4_close_sync(path, state, fmode & (FMODE_READ|FMODE_WRITE));
      return ret;
}

struct dentry *
nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
      struct path path = {
            .mnt = nd->path.mnt,
            .dentry = dentry,
      };
      struct dentry *parent;
      struct iattr attr;
      struct rpc_cred *cred;
      struct nfs4_state *state;
      struct dentry *res;
      fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);

      if (nd->flags & LOOKUP_CREATE) {
            attr.ia_mode = nd->intent.open.create_mode;
            attr.ia_valid = ATTR_MODE;
            if (!IS_POSIXACL(dir))
                  attr.ia_mode &= ~current_umask();
      } else {
            attr.ia_valid = 0;
            BUG_ON(nd->intent.open.flags & O_CREAT);
      }

      cred = rpc_lookup_cred();
      if (IS_ERR(cred))
            return (struct dentry *)cred;
      parent = dentry->d_parent;
      /* Protect against concurrent sillydeletes */
      nfs_block_sillyrename(parent);
      state = nfs4_do_open(dir, &path, fmode, nd->intent.open.flags, &attr, cred);
      put_rpccred(cred);
      if (IS_ERR(state)) {
            if (PTR_ERR(state) == -ENOENT) {
                  d_add(dentry, NULL);
                  nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
            }
            nfs_unblock_sillyrename(parent);
            return (struct dentry *)state;
      }
      res = d_add_unique(dentry, igrab(state->inode));
      if (res != NULL)
            path.dentry = res;
      nfs_set_verifier(path.dentry, nfs_save_change_attribute(dir));
      nfs_unblock_sillyrename(parent);
      nfs4_intent_set_file(nd, &path, state, fmode);
      return res;
}

int
nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
{
      struct path path = {
            .mnt = nd->path.mnt,
            .dentry = dentry,
      };
      struct rpc_cred *cred;
      struct nfs4_state *state;
      fmode_t fmode = openflags & (FMODE_READ | FMODE_WRITE);

      cred = rpc_lookup_cred();
      if (IS_ERR(cred))
            return PTR_ERR(cred);
      state = nfs4_do_open(dir, &path, fmode, openflags, NULL, cred);
      put_rpccred(cred);
      if (IS_ERR(state)) {
            switch (PTR_ERR(state)) {
                  case -EPERM:
                  case -EACCES:
                  case -EDQUOT:
                  case -ENOSPC:
                  case -EROFS:
                        lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
                        return 1;
                  default:
                        goto out_drop;
            }
      }
      if (state->inode == dentry->d_inode) {
            nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
            nfs4_intent_set_file(nd, &path, state, fmode);
            return 1;
      }
      nfs4_close_sync(&path, state, fmode);
out_drop:
      d_drop(dentry);
      return 0;
}

void nfs4_close_context(struct nfs_open_context *ctx, int is_sync)
{
      if (ctx->state == NULL)
            return;
      if (is_sync)
            nfs4_close_sync(&ctx->path, ctx->state, ctx->mode);
      else
            nfs4_close_state(&ctx->path, ctx->state, ctx->mode);
}

static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
      struct nfs4_server_caps_arg args = {
            .fhandle = fhandle,
      };
      struct nfs4_server_caps_res res = {};
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };
      int status;

      status = nfs4_call_sync(server, &msg, &args, &res, 0);
      if (status == 0) {
            memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
            if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
                  server->caps |= NFS_CAP_ACLS;
            if (res.has_links != 0)
                  server->caps |= NFS_CAP_HARDLINKS;
            if (res.has_symlinks != 0)
                  server->caps |= NFS_CAP_SYMLINKS;
            memcpy(server->cache_consistency_bitmask, res.attr_bitmask, sizeof(server->cache_consistency_bitmask));
            server->cache_consistency_bitmask[0] &= FATTR4_WORD0_CHANGE|FATTR4_WORD0_SIZE;
            server->cache_consistency_bitmask[1] &= FATTR4_WORD1_TIME_METADATA|FATTR4_WORD1_TIME_MODIFY;
            server->acl_bitmask = res.acl_bitmask;
      }

      return status;
}

int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(server,
                        _nfs4_server_capabilities(server, fhandle),
                        &exception);
      } while (exception.retry);
      return err;
}

static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
            struct nfs_fsinfo *info)
{
      struct nfs4_lookup_root_arg args = {
            .bitmask = nfs4_fattr_bitmap,
      };
      struct nfs4_lookup_res res = {
            .server = server,
            .fattr = info->fattr,
            .fh = fhandle,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };

      nfs_fattr_init(info->fattr);
      return nfs4_call_sync(server, &msg, &args, &res, 0);
}

static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
            struct nfs_fsinfo *info)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(server,
                        _nfs4_lookup_root(server, fhandle, info),
                        &exception);
      } while (exception.retry);
      return err;
}

/*
 * get the file handle for the "/" directory on the server
 */
static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
                        struct nfs_fsinfo *info)
{
      int status;

      status = nfs4_lookup_root(server, fhandle, info);
      if (status == 0)
            status = nfs4_server_capabilities(server, fhandle);
      if (status == 0)
            status = nfs4_do_fsinfo(server, fhandle, info);
      return nfs4_map_errors(status);
}

/*
 * Get locations and (maybe) other attributes of a referral.
 * Note that we'll actually follow the referral later when
 * we detect fsid mismatch in inode revalidation
 */
static int nfs4_get_referral(struct inode *dir, const struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
{
      int status = -ENOMEM;
      struct page *page = NULL;
      struct nfs4_fs_locations *locations = NULL;

      page = alloc_page(GFP_KERNEL);
      if (page == NULL)
            goto out;
      locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
      if (locations == NULL)
            goto out;

      status = nfs4_proc_fs_locations(dir, name, locations, page);
      if (status != 0)
            goto out;
      /* Make sure server returned a different fsid for the referral */
      if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
            dprintk("%s: server did not return a different fsid for a referral at %s\n", __func__, name->name);
            status = -EIO;
            goto out;
      }

      memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
      fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
      if (!fattr->mode)
            fattr->mode = S_IFDIR;
      memset(fhandle, 0, sizeof(struct nfs_fh));
out:
      if (page)
            __free_page(page);
      if (locations)
            kfree(locations);
      return status;
}

static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
      struct nfs4_getattr_arg args = {
            .fh = fhandle,
            .bitmask = server->attr_bitmask,
      };
      struct nfs4_getattr_res res = {
            .fattr = fattr,
            .server = server,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };
      
      nfs_fattr_init(fattr);
      return nfs4_call_sync(server, &msg, &args, &res, 0);
}

static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(server,
                        _nfs4_proc_getattr(server, fhandle, fattr),
                        &exception);
      } while (exception.retry);
      return err;
}

/* 
 * The file is not closed if it is opened due to the a request to change
 * the size of the file. The open call will not be needed once the
 * VFS layer lookup-intents are implemented.
 *
 * Close is called when the inode is destroyed.
 * If we haven't opened the file for O_WRONLY, we
 * need to in the size_change case to obtain a stateid.
 *
 * Got race?
 * Because OPEN is always done by name in nfsv4, it is
 * possible that we opened a different file by the same
 * name.  We can recognize this race condition, but we
 * can't do anything about it besides returning an error.
 *
 * This will be fixed with VFS changes (lookup-intent).
 */
static int
nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
              struct iattr *sattr)
{
      struct inode *inode = dentry->d_inode;
      struct rpc_cred *cred = NULL;
      struct nfs4_state *state = NULL;
      int status;

      nfs_fattr_init(fattr);
      
      /* Search for an existing open(O_WRITE) file */
      if (sattr->ia_valid & ATTR_FILE) {
            struct nfs_open_context *ctx;

            ctx = nfs_file_open_context(sattr->ia_file);
            if (ctx) {
                  cred = ctx->cred;
                  state = ctx->state;
            }
      }

      status = nfs4_do_setattr(inode, cred, fattr, sattr, state);
      if (status == 0)
            nfs_setattr_update_inode(inode, sattr);
      return status;
}

static int _nfs4_proc_lookupfh(struct nfs_server *server, const struct nfs_fh *dirfh,
            const struct qstr *name, struct nfs_fh *fhandle,
            struct nfs_fattr *fattr)
{
      int                status;
      struct nfs4_lookup_arg args = {
            .bitmask = server->attr_bitmask,
            .dir_fh = dirfh,
            .name = name,
      };
      struct nfs4_lookup_res res = {
            .server = server,
            .fattr = fattr,
            .fh = fhandle,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };

      nfs_fattr_init(fattr);

      dprintk("NFS call  lookupfh %s\n", name->name);
      status = nfs4_call_sync(server, &msg, &args, &res, 0);
      dprintk("NFS reply lookupfh: %d\n", status);
      return status;
}

static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
                        struct qstr *name, struct nfs_fh *fhandle,
                        struct nfs_fattr *fattr)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = _nfs4_proc_lookupfh(server, dirfh, name, fhandle, fattr);
            /* FIXME: !!!! */
            if (err == -NFS4ERR_MOVED) {
                  err = -EREMOTE;
                  break;
            }
            err = nfs4_handle_exception(server, err, &exception);
      } while (exception.retry);
      return err;
}

static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name,
            struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
      int status;
      
      dprintk("NFS call  lookup %s\n", name->name);
      status = _nfs4_proc_lookupfh(NFS_SERVER(dir), NFS_FH(dir), name, fhandle, fattr);
      if (status == -NFS4ERR_MOVED)
            status = nfs4_get_referral(dir, name, fattr, fhandle);
      dprintk("NFS reply lookup: %d\n", status);
      return status;
}

static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(dir),
                        _nfs4_proc_lookup(dir, name, fhandle, fattr),
                        &exception);
      } while (exception.retry);
      return err;
}

static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
{
      struct nfs_server *server = NFS_SERVER(inode);
      struct nfs_fattr fattr;
      struct nfs4_accessargs args = {
            .fh = NFS_FH(inode),
            .bitmask = server->attr_bitmask,
      };
      struct nfs4_accessres res = {
            .server = server,
            .fattr = &fattr,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
            .rpc_argp = &args,
            .rpc_resp = &res,
            .rpc_cred = entry->cred,
      };
      int mode = entry->mask;
      int status;

      /*
       * Determine which access bits we want to ask for...
       */
      if (mode & MAY_READ)
            args.access |= NFS4_ACCESS_READ;
      if (S_ISDIR(inode->i_mode)) {
            if (mode & MAY_WRITE)
                  args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
            if (mode & MAY_EXEC)
                  args.access |= NFS4_ACCESS_LOOKUP;
      } else {
            if (mode & MAY_WRITE)
                  args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
            if (mode & MAY_EXEC)
                  args.access |= NFS4_ACCESS_EXECUTE;
      }
      nfs_fattr_init(&fattr);
      status = nfs4_call_sync(server, &msg, &args, &res, 0);
      if (!status) {
            entry->mask = 0;
            if (res.access & NFS4_ACCESS_READ)
                  entry->mask |= MAY_READ;
            if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
                  entry->mask |= MAY_WRITE;
            if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
                  entry->mask |= MAY_EXEC;
            nfs_refresh_inode(inode, &fattr);
      }
      return status;
}

static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(inode),
                        _nfs4_proc_access(inode, entry),
                        &exception);
      } while (exception.retry);
      return err;
}

/*
 * TODO: For the time being, we don't try to get any attributes
 * along with any of the zero-copy operations READ, READDIR,
 * READLINK, WRITE.
 *
 * In the case of the first three, we want to put the GETATTR
 * after the read-type operation -- this is because it is hard
 * to predict the length of a GETATTR response in v4, and thus
 * align the READ data correctly.  This means that the GETATTR
 * may end up partially falling into the page cache, and we should
 * shift it into the 'tail' of the xdr_buf before processing.
 * To do this efficiently, we need to know the total length
 * of data received, which doesn't seem to be available outside
 * of the RPC layer.
 *
 * In the case of WRITE, we also want to put the GETATTR after
 * the operation -- in this case because we want to make sure
 * we get the post-operation mtime and size.  This means that
 * we can't use xdr_encode_pages() as written: we need a variant
 * of it which would leave room in the 'tail' iovec.
 *
 * Both of these changes to the XDR layer would in fact be quite
 * minor, but I decided to leave them for a subsequent patch.
 */
static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
            unsigned int pgbase, unsigned int pglen)
{
      struct nfs4_readlink args = {
            .fh       = NFS_FH(inode),
            .pgbase       = pgbase,
            .pglen    = pglen,
            .pages    = &page,
      };
      struct nfs4_readlink_res res;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };

      return nfs4_call_sync(NFS_SERVER(inode), &msg, &args, &res, 0);
}

static int nfs4_proc_readlink(struct inode *inode, struct page *page,
            unsigned int pgbase, unsigned int pglen)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(inode),
                        _nfs4_proc_readlink(inode, page, pgbase, pglen),
                        &exception);
      } while (exception.retry);
      return err;
}

/*
 * Got race?
 * We will need to arrange for the VFS layer to provide an atomic open.
 * Until then, this create/open method is prone to inefficiency and race
 * conditions due to the lookup, create, and open VFS calls from sys_open()
 * placed on the wire.
 *
 * Given the above sorry state of affairs, I'm simply sending an OPEN.
 * The file will be opened again in the subsequent VFS open call
 * (nfs4_proc_file_open).
 *
 * The open for read will just hang around to be used by any process that
 * opens the file O_RDONLY. This will all be resolved with the VFS changes.
 */

static int
nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
                 int flags, struct nameidata *nd)
{
      struct path path = {
            .mnt = nd->path.mnt,
            .dentry = dentry,
      };
      struct nfs4_state *state;
      struct rpc_cred *cred;
      fmode_t fmode = flags & (FMODE_READ | FMODE_WRITE);
      int status = 0;

      cred = rpc_lookup_cred();
      if (IS_ERR(cred)) {
            status = PTR_ERR(cred);
            goto out;
      }
      state = nfs4_do_open(dir, &path, fmode, flags, sattr, cred);
      d_drop(dentry);
      if (IS_ERR(state)) {
            status = PTR_ERR(state);
            goto out_putcred;
      }
      d_add(dentry, igrab(state->inode));
      nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
      if (flags & O_EXCL) {
            struct nfs_fattr fattr;
            status = nfs4_do_setattr(state->inode, cred, &fattr, sattr, state);
            if (status == 0)
                  nfs_setattr_update_inode(state->inode, sattr);
            nfs_post_op_update_inode(state->inode, &fattr);
      }
      if (status == 0 && (nd->flags & LOOKUP_OPEN) != 0)
            status = nfs4_intent_set_file(nd, &path, state, fmode);
      else
            nfs4_close_sync(&path, state, fmode);
out_putcred:
      put_rpccred(cred);
out:
      return status;
}

static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
{
      struct nfs_server *server = NFS_SERVER(dir);
      struct nfs_removeargs args = {
            .fh = NFS_FH(dir),
            .name.len = name->len,
            .name.name = name->name,
            .bitmask = server->attr_bitmask,
      };
      struct nfs_removeres res = {
            .server = server,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };
      int               status;

      nfs_fattr_init(&res.dir_attr);
      status = nfs4_call_sync(server, &msg, &args, &res, 1);
      if (status == 0) {
            update_changeattr(dir, &res.cinfo);
            nfs_post_op_update_inode(dir, &res.dir_attr);
      }
      return status;
}

static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(dir),
                        _nfs4_proc_remove(dir, name),
                        &exception);
      } while (exception.retry);
      return err;
}

static void nfs4_proc_unlink_setup(struct rpc_message *msg, struct inode *dir)
{
      struct nfs_server *server = NFS_SERVER(dir);
      struct nfs_removeargs *args = msg->rpc_argp;
      struct nfs_removeres *res = msg->rpc_resp;

      args->bitmask = server->cache_consistency_bitmask;
      res->server = server;
      msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
}

static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir)
{
      struct nfs_removeres *res = task->tk_msg.rpc_resp;

      nfs4_sequence_done(res->server, &res->seq_res, task->tk_status);
      if (nfs4_async_handle_error(task, res->server, NULL) == -EAGAIN)
            return 0;
      nfs4_sequence_free_slot(res->server->nfs_client, &res->seq_res);
      update_changeattr(dir, &res->cinfo);
      nfs_post_op_update_inode(dir, &res->dir_attr);
      return 1;
}

static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
            struct inode *new_dir, struct qstr *new_name)
{
      struct nfs_server *server = NFS_SERVER(old_dir);
      struct nfs4_rename_arg arg = {
            .old_dir = NFS_FH(old_dir),
            .new_dir = NFS_FH(new_dir),
            .old_name = old_name,
            .new_name = new_name,
            .bitmask = server->attr_bitmask,
      };
      struct nfs_fattr old_fattr, new_fattr;
      struct nfs4_rename_res res = {
            .server = server,
            .old_fattr = &old_fattr,
            .new_fattr = &new_fattr,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
            .rpc_argp = &arg,
            .rpc_resp = &res,
      };
      int               status;
      
      nfs_fattr_init(res.old_fattr);
      nfs_fattr_init(res.new_fattr);
      status = nfs4_call_sync(server, &msg, &arg, &res, 1);

      if (!status) {
            update_changeattr(old_dir, &res.old_cinfo);
            nfs_post_op_update_inode(old_dir, res.old_fattr);
            update_changeattr(new_dir, &res.new_cinfo);
            nfs_post_op_update_inode(new_dir, res.new_fattr);
      }
      return status;
}

static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
            struct inode *new_dir, struct qstr *new_name)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(old_dir),
                        _nfs4_proc_rename(old_dir, old_name,
                              new_dir, new_name),
                        &exception);
      } while (exception.retry);
      return err;
}

static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
      struct nfs_server *server = NFS_SERVER(inode);
      struct nfs4_link_arg arg = {
            .fh     = NFS_FH(inode),
            .dir_fh = NFS_FH(dir),
            .name   = name,
            .bitmask = server->attr_bitmask,
      };
      struct nfs_fattr fattr, dir_attr;
      struct nfs4_link_res res = {
            .server = server,
            .fattr = &fattr,
            .dir_attr = &dir_attr,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
            .rpc_argp = &arg,
            .rpc_resp = &res,
      };
      int               status;

      nfs_fattr_init(res.fattr);
      nfs_fattr_init(res.dir_attr);
      status = nfs4_call_sync(server, &msg, &arg, &res, 1);
      if (!status) {
            update_changeattr(dir, &res.cinfo);
            nfs_post_op_update_inode(dir, res.dir_attr);
            nfs_post_op_update_inode(inode, res.fattr);
      }

      return status;
}

static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(inode),
                        _nfs4_proc_link(inode, dir, name),
                        &exception);
      } while (exception.retry);
      return err;
}

02606 struct nfs4_createdata {
      struct rpc_message msg;
      struct nfs4_create_arg arg;
      struct nfs4_create_res res;
      struct nfs_fh fh;
      struct nfs_fattr fattr;
      struct nfs_fattr dir_fattr;
};

static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir,
            struct qstr *name, struct iattr *sattr, u32 ftype)
{
      struct nfs4_createdata *data;

      data = kzalloc(sizeof(*data), GFP_KERNEL);
      if (data != NULL) {
            struct nfs_server *server = NFS_SERVER(dir);

            data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE];
            data->msg.rpc_argp = &data->arg;
            data->msg.rpc_resp = &data->res;
            data->arg.dir_fh = NFS_FH(dir);
            data->arg.server = server;
            data->arg.name = name;
            data->arg.attrs = sattr;
            data->arg.ftype = ftype;
            data->arg.bitmask = server->attr_bitmask;
            data->res.server = server;
            data->res.fh = &data->fh;
            data->res.fattr = &data->fattr;
            data->res.dir_fattr = &data->dir_fattr;
            nfs_fattr_init(data->res.fattr);
            nfs_fattr_init(data->res.dir_fattr);
      }
      return data;
}

static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data)
{
      int status = nfs4_call_sync(NFS_SERVER(dir), &data->msg,
                            &data->arg, &data->res, 1);
      if (status == 0) {
            update_changeattr(dir, &data->res.dir_cinfo);
            nfs_post_op_update_inode(dir, data->res.dir_fattr);
            status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
      }
      return status;
}

static void nfs4_free_createdata(struct nfs4_createdata *data)
{
      kfree(data);
}

static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
            struct page *page, unsigned int len, struct iattr *sattr)
{
      struct nfs4_createdata *data;
      int status = -ENAMETOOLONG;

      if (len > NFS4_MAXPATHLEN)
            goto out;

      status = -ENOMEM;
      data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK);
      if (data == NULL)
            goto out;

      data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK];
      data->arg.u.symlink.pages = &page;
      data->arg.u.symlink.len = len;
      
      status = nfs4_do_create(dir, dentry, data);

      nfs4_free_createdata(data);
out:
      return status;
}

static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
            struct page *page, unsigned int len, struct iattr *sattr)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(dir),
                        _nfs4_proc_symlink(dir, dentry, page,
                                          len, sattr),
                        &exception);
      } while (exception.retry);
      return err;
}

static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
            struct iattr *sattr)
{
      struct nfs4_createdata *data;
      int status = -ENOMEM;

      data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR);
      if (data == NULL)
            goto out;

      status = nfs4_do_create(dir, dentry, data);

      nfs4_free_createdata(data);
out:
      return status;
}

static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
            struct iattr *sattr)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(dir),
                        _nfs4_proc_mkdir(dir, dentry, sattr),
                        &exception);
      } while (exception.retry);
      return err;
}

static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
                  u64 cookie, struct page *page, unsigned int count, int plus)
{
      struct inode            *dir = dentry->d_inode;
      struct nfs4_readdir_arg args = {
            .fh = NFS_FH(dir),
            .pages = &page,
            .pgbase = 0,
            .count = count,
            .bitmask = NFS_SERVER(dentry->d_inode)->cache_consistency_bitmask,
      };
      struct nfs4_readdir_res res;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
            .rpc_argp = &args,
            .rpc_resp = &res,
            .rpc_cred = cred,
      };
      int               status;

      dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __func__,
                  dentry->d_parent->d_name.name,
                  dentry->d_name.name,
                  (unsigned long long)cookie);
      nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
      res.pgbase = args.pgbase;
      status = nfs4_call_sync(NFS_SERVER(dir), &msg, &args, &res, 0);
      if (status == 0)
            memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);

      nfs_invalidate_atime(dir);

      dprintk("%s: returns %d\n", __func__, status);
      return status;
}

static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
                  u64 cookie, struct page *page, unsigned int count, int plus)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
                        _nfs4_proc_readdir(dentry, cred, cookie,
                              page, count, plus),
                        &exception);
      } while (exception.retry);
      return err;
}

static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
            struct iattr *sattr, dev_t rdev)
{
      struct nfs4_createdata *data;
      int mode = sattr->ia_mode;
      int status = -ENOMEM;

      BUG_ON(!(sattr->ia_valid & ATTR_MODE));
      BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));

      data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK);
      if (data == NULL)
            goto out;

      if (S_ISFIFO(mode))
            data->arg.ftype = NF4FIFO;
      else if (S_ISBLK(mode)) {
            data->arg.ftype = NF4BLK;
            data->arg.u.device.specdata1 = MAJOR(rdev);
            data->arg.u.device.specdata2 = MINOR(rdev);
      }
      else if (S_ISCHR(mode)) {
            data->arg.ftype = NF4CHR;
            data->arg.u.device.specdata1 = MAJOR(rdev);
            data->arg.u.device.specdata2 = MINOR(rdev);
      }
      
      status = nfs4_do_create(dir, dentry, data);

      nfs4_free_createdata(data);
out:
      return status;
}

static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
            struct iattr *sattr, dev_t rdev)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(dir),
                        _nfs4_proc_mknod(dir, dentry, sattr, rdev),
                        &exception);
      } while (exception.retry);
      return err;
}

static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
             struct nfs_fsstat *fsstat)
{
      struct nfs4_statfs_arg args = {
            .fh = fhandle,
            .bitmask = server->attr_bitmask,
      };
      struct nfs4_statfs_res res = {
            .fsstat = fsstat,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };

      nfs_fattr_init(fsstat->fattr);
      return  nfs4_call_sync(server, &msg, &args, &res, 0);
}

static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(server,
                        _nfs4_proc_statfs(server, fhandle, fsstat),
                        &exception);
      } while (exception.retry);
      return err;
}

static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
            struct nfs_fsinfo *fsinfo)
{
      struct nfs4_fsinfo_arg args = {
            .fh = fhandle,
            .bitmask = server->attr_bitmask,
      };
      struct nfs4_fsinfo_res res = {
            .fsinfo = fsinfo,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };

      return nfs4_call_sync(server, &msg, &args, &res, 0);
}

static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
      struct nfs4_exception exception = { };
      int err;

      do {
            err = nfs4_handle_exception(server,
                        _nfs4_do_fsinfo(server, fhandle, fsinfo),
                        &exception);
      } while (exception.retry);
      return err;
}

static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
      nfs_fattr_init(fsinfo->fattr);
      return nfs4_do_fsinfo(server, fhandle, fsinfo);
}

static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
            struct nfs_pathconf *pathconf)
{
      struct nfs4_pathconf_arg args = {
            .fh = fhandle,
            .bitmask = server->attr_bitmask,
      };
      struct nfs4_pathconf_res res = {
            .pathconf = pathconf,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };

      /* None of the pathconf attributes are mandatory to implement */
      if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
            memset(pathconf, 0, sizeof(*pathconf));
            return 0;
      }

      nfs_fattr_init(pathconf->fattr);
      return nfs4_call_sync(server, &msg, &args, &res, 0);
}

static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
            struct nfs_pathconf *pathconf)
{
      struct nfs4_exception exception = { };
      int err;

      do {
            err = nfs4_handle_exception(server,
                        _nfs4_proc_pathconf(server, fhandle, pathconf),
                        &exception);
      } while (exception.retry);
      return err;
}

static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
{
      struct nfs_server *server = NFS_SERVER(data->inode);

      dprintk("--> %s\n", __func__);

      /* nfs4_sequence_free_slot called in the read rpc_call_done */
      nfs4_sequence_done(server, &data->res.seq_res, task->tk_status);

      if (nfs4_async_handle_error(task, server, data->args.context->state) == -EAGAIN) {
            nfs4_restart_rpc(task, server->nfs_client);
            return -EAGAIN;
      }

      nfs_invalidate_atime(data->inode);
      if (task->tk_status > 0)
            renew_lease(server, data->timestamp);
      return 0;
}

static void nfs4_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg)
{
      data->timestamp   = jiffies;
      msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ];
}

static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
{
      struct inode *inode = data->inode;
      
      /* slot is freed in nfs_writeback_done */
      nfs4_sequence_done(NFS_SERVER(inode), &data->res.seq_res,
                     task->tk_status);

      if (nfs4_async_handle_error(task, NFS_SERVER(inode), data->args.context->state) == -EAGAIN) {
            nfs4_restart_rpc(task, NFS_SERVER(inode)->nfs_client);
            return -EAGAIN;
      }
      if (task->tk_status >= 0) {
            renew_lease(NFS_SERVER(inode), data->timestamp);
            nfs_post_op_update_inode_force_wcc(inode, data->res.fattr);
      }
      return 0;
}

static void nfs4_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg)
{
      struct nfs_server *server = NFS_SERVER(data->inode);

      data->args.bitmask = server->cache_consistency_bitmask;
      data->res.server = server;
      data->timestamp   = jiffies;

      msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE];
}

static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
{
      struct inode *inode = data->inode;
      
      nfs4_sequence_done(NFS_SERVER(inode), &data->res.seq_res,
                     task->tk_status);
      if (nfs4_async_handle_error(task, NFS_SERVER(inode), NULL) == -EAGAIN) {
            nfs4_restart_rpc(task, NFS_SERVER(inode)->nfs_client);
            return -EAGAIN;
      }
      nfs4_sequence_free_slot(NFS_SERVER(inode)->nfs_client,
                        &data->res.seq_res);
      nfs_refresh_inode(inode, data->res.fattr);
      return 0;
}

static void nfs4_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg)
{
      struct nfs_server *server = NFS_SERVER(data->inode);
      
      data->args.bitmask = server->cache_consistency_bitmask;
      data->res.server = server;
      msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT];
}

/*
 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
 * standalone procedure for queueing an asynchronous RENEW.
 */
static void nfs4_renew_done(struct rpc_task *task, void *data)
{
      struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
      unsigned long timestamp = (unsigned long)data;

      if (task->tk_status < 0) {
            /* Unless we're shutting down, schedule state recovery! */
            if (test_bit(NFS_CS_RENEWD, &clp->cl_res_state) != 0)
                  nfs4_schedule_state_recovery(clp);
            return;
      }
      spin_lock(&clp->cl_lock);
      if (time_before(clp->cl_last_renewal,timestamp))
            clp->cl_last_renewal = timestamp;
      spin_unlock(&clp->cl_lock);
      dprintk("%s calling put_rpccred on rpc_cred %p\n", __func__,
                        task->tk_msg.rpc_cred);
      put_rpccred(task->tk_msg.rpc_cred);
}

static const struct rpc_call_ops nfs4_renew_ops = {
      .rpc_call_done = nfs4_renew_done,
};

int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
{
      struct rpc_message msg = {
            .rpc_proc   = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
            .rpc_argp   = clp,
            .rpc_cred   = cred,
      };

      return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
                  &nfs4_renew_ops, (void *)jiffies);
}

int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
{
      struct rpc_message msg = {
            .rpc_proc   = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
            .rpc_argp   = clp,
            .rpc_cred   = cred,
      };
      unsigned long now = jiffies;
      int status;

      status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
      if (status < 0)
            return status;
      spin_lock(&clp->cl_lock);
      if (time_before(clp->cl_last_renewal,now))
            clp->cl_last_renewal = now;
      spin_unlock(&clp->cl_lock);
      return 0;
}

static inline int nfs4_server_supports_acls(struct nfs_server *server)
{
      return (server->caps & NFS_CAP_ACLS)
            && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
            && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
}

/* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
 * the stack.
 */
#define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)

static void buf_to_pages(const void *buf, size_t buflen,
            struct page **pages, unsigned int *pgbase)
{
      const void *p = buf;

      *pgbase = offset_in_page(buf);
      p -= *pgbase;
      while (p < buf + buflen) {
            *(pages++) = virt_to_page(p);
            p += PAGE_CACHE_SIZE;
      }
}

03103 struct nfs4_cached_acl {
      int cached;
      size_t len;
      char data[0];
};

static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
{
      struct nfs_inode *nfsi = NFS_I(inode);

      spin_lock(&inode->i_lock);
      kfree(nfsi->nfs4_acl);
      nfsi->nfs4_acl = acl;
      spin_unlock(&inode->i_lock);
}

static void nfs4_zap_acl_attr(struct inode *inode)
{
      nfs4_set_cached_acl(inode, NULL);
}

static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
{
      struct nfs_inode *nfsi = NFS_I(inode);
      struct nfs4_cached_acl *acl;
      int ret = -ENOENT;

      spin_lock(&inode->i_lock);
      acl = nfsi->nfs4_acl;
      if (acl == NULL)
            goto out;
      if (buf == NULL) /* user is just asking for length */
            goto out_len;
      if (acl->cached == 0)
            goto out;
      ret = -ERANGE; /* see getxattr(2) man page */
      if (acl->len > buflen)
            goto out;
      memcpy(buf, acl->data, acl->len);
out_len:
      ret = acl->len;
out:
      spin_unlock(&inode->i_lock);
      return ret;
}

static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
{
      struct nfs4_cached_acl *acl;

      if (buf && acl_len <= PAGE_SIZE) {
            acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
            if (acl == NULL)
                  goto out;
            acl->cached = 1;
            memcpy(acl->data, buf, acl_len);
      } else {
            acl = kmalloc(sizeof(*acl), GFP_KERNEL);
            if (acl == NULL)
                  goto out;
            acl->cached = 0;
      }
      acl->len = acl_len;
out:
      nfs4_set_cached_acl(inode, acl);
}

static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
{
      struct page *pages[NFS4ACL_MAXPAGES];
      struct nfs_getaclargs args = {
            .fh = NFS_FH(inode),
            .acl_pages = pages,
            .acl_len = buflen,
      };
      struct nfs_getaclres res = {
            .acl_len = buflen,
      };
      void *resp_buf;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };
      struct page *localpage = NULL;
      int ret;

      if (buflen < PAGE_SIZE) {
            /* As long as we're doing a round trip to the server anyway,
             * let's be prepared for a page of acl data. */
            localpage = alloc_page(GFP_KERNEL);
            resp_buf = page_address(localpage);
            if (localpage == NULL)
                  return -ENOMEM;
            args.acl_pages[0] = localpage;
            args.acl_pgbase = 0;
            args.acl_len = PAGE_SIZE;
      } else {
            resp_buf = buf;
            buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
      }
      ret = nfs4_call_sync(NFS_SERVER(inode), &msg, &args, &res, 0);
      if (ret)
            goto out_free;
      if (res.acl_len > args.acl_len)
            nfs4_write_cached_acl(inode, NULL, res.acl_len);
      else
            nfs4_write_cached_acl(inode, resp_buf, res.acl_len);
      if (buf) {
            ret = -ERANGE;
            if (res.acl_len > buflen)
                  goto out_free;
            if (localpage)
                  memcpy(buf, resp_buf, res.acl_len);
      }
      ret = res.acl_len;
out_free:
      if (localpage)
            __free_page(localpage);
      return ret;
}

static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
{
      struct nfs4_exception exception = { };
      ssize_t ret;
      do {
            ret = __nfs4_get_acl_uncached(inode, buf, buflen);
            if (ret >= 0)
                  break;
            ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
      } while (exception.retry);
      return ret;
}

static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
{
      struct nfs_server *server = NFS_SERVER(inode);
      int ret;

      if (!nfs4_server_supports_acls(server))
            return -EOPNOTSUPP;
      ret = nfs_revalidate_inode(server, inode);
      if (ret < 0)
            return ret;
      ret = nfs4_read_cached_acl(inode, buf, buflen);
      if (ret != -ENOENT)
            return ret;
      return nfs4_get_acl_uncached(inode, buf, buflen);
}

static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
{
      struct nfs_server *server = NFS_SERVER(inode);
      struct page *pages[NFS4ACL_MAXPAGES];
      struct nfs_setaclargs arg = {
            .fh         = NFS_FH(inode),
            .acl_pages  = pages,
            .acl_len    = buflen,
      };
      struct nfs_setaclres res;
      struct rpc_message msg = {
            .rpc_proc   = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
            .rpc_argp   = &arg,
            .rpc_resp   = &res,
      };
      int ret;

      if (!nfs4_server_supports_acls(server))
            return -EOPNOTSUPP;
      nfs_inode_return_delegation(inode);
      buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
      ret = nfs4_call_sync(server, &msg, &arg, &res, 1);
      nfs_access_zap_cache(inode);
      nfs_zap_acl_cache(inode);
      return ret;
}

static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
{
      struct nfs4_exception exception = { };
      int err;
      do {
            err = nfs4_handle_exception(NFS_SERVER(inode),
                        __nfs4_proc_set_acl(inode, buf, buflen),
                        &exception);
      } while (exception.retry);
      return err;
}

static int
_nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server, struct nfs_client *clp, struct nfs4_state *state)
{
      if (!clp || task->tk_status >= 0)
            return 0;
      switch(task->tk_status) {
            case -NFS4ERR_ADMIN_REVOKED:
            case -NFS4ERR_BAD_STATEID:
            case -NFS4ERR_OPENMODE:
                  if (state == NULL)
                        break;
                  nfs4_state_mark_reclaim_nograce(clp, state);
            case -NFS4ERR_STALE_CLIENTID:
            case -NFS4ERR_STALE_STATEID:
            case -NFS4ERR_EXPIRED:
                  rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL);
                  nfs4_schedule_state_recovery(clp);
                  if (test_bit(NFS4CLNT_MANAGER_RUNNING, &clp->cl_state) == 0)
                        rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task);
                  task->tk_status = 0;
                  return -EAGAIN;
#if defined(CONFIG_NFS_V4_1)
            case -NFS4ERR_BADSESSION:
            case -NFS4ERR_BADSLOT:
            case -NFS4ERR_BAD_HIGH_SLOT:
            case -NFS4ERR_DEADSESSION:
            case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
            case -NFS4ERR_SEQ_FALSE_RETRY:
            case -NFS4ERR_SEQ_MISORDERED:
                  dprintk("%s ERROR %d, Reset session\n", __func__,
                        task->tk_status);
                  set_bit(NFS4CLNT_SESSION_SETUP, &clp->cl_state);
                  task->tk_status = 0;
                  return -EAGAIN;
#endif /* CONFIG_NFS_V4_1 */
            case -NFS4ERR_DELAY:
                  if (server)
                        nfs_inc_server_stats(server, NFSIOS_DELAY);
            case -NFS4ERR_GRACE:
                  rpc_delay(task, NFS4_POLL_RETRY_MAX);
                  task->tk_status = 0;
                  return -EAGAIN;
            case -NFS4ERR_OLD_STATEID:
                  task->tk_status = 0;
                  return -EAGAIN;
      }
      task->tk_status = nfs4_map_errors(task->tk_status);
      return 0;
}

static int
nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server, struct nfs4_state *state)
{
      return _nfs4_async_handle_error(task, server, server->nfs_client, state);
}

int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
{
      nfs4_verifier sc_verifier;
      struct nfs4_setclientid setclientid = {
            .sc_verifier = &sc_verifier,
            .sc_prog = program,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
            .rpc_argp = &setclientid,
            .rpc_resp = clp,
            .rpc_cred = cred,
      };
      __be32 *p;
      int loop = 0;
      int status;

      p = (__be32*)sc_verifier.data;
      *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
      *p = htonl((u32)clp->cl_boot_time.tv_nsec);

      for(;;) {
            setclientid.sc_name_len = scnprintf(setclientid.sc_name,
                        sizeof(setclientid.sc_name), "%s/%s %s %s %u",
                        clp->cl_ipaddr,
                        rpc_peeraddr2str(clp->cl_rpcclient,
                                          RPC_DISPLAY_ADDR),
                        rpc_peeraddr2str(clp->cl_rpcclient,
                                          RPC_DISPLAY_PROTO),
                        clp->cl_rpcclient->cl_auth->au_ops->au_name,
                        clp->cl_id_uniquifier);
            setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
                        sizeof(setclientid.sc_netid),
                        rpc_peeraddr2str(clp->cl_rpcclient,
                                          RPC_DISPLAY_NETID));
            setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
                        sizeof(setclientid.sc_uaddr), "%s.%u.%u",
                        clp->cl_ipaddr, port >> 8, port & 255);

            status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
            if (status != -NFS4ERR_CLID_INUSE)
                  break;
            if (signalled())
                  break;
            if (loop++ & 1)
                  ssleep(clp->cl_lease_time + 1);
            else
                  if (++clp->cl_id_uniquifier == 0)
                        break;
      }
      return status;
}

static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
{
      struct nfs_fsinfo fsinfo;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
            .rpc_argp = clp,
            .rpc_resp = &fsinfo,
            .rpc_cred = cred,
      };
      unsigned long now;
      int status;

      now = jiffies;
      status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
      if (status == 0) {
            spin_lock(&clp->cl_lock);
            clp->cl_lease_time = fsinfo.lease_time * HZ;
            clp->cl_last_renewal = now;
            spin_unlock(&clp->cl_lock);
      }
      return status;
}

int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
{
      long timeout = 0;
      int err;
      do {
            err = _nfs4_proc_setclientid_confirm(clp, cred);
            switch (err) {
                  case 0:
                        return err;
                  case -NFS4ERR_RESOURCE:
                        /* The IBM lawyers misread another document! */
                  case -NFS4ERR_DELAY:
                        err = nfs4_delay(clp->cl_rpcclient, &timeout);
            }
      } while (err == 0);
      return err;
}

03443 struct nfs4_delegreturndata {
      struct nfs4_delegreturnargs args;
      struct nfs4_delegreturnres res;
      struct nfs_fh fh;
      nfs4_stateid stateid;
      unsigned long timestamp;
      struct nfs_fattr fattr;
      int rpc_status;
};

static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
{
      struct nfs4_delegreturndata *data = calldata;

      nfs4_sequence_done_free_slot(data->res.server, &data->res.seq_res,
                             task->tk_status);

      data->rpc_status = task->tk_status;
      if (data->rpc_status == 0)
            renew_lease(data->res.server, data->timestamp);
}

static void nfs4_delegreturn_release(void *calldata)
{
      kfree(calldata);
}

#if defined(CONFIG_NFS_V4_1)
static void nfs4_delegreturn_prepare(struct rpc_task *task, void *data)
{
      struct nfs4_delegreturndata *d_data;

      d_data = (struct nfs4_delegreturndata *)data;

      if (nfs4_setup_sequence(d_data->res.server->nfs_client,
                        &d_data->args.seq_args,
                        &d_data->res.seq_res, 1, task))
            return;
      rpc_call_start(task);
}
#endif /* CONFIG_NFS_V4_1 */

static const struct rpc_call_ops nfs4_delegreturn_ops = {
#if defined(CONFIG_NFS_V4_1)
      .rpc_call_prepare = nfs4_delegreturn_prepare,
#endif /* CONFIG_NFS_V4_1 */
      .rpc_call_done = nfs4_delegreturn_done,
      .rpc_release = nfs4_delegreturn_release,
};

static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync)
{
      struct nfs4_delegreturndata *data;
      struct nfs_server *server = NFS_SERVER(inode);
      struct rpc_task *task;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
            .rpc_cred = cred,
      };
      struct rpc_task_setup task_setup_data = {
            .rpc_client = server->client,
            .rpc_message = &msg,
            .callback_ops = &nfs4_delegreturn_ops,
            .flags = RPC_TASK_ASYNC,
      };
      int status = 0;

      data = kzalloc(sizeof(*data), GFP_KERNEL);
      if (data == NULL)
            return -ENOMEM;
      data->args.fhandle = &data->fh;
      data->args.stateid = &data->stateid;
      data->args.bitmask = server->attr_bitmask;
      nfs_copy_fh(&data->fh, NFS_FH(inode));
      memcpy(&data->stateid, stateid, sizeof(data->stateid));
      data->res.fattr = &data->fattr;
      data->res.server = server;
      data->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
      nfs_fattr_init(data->res.fattr);
      data->timestamp = jiffies;
      data->rpc_status = 0;

      task_setup_data.callback_data = data;
      msg.rpc_argp = &data->args,
      msg.rpc_resp = &data->res,
      task = rpc_run_task(&task_setup_data);
      if (IS_ERR(task))
            return PTR_ERR(task);
      if (!issync)
            goto out;
      status = nfs4_wait_for_completion_rpc_task(task);
      if (status != 0)
            goto out;
      status = data->rpc_status;
      if (status != 0)
            goto out;
      nfs_refresh_inode(inode, &data->fattr);
out:
      rpc_put_task(task);
      return status;
}

int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync)
{
      struct nfs_server *server = NFS_SERVER(inode);
      struct nfs4_exception exception = { };
      int err;
      do {
            err = _nfs4_proc_delegreturn(inode, cred, stateid, issync);
            switch (err) {
                  case -NFS4ERR_STALE_STATEID:
                  case -NFS4ERR_EXPIRED:
                  case 0:
                        return 0;
            }
            err = nfs4_handle_exception(server, err, &exception);
      } while (exception.retry);
      return err;
}

#define NFS4_LOCK_MINTIMEOUT (1 * HZ)
#define NFS4_LOCK_MAXTIMEOUT (30 * HZ)

/* 
 * sleep, with exponential backoff, and retry the LOCK operation. 
 */
static unsigned long
nfs4_set_lock_task_retry(unsigned long timeout)
{
      schedule_timeout_killable(timeout);
      timeout <<= 1;
      if (timeout > NFS4_LOCK_MAXTIMEOUT)
            return NFS4_LOCK_MAXTIMEOUT;
      return timeout;
}

static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
      struct inode *inode = state->inode;
      struct nfs_server *server = NFS_SERVER(inode);
      struct nfs_client *clp = server->nfs_client;
      struct nfs_lockt_args arg = {
            .fh = NFS_FH(inode),
            .fl = request,
      };
      struct nfs_lockt_res res = {
            .denied = request,
      };
      struct rpc_message msg = {
            .rpc_proc   = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
            .rpc_argp       = &arg,
            .rpc_resp       = &res,
            .rpc_cred   = state->owner->so_cred,
      };
      struct nfs4_lock_state *lsp;
      int status;

      arg.lock_owner.clientid = clp->cl_clientid;
      status = nfs4_set_lock_state(state, request);
      if (status != 0)
            goto out;
      lsp = request->fl_u.nfs4_fl.owner;
      arg.lock_owner.id = lsp->ls_id.id;
      status = nfs4_call_sync(server, &msg, &arg, &res, 1);
      switch (status) {
            case 0:
                  request->fl_type = F_UNLCK;
                  break;
            case -NFS4ERR_DENIED:
                  status = 0;
      }
      request->fl_ops->fl_release_private(request);
out:
      return status;
}

static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
      struct nfs4_exception exception = { };
      int err;

      do {
            err = nfs4_handle_exception(NFS_SERVER(state->inode),
                        _nfs4_proc_getlk(state, cmd, request),
                        &exception);
      } while (exception.retry);
      return err;
}

static int do_vfs_lock(struct file *file, struct file_lock *fl)
{
      int res = 0;
      switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
            case FL_POSIX:
                  res = posix_lock_file_wait(file, fl);
                  break;
            case FL_FLOCK:
                  res = flock_lock_file_wait(file, fl);
                  break;
            default:
                  BUG();
      }
      return res;
}

03648 struct nfs4_unlockdata {
      struct nfs_locku_args arg;
      struct nfs_locku_res res;
      struct nfs4_lock_state *lsp;
      struct nfs_open_context *ctx;
      struct file_lock fl;
      const struct nfs_server *server;
      unsigned long timestamp;
};

static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
            struct nfs_open_context *ctx,
            struct nfs4_lock_state *lsp,
            struct nfs_seqid *seqid)
{
      struct nfs4_unlockdata *p;
      struct inode *inode = lsp->ls_state->inode;

      p = kzalloc(sizeof(*p), GFP_KERNEL);
      if (p == NULL)
            return NULL;
      p->arg.fh = NFS_FH(inode);
      p->arg.fl = &p->fl;
      p->arg.seqid = seqid;
      p->res.seqid = seqid;
      p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
      p->arg.stateid = &lsp->ls_stateid;
      p->lsp = lsp;
      atomic_inc(&lsp->ls_count);
      /* Ensure we don't close file until we're done freeing locks! */
      p->ctx = get_nfs_open_context(ctx);
      memcpy(&p->fl, fl, sizeof(p->fl));
      p->server = NFS_SERVER(inode);
      return p;
}

static void nfs4_locku_release_calldata(void *data)
{
      struct nfs4_unlockdata *calldata = data;
      nfs_free_seqid(calldata->arg.seqid);
      nfs4_put_lock_state(calldata->lsp);
      put_nfs_open_context(calldata->ctx);
      kfree(calldata);
}

static void nfs4_locku_done(struct rpc_task *task, void *data)
{
      struct nfs4_unlockdata *calldata = data;

      nfs4_sequence_done(calldata->server, &calldata->res.seq_res,
                     task->tk_status);
      if (RPC_ASSASSINATED(task))
            return;
      switch (task->tk_status) {
            case 0:
                  memcpy(calldata->lsp->ls_stateid.data,
                              calldata->res.stateid.data,
                              sizeof(calldata->lsp->ls_stateid.data));
                  renew_lease(calldata->server, calldata->timestamp);
                  break;
            case -NFS4ERR_BAD_STATEID:
            case -NFS4ERR_OLD_STATEID:
            case -NFS4ERR_STALE_STATEID:
            case -NFS4ERR_EXPIRED:
                  break;
            default:
                  if (nfs4_async_handle_error(task, calldata->server, NULL) == -EAGAIN)
                        nfs4_restart_rpc(task,
                                    calldata->server->nfs_client);
      }
      nfs4_sequence_free_slot(calldata->server->nfs_client,
                        &calldata->res.seq_res);
}

static void nfs4_locku_prepare(struct rpc_task *task, void *data)
{
      struct nfs4_unlockdata *calldata = data;

      if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
            return;
      if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
            /* Note: exit _without_ running nfs4_locku_done */
            task->tk_action = NULL;
            return;
      }
      calldata->timestamp = jiffies;
      if (nfs4_setup_sequence(calldata->server->nfs_client,
                        &calldata->arg.seq_args,
                        &calldata->res.seq_res, 1, task))
            return;
      rpc_call_start(task);
}

static const struct rpc_call_ops nfs4_locku_ops = {
      .rpc_call_prepare = nfs4_locku_prepare,
      .rpc_call_done = nfs4_locku_done,
      .rpc_release = nfs4_locku_release_calldata,
};

static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
            struct nfs_open_context *ctx,
            struct nfs4_lock_state *lsp,
            struct nfs_seqid *seqid)
{
      struct nfs4_unlockdata *data;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
            .rpc_cred = ctx->cred,
      };
      struct rpc_task_setup task_setup_data = {
            .rpc_client = NFS_CLIENT(lsp->ls_state->inode),
            .rpc_message = &msg,
            .callback_ops = &nfs4_locku_ops,
            .workqueue = nfsiod_workqueue,
            .flags = RPC_TASK_ASYNC,
      };

      /* Ensure this is an unlock - when canceling a lock, the
       * canceled lock is passed in, and it won't be an unlock.
       */
      fl->fl_type = F_UNLCK;

      data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
      if (data == NULL) {
            nfs_free_seqid(seqid);
            return ERR_PTR(-ENOMEM);
      }

      msg.rpc_argp = &data->arg,
      msg.rpc_resp = &data->res,
      task_setup_data.callback_data = data;
      return rpc_run_task(&task_setup_data);
}

static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
{
      struct nfs_inode *nfsi = NFS_I(state->inode);
      struct nfs_seqid *seqid;
      struct nfs4_lock_state *lsp;
      struct rpc_task *task;
      int status = 0;
      unsigned char fl_flags = request->fl_flags;

      status = nfs4_set_lock_state(state, request);
      /* Unlock _before_ we do the RPC call */
      request->fl_flags |= FL_EXISTS;
      down_read(&nfsi->rwsem);
      if (do_vfs_lock(request->fl_file, request) == -ENOENT) {
            up_read(&nfsi->rwsem);
            goto out;
      }
      up_read(&nfsi->rwsem);
      if (status != 0)
            goto out;
      /* Is this a delegated lock? */
      if (test_bit(NFS_DELEGATED_STATE, &state->flags))
            goto out;
      lsp = request->fl_u.nfs4_fl.owner;
      seqid = nfs_alloc_seqid(&lsp->ls_seqid);
      status = -ENOMEM;
      if (seqid == NULL)
            goto out;
      task = nfs4_do_unlck(request, nfs_file_open_context(request->fl_file), lsp, seqid);
      status = PTR_ERR(task);
      if (IS_ERR(task))
            goto out;
      status = nfs4_wait_for_completion_rpc_task(task);
      rpc_put_task(task);
out:
      request->fl_flags = fl_flags;
      return status;
}

03821 struct nfs4_lockdata {
      struct nfs_lock_args arg;
      struct nfs_lock_res res;
      struct nfs4_lock_state *lsp;
      struct nfs_open_context *ctx;
      struct file_lock fl;
      unsigned long timestamp;
      int rpc_status;
      int cancelled;
      struct nfs_server *server;
};

static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
            struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
{
      struct nfs4_lockdata *p;
      struct inode *inode = lsp->ls_state->inode;
      struct nfs_server *server = NFS_SERVER(inode);

      p = kzalloc(sizeof(*p), GFP_KERNEL);
      if (p == NULL)
            return NULL;

      p->arg.fh = NFS_FH(inode);
      p->arg.fl = &p->fl;
      p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid);
      if (p->arg.open_seqid == NULL)
            goto out_free;
      p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
      if (p->arg.lock_seqid == NULL)
            goto out_free_seqid;
      p->arg.lock_stateid = &lsp->ls_stateid;
      p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
      p->arg.lock_owner.id = lsp->ls_id.id;
      p->res.lock_seqid = p->arg.lock_seqid;
      p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
      p->lsp = lsp;
      p->server = server;
      atomic_inc(&lsp->ls_count);
      p->ctx = get_nfs_open_context(ctx);
      memcpy(&p->fl, fl, sizeof(p->fl));
      return p;
out_free_seqid:
      nfs_free_seqid(p->arg.open_seqid);
out_free:
      kfree(p);
      return NULL;
}

static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
{
      struct nfs4_lockdata *data = calldata;
      struct nfs4_state *state = data->lsp->ls_state;

      dprintk("%s: begin!\n", __func__);
      if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
            return;
      /* Do we need to do an open_to_lock_owner? */
      if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
            if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0)
                  return;
            data->arg.open_stateid = &state->stateid;
            data->arg.new_lock_owner = 1;
            data->res.open_seqid = data->arg.open_seqid;
      } else
            data->arg.new_lock_owner = 0;
      data->timestamp = jiffies;
      if (nfs4_setup_sequence(data->server->nfs_client, &data->arg.seq_args,
                        &data->res.seq_res, 1, task))
            return;
      rpc_call_start(task);
      dprintk("%s: done!, ret = %d\n", __func__, data->rpc_status);
}

static void nfs4_lock_done(struct rpc_task *task, void *calldata)
{
      struct nfs4_lockdata *data = calldata;

      dprintk("%s: begin!\n", __func__);

      nfs4_sequence_done_free_slot(data->server, &data->res.seq_res,
                             task->tk_status);

      data->rpc_status = task->tk_status;
      if (RPC_ASSASSINATED(task))
            goto out;
      if (data->arg.new_lock_owner != 0) {
            if (data->rpc_status == 0)
                  nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
            else
                  goto out;
      }
      if (data->rpc_status == 0) {
            memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
                              sizeof(data->lsp->ls_stateid.data));
            data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
            renew_lease(NFS_SERVER(data->ctx->path.dentry->d_inode), data->timestamp);
      }
out:
      dprintk("%s: done, ret = %d!\n", __func__, data->rpc_status);
}

static void nfs4_lock_release(void *calldata)
{
      struct nfs4_lockdata *data = calldata;

      dprintk("%s: begin!\n", __func__);
      nfs_free_seqid(data->arg.open_seqid);
      if (data->cancelled != 0) {
            struct rpc_task *task;
            task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
                        data->arg.lock_seqid);
            if (!IS_ERR(task))
                  rpc_put_task(task);
            dprintk("%s: cancelling lock!\n", __func__);
      } else
            nfs_free_seqid(data->arg.lock_seqid);
      nfs4_put_lock_state(data->lsp);
      put_nfs_open_context(data->ctx);
      kfree(data);
      dprintk("%s: done!\n", __func__);
}

static const struct rpc_call_ops nfs4_lock_ops = {
      .rpc_call_prepare = nfs4_lock_prepare,
      .rpc_call_done = nfs4_lock_done,
      .rpc_release = nfs4_lock_release,
};

static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
{
      struct nfs4_lockdata *data;
      struct rpc_task *task;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
            .rpc_cred = state->owner->so_cred,
      };
      struct rpc_task_setup task_setup_data = {
            .rpc_client = NFS_CLIENT(state->inode),
            .rpc_message = &msg,
            .callback_ops = &nfs4_lock_ops,
            .workqueue = nfsiod_workqueue,
            .flags = RPC_TASK_ASYNC,
      };
      int ret;

      dprintk("%s: begin!\n", __func__);
      data = nfs4_alloc_lockdata(fl, nfs_file_open_context(fl->fl_file),
                  fl->fl_u.nfs4_fl.owner);
      if (data == NULL)
            return -ENOMEM;
      if (IS_SETLKW(cmd))
            data->arg.block = 1;
      if (reclaim != 0)
            data->arg.reclaim = 1;
      msg.rpc_argp = &data->arg,
      msg.rpc_resp = &data->res,
      task_setup_data.callback_data = data;
      task = rpc_run_task(&task_setup_data);
      if (IS_ERR(task))
            return PTR_ERR(task);
      ret = nfs4_wait_for_completion_rpc_task(task);
      if (ret == 0) {
            ret = data->rpc_status;
      } else
            data->cancelled = 1;
      rpc_put_task(task);
      dprintk("%s: done, ret = %d!\n", __func__, ret);
      return ret;
}

static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
{
      struct nfs_server *server = NFS_SERVER(state->inode);
      struct nfs4_exception exception = { };
      int err;

      do {
            /* Cache the lock if possible... */
            if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
                  return 0;
            err = _nfs4_do_setlk(state, F_SETLK, request, 1);
            if (err != -NFS4ERR_DELAY)
                  break;
            nfs4_handle_exception(server, err, &exception);
      } while (exception.retry);
      return err;
}

static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
{
      struct nfs_server *server = NFS_SERVER(state->inode);
      struct nfs4_exception exception = { };
      int err;

      err = nfs4_set_lock_state(state, request);
      if (err != 0)
            return err;
      do {
            if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
                  return 0;
            err = _nfs4_do_setlk(state, F_SETLK, request, 0);
            if (err != -NFS4ERR_DELAY)
                  break;
            nfs4_handle_exception(server, err, &exception);
      } while (exception.retry);
      return err;
}

static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
      struct nfs_inode *nfsi = NFS_I(state->inode);
      unsigned char fl_flags = request->fl_flags;
      int status;

      /* Is this a delegated open? */
      status = nfs4_set_lock_state(state, request);
      if (status != 0)
            goto out;
      request->fl_flags |= FL_ACCESS;
      status = do_vfs_lock(request->fl_file, request);
      if (status < 0)
            goto out;
      down_read(&nfsi->rwsem);
      if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
            /* Yes: cache locks! */
            /* ...but avoid races with delegation recall... */
            request->fl_flags = fl_flags & ~FL_SLEEP;
            status = do_vfs_lock(request->fl_file, request);
            goto out_unlock;
      }
      status = _nfs4_do_setlk(state, cmd, request, 0);
      if (status != 0)
            goto out_unlock;
      /* Note: we always want to sleep here! */
      request->fl_flags = fl_flags | FL_SLEEP;
      if (do_vfs_lock(request->fl_file, request) < 0)
            printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __func__);
out_unlock:
      up_read(&nfsi->rwsem);
out:
      request->fl_flags = fl_flags;
      return status;
}

static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
      struct nfs4_exception exception = { };
      int err;

      do {
            err = _nfs4_proc_setlk(state, cmd, request);
            if (err == -NFS4ERR_DENIED)
                  err = -EAGAIN;
            err = nfs4_handle_exception(NFS_SERVER(state->inode),
                        err, &exception);
      } while (exception.retry);
      return err;
}

static int
nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
{
      struct nfs_open_context *ctx;
      struct nfs4_state *state;
      unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
      int status;

      /* verify open state */
      ctx = nfs_file_open_context(filp);
      state = ctx->state;

      if (request->fl_start < 0 || request->fl_end < 0)
            return -EINVAL;

      if (IS_GETLK(cmd)) {
            if (state != NULL)
                  return nfs4_proc_getlk(state, F_GETLK, request);
            return 0;
      }

      if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
            return -EINVAL;

      if (request->fl_type == F_UNLCK) {
            if (state != NULL)
                  return nfs4_proc_unlck(state, cmd, request);
            return 0;
      }

      if (state == NULL)
            return -ENOLCK;
      do {
            status = nfs4_proc_setlk(state, cmd, request);
            if ((status != -EAGAIN) || IS_SETLK(cmd))
                  break;
            timeout = nfs4_set_lock_task_retry(timeout);
            status = -ERESTARTSYS;
            if (signalled())
                  break;
      } while(status < 0);
      return status;
}

int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
{
      struct nfs_server *server = NFS_SERVER(state->inode);
      struct nfs4_exception exception = { };
      int err;

      err = nfs4_set_lock_state(state, fl);
      if (err != 0)
            goto out;
      do {
            err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
            switch (err) {
                  default:
                        printk(KERN_ERR "%s: unhandled error %d.\n",
                                    __func__, err);
                  case 0:
                  case -ESTALE:
                        goto out;
                  case -NFS4ERR_EXPIRED:
                  case -NFS4ERR_STALE_CLIENTID:
                  case -NFS4ERR_STALE_STATEID:
                        nfs4_schedule_state_recovery(server->nfs_client);
                        goto out;
                  case -ERESTARTSYS:
                        /*
                         * The show must go on: exit, but mark the
                         * stateid as needing recovery.
                         */
                  case -NFS4ERR_ADMIN_REVOKED:
                  case -NFS4ERR_BAD_STATEID:
                  case -NFS4ERR_OPENMODE:
                        nfs4_state_mark_reclaim_nograce(server->nfs_client, state);
                        err = 0;
                        goto out;
                  case -ENOMEM:
                  case -NFS4ERR_DENIED:
                        /* kill_proc(fl->fl_pid, SIGLOST, 1); */
                        err = 0;
                        goto out;
                  case -NFS4ERR_DELAY:
                        break;
            }
            err = nfs4_handle_exception(server, err, &exception);
      } while (exception.retry);
out:
      return err;
}

#define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"

int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
            size_t buflen, int flags)
{
      struct inode *inode = dentry->d_inode;

      if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
            return -EOPNOTSUPP;

      return nfs4_proc_set_acl(inode, buf, buflen);
}

/* The getxattr man page suggests returning -ENODATA for unknown attributes,
 * and that's what we'll do for e.g. user attributes that haven't been set.
 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
 * attributes in kernel-managed attribute namespaces. */
ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
            size_t buflen)
{
      struct inode *inode = dentry->d_inode;

      if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
            return -EOPNOTSUPP;

      return nfs4_proc_get_acl(inode, buf, buflen);
}

ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
{
      size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;

      if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
            return 0;
      if (buf && buflen < len)
            return -ERANGE;
      if (buf)
            memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
      return len;
}

static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr)
{
      if (!((fattr->valid & NFS_ATTR_FATTR_FILEID) &&
            (fattr->valid & NFS_ATTR_FATTR_FSID) &&
            (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL)))
            return;

      fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE |
            NFS_ATTR_FATTR_NLINK;
      fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO;
      fattr->nlink = 2;
}

int nfs4_proc_fs_locations(struct inode *dir, const struct qstr *name,
            struct nfs4_fs_locations *fs_locations, struct page *page)
{
      struct nfs_server *server = NFS_SERVER(dir);
      u32 bitmask[2] = {
            [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
            [1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
      };
      struct nfs4_fs_locations_arg args = {
            .dir_fh = NFS_FH(dir),
            .name = name,
            .page = page,
            .bitmask = bitmask,
      };
      struct nfs4_fs_locations_res res = {
            .fs_locations = fs_locations,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };
      int status;

      dprintk("%s: start\n", __func__);
      nfs_fattr_init(&fs_locations->fattr);
      fs_locations->server = server;
      fs_locations->nlocations = 0;
      status = nfs4_call_sync(server, &msg, &args, &res, 0);
      nfs_fixup_referral_attributes(&fs_locations->fattr);
      dprintk("%s: returned status = %d\n", __func__, status);
      return status;
}

#ifdef CONFIG_NFS_V4_1
/*
 * nfs4_proc_exchange_id()
 *
 * Since the clientid has expired, all compounds using sessions
 * associated with the stale clientid will be returning
 * NFS4ERR_BADSESSION in the sequence operation, and will therefore
 * be in some phase of session reset.
 */
static int nfs4_proc_exchange_id(struct nfs_client *clp, struct rpc_cred *cred)
{
      nfs4_verifier verifier;
      struct nfs41_exchange_id_args args = {
            .client = clp,
            .flags = clp->cl_exchange_flags,
      };
      struct nfs41_exchange_id_res res = {
            .client = clp,
      };
      int status;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_EXCHANGE_ID],
            .rpc_argp = &args,
            .rpc_resp = &res,
            .rpc_cred = cred,
      };
      __be32 *p;

      dprintk("--> %s\n", __func__);
      BUG_ON(clp == NULL);

      p = (u32 *)verifier.data;
      *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
      *p = htonl((u32)clp->cl_boot_time.tv_nsec);
      args.verifier = &verifier;

      while (1) {
            args.id_len = scnprintf(args.id, sizeof(args.id),
                              "%s/%s %u",
                              clp->cl_ipaddr,
                              rpc_peeraddr2str(clp->cl_rpcclient,
                                           RPC_DISPLAY_ADDR),
                              clp->cl_id_uniquifier);

            status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);

            if (status != NFS4ERR_CLID_INUSE)
                  break;

            if (signalled())
                  break;

            if (++clp->cl_id_uniquifier == 0)
                  break;
      }

      dprintk("<-- %s status= %d\n", __func__, status);
      return status;
}

struct nfs4_get_lease_time_data {
      struct nfs4_get_lease_time_args *args;
      struct nfs4_get_lease_time_res *res;
      struct nfs_client *clp;
};

static void nfs4_get_lease_time_prepare(struct rpc_task *task,
                              void *calldata)
{
      int ret;
      struct nfs4_get_lease_time_data *data =
                  (struct nfs4_get_lease_time_data *)calldata;

      dprintk("--> %s\n", __func__);
      /* just setup sequence, do not trigger session recovery
         since we're invoked within one */
      ret = nfs41_setup_sequence(data->clp->cl_session,
                              &data->args->la_seq_args,
                              &data->res->lr_seq_res, 0, task);

      BUG_ON(ret == -EAGAIN);
      rpc_call_start(task);
      dprintk("<-- %s\n", __func__);
}

/*
 * Called from nfs4_state_manager thread for session setup, so don't recover
 * from sequence operation or clientid errors.
 */
static void nfs4_get_lease_time_done(struct rpc_task *task, void *calldata)
{
      struct nfs4_get_lease_time_data *data =
                  (struct nfs4_get_lease_time_data *)calldata;

      dprintk("--> %s\n", __func__);
      nfs41_sequence_done(data->clp, &data->res->lr_seq_res, task->tk_status);
      switch (task->tk_status) {
      case -NFS4ERR_DELAY:
      case -NFS4ERR_GRACE:
            dprintk("%s Retry: tk_status %d\n", __func__, task->tk_status);
            rpc_delay(task, NFS4_POLL_RETRY_MIN);
            task->tk_status = 0;
            nfs4_restart_rpc(task, data->clp);
            return;
      }
      nfs41_sequence_free_slot(data->clp, &data->res->lr_seq_res);
      dprintk("<-- %s\n", __func__);
}

struct rpc_call_ops nfs4_get_lease_time_ops = {
      .rpc_call_prepare = nfs4_get_lease_time_prepare,
      .rpc_call_done = nfs4_get_lease_time_done,
};

int nfs4_proc_get_lease_time(struct nfs_client *clp, struct nfs_fsinfo *fsinfo)
{
      struct rpc_task *task;
      struct nfs4_get_lease_time_args args;
      struct nfs4_get_lease_time_res res = {
            .lr_fsinfo = fsinfo,
      };
      struct nfs4_get_lease_time_data data = {
            .args = &args,
            .res = &res,
            .clp = clp,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GET_LEASE_TIME],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };
      struct rpc_task_setup task_setup = {
            .rpc_client = clp->cl_rpcclient,
            .rpc_message = &msg,
            .callback_ops = &nfs4_get_lease_time_ops,
            .callback_data = &data
      };
      int status;

      res.lr_seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
      dprintk("--> %s\n", __func__);
      task = rpc_run_task(&task_setup);

      if (IS_ERR(task))
            status = PTR_ERR(task);
      else {
            status = task->tk_status;
            rpc_put_task(task);
      }
      dprintk("<-- %s return %d\n", __func__, status);

      return status;
}

/*
 * Reset a slot table
 */
static int nfs4_reset_slot_table(struct nfs4_slot_table *tbl, int max_slots,
            int old_max_slots, int ivalue)
{
      int i;
      int ret = 0;

      dprintk("--> %s: max_reqs=%u, tbl %p\n", __func__, max_slots, tbl);

      /*
       * Until we have dynamic slot table adjustment, insist
       * upon the same slot table size
       */
      if (max_slots != old_max_slots) {
            dprintk("%s reset slot table does't match old\n",
                  __func__);
            ret = -EINVAL; /*XXX NFS4ERR_REQ_TOO_BIG ? */
            goto out;
      }
      spin_lock(&tbl->slot_tbl_lock);
      for (i = 0; i < max_slots; ++i)
            tbl->slots[i].seq_nr = ivalue;
      tbl->highest_used_slotid = -1;
      spin_unlock(&tbl->slot_tbl_lock);
      dprintk("%s: tbl=%p slots=%p max_slots=%d\n", __func__,
            tbl, tbl->slots, tbl->max_slots);
out:
      dprintk("<-- %s: return %d\n", __func__, ret);
      return ret;
}

/*
 * Reset the forechannel and backchannel slot tables
 */
static int nfs4_reset_slot_tables(struct nfs4_session *session)
{
      int status;

      status = nfs4_reset_slot_table(&session->fc_slot_table,
                  session->fc_attrs.max_reqs,
                  session->fc_slot_table.max_slots,
                  1);
      if (status)
            return status;

      status = nfs4_reset_slot_table(&session->bc_slot_table,
                  session->bc_attrs.max_reqs,
                  session->bc_slot_table.max_slots,
                  0);
      return status;
}

/* Destroy the slot table */
static void nfs4_destroy_slot_tables(struct nfs4_session *session)
{
      if (session->fc_slot_table.slots != NULL) {
            kfree(session->fc_slot_table.slots);
            session->fc_slot_table.slots = NULL;
      }
      if (session->bc_slot_table.slots != NULL) {
            kfree(session->bc_slot_table.slots);
            session->bc_slot_table.slots = NULL;
      }
      return;
}

/*
 * Initialize slot table
 */
static int nfs4_init_slot_table(struct nfs4_slot_table *tbl,
            int max_slots, int ivalue)
{
      int i;
      struct nfs4_slot *slot;
      int ret = -ENOMEM;

      BUG_ON(max_slots > NFS4_MAX_SLOT_TABLE);

      dprintk("--> %s: max_reqs=%u\n", __func__, max_slots);

      slot = kcalloc(max_slots, sizeof(struct nfs4_slot), GFP_KERNEL);
      if (!slot)
            goto out;
      for (i = 0; i < max_slots; ++i)
            slot[i].seq_nr = ivalue;
      ret = 0;

      spin_lock(&tbl->slot_tbl_lock);
      if (tbl->slots != NULL) {
            spin_unlock(&tbl->slot_tbl_lock);
            dprintk("%s: slot table already initialized. tbl=%p slots=%p\n",
                  __func__, tbl, tbl->slots);
            WARN_ON(1);
            goto out_free;
      }
      tbl->max_slots = max_slots;
      tbl->slots = slot;
      tbl->highest_used_slotid = -1;  /* no slot is currently used */
      spin_unlock(&tbl->slot_tbl_lock);
      dprintk("%s: tbl=%p slots=%p max_slots=%d\n", __func__,
            tbl, tbl->slots, tbl->max_slots);
out:
      dprintk("<-- %s: return %d\n", __func__, ret);
      return ret;

out_free:
      kfree(slot);
      goto out;
}

/*
 * Initialize the forechannel and backchannel tables
 */
static int nfs4_init_slot_tables(struct nfs4_session *session)
{
      int status;

      status = nfs4_init_slot_table(&session->fc_slot_table,
                  session->fc_attrs.max_reqs, 1);
      if (status)
            return status;

      status = nfs4_init_slot_table(&session->bc_slot_table,
                  session->bc_attrs.max_reqs, 0);
      if (status)
            nfs4_destroy_slot_tables(session);

      return status;
}

struct nfs4_session *nfs4_alloc_session(struct nfs_client *clp)
{
      struct nfs4_session *session;
      struct nfs4_slot_table *tbl;

      session = kzalloc(sizeof(struct nfs4_session), GFP_KERNEL);
      if (!session)
            return NULL;

      set_bit(NFS4CLNT_SESSION_SETUP, &clp->cl_state);
      /*
       * The create session reply races with the server back
       * channel probe. Mark the client NFS_CS_SESSION_INITING
       * so that the client back channel can find the
       * nfs_client struct
       */
      clp->cl_cons_state = NFS_CS_SESSION_INITING;

      tbl = &session->fc_slot_table;
      spin_lock_init(&tbl->slot_tbl_lock);
      rpc_init_wait_queue(&tbl->slot_tbl_waitq, "ForeChannel Slot table");

      tbl = &session->bc_slot_table;
      spin_lock_init(&tbl->slot_tbl_lock);
      rpc_init_wait_queue(&tbl->slot_tbl_waitq, "BackChannel Slot table");

      session->clp = clp;
      return session;
}

void nfs4_destroy_session(struct nfs4_session *session)
{
      nfs4_proc_destroy_session(session);
      dprintk("%s Destroy backchannel for xprt %p\n",
            __func__, session->clp->cl_rpcclient->cl_xprt);
      xprt_destroy_backchannel(session->clp->cl_rpcclient->cl_xprt,
                        NFS41_BC_MIN_CALLBACKS);
      nfs4_destroy_slot_tables(session);
      kfree(session);
}

/*
 * Initialize the values to be used by the client in CREATE_SESSION
 * If nfs4_init_session set the fore channel request and response sizes,
 * use them.
 *
 * Set the back channel max_resp_sz_cached to zero to force the client to
 * always set csa_cachethis to FALSE because the current implementation
 * of the back channel DRC only supports caching the CB_SEQUENCE operation.
 */
static void nfs4_init_channel_attrs(struct nfs41_create_session_args *args)
{
      struct nfs4_session *session = args->client->cl_session;
      unsigned int mxrqst_sz = session->fc_attrs.max_rqst_sz,
                 mxresp_sz = session->fc_attrs.max_resp_sz;

      if (mxrqst_sz == 0)
            mxrqst_sz = NFS_MAX_FILE_IO_SIZE;
      if (mxresp_sz == 0)
            mxresp_sz = NFS_MAX_FILE_IO_SIZE;
      /* Fore channel attributes */
      args->fc_attrs.headerpadsz = 0;
      args->fc_attrs.max_rqst_sz = mxrqst_sz;
      args->fc_attrs.max_resp_sz = mxresp_sz;
      args->fc_attrs.max_resp_sz_cached = mxresp_sz;
      args->fc_attrs.max_ops = NFS4_MAX_OPS;
      args->fc_attrs.max_reqs = session->clp->cl_rpcclient->cl_xprt->max_reqs;

      dprintk("%s: Fore Channel : max_rqst_sz=%u max_resp_sz=%u "
            "max_resp_sz_cached=%u max_ops=%u max_reqs=%u\n",
            __func__,
            args->fc_attrs.max_rqst_sz, args->fc_attrs.max_resp_sz,
            args->fc_attrs.max_resp_sz_cached, args->fc_attrs.max_ops,
            args->fc_attrs.max_reqs);

      /* Back channel attributes */
      args->bc_attrs.headerpadsz = 0;
      args->bc_attrs.max_rqst_sz = PAGE_SIZE;
      args->bc_attrs.max_resp_sz = PAGE_SIZE;
      args->bc_attrs.max_resp_sz_cached = 0;
      args->bc_attrs.max_ops = NFS4_MAX_BACK_CHANNEL_OPS;
      args->bc_attrs.max_reqs = 1;

      dprintk("%s: Back Channel : max_rqst_sz=%u max_resp_sz=%u "
            "max_resp_sz_cached=%u max_ops=%u max_reqs=%u\n",
            __func__,
            args->bc_attrs.max_rqst_sz, args->bc_attrs.max_resp_sz,
            args->bc_attrs.max_resp_sz_cached, args->bc_attrs.max_ops,
            args->bc_attrs.max_reqs);
}

static int _verify_channel_attr(char *chan, char *attr_name, u32 sent, u32 rcvd)
{
      if (rcvd <= sent)
            return 0;
      printk(KERN_WARNING "%s: Session INVALID: %s channel %s increased. "
            "sent=%u rcvd=%u\n", __func__, chan, attr_name, sent, rcvd);
      return -EINVAL;
}

#define _verify_fore_channel_attr(_name_) \
      _verify_channel_attr("fore", #_name_, \
                       args->fc_attrs._name_, \
                       session->fc_attrs._name_)

#define _verify_back_channel_attr(_name_) \
      _verify_channel_attr("back", #_name_, \
                       args->bc_attrs._name_, \
                       session->bc_attrs._name_)

/*
 * The server is not allowed to increase the fore channel header pad size,
 * maximum response size, or maximum number of operations.
 *
 * The back channel attributes are only negotiatied down: We send what the
 * (back channel) server insists upon.
 */
static int nfs4_verify_channel_attrs(struct nfs41_create_session_args *args,
                             struct nfs4_session *session)
{
      int ret = 0;

      ret |= _verify_fore_channel_attr(headerpadsz);
      ret |= _verify_fore_channel_attr(max_resp_sz);
      ret |= _verify_fore_channel_attr(max_ops);

      ret |= _verify_back_channel_attr(headerpadsz);
      ret |= _verify_back_channel_attr(max_rqst_sz);
      ret |= _verify_back_channel_attr(max_resp_sz);
      ret |= _verify_back_channel_attr(max_resp_sz_cached);
      ret |= _verify_back_channel_attr(max_ops);
      ret |= _verify_back_channel_attr(max_reqs);

      return ret;
}

static int _nfs4_proc_create_session(struct nfs_client *clp)
{
      struct nfs4_session *session = clp->cl_session;
      struct nfs41_create_session_args args = {
            .client = clp,
            .cb_program = NFS4_CALLBACK,
      };
      struct nfs41_create_session_res res = {
            .client = clp,
      };
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE_SESSION],
            .rpc_argp = &args,
            .rpc_resp = &res,
      };
      int status;

      nfs4_init_channel_attrs(&args);
      args.flags = (SESSION4_PERSIST | SESSION4_BACK_CHAN);

      status = rpc_call_sync(session->clp->cl_rpcclient, &msg, 0);

      if (!status)
            /* Verify the session's negotiated channel_attrs values */
            status = nfs4_verify_channel_attrs(&args, session);
      if (!status) {
            /* Increment the clientid slot sequence id */
            clp->cl_seqid++;
      }

      return status;
}

/*
 * Issues a CREATE_SESSION operation to the server.
 * It is the responsibility of the caller to verify the session is
 * expired before calling this routine.
 */
int nfs4_proc_create_session(struct nfs_client *clp, int reset)
{
      int status;
      unsigned *ptr;
      struct nfs_fsinfo fsinfo;
      struct nfs4_session *session = clp->cl_session;

      dprintk("--> %s clp=%p session=%p\n", __func__, clp, session);

      status = _nfs4_proc_create_session(clp);
      if (status)
            goto out;

      /* Init or reset the fore channel */
      if (reset)
            status = nfs4_reset_slot_tables(session);
      else
            status = nfs4_init_slot_tables(session);
      dprintk("fore channel slot table initialization returned %d\n", status);
      if (status)
            goto out;

      ptr = (unsigned *)&session->sess_id.data[0];
      dprintk("%s client>seqid %d sessionid %u:%u:%u:%u\n", __func__,
            clp->cl_seqid, ptr[0], ptr[1], ptr[2], ptr[3]);

      if (reset)
            /* Lease time is aleady set */
            goto out;

      /* Get the lease time */
      status = nfs4_proc_get_lease_time(clp, &fsinfo);
      if (status == 0) {
            /* Update lease time and schedule renewal */
            spin_lock(&clp->cl_lock);
            clp->cl_lease_time = fsinfo.lease_time * HZ;
            clp->cl_last_renewal = jiffies;
            clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
            spin_unlock(&clp->cl_lock);

            nfs4_schedule_state_renewal(clp);
      }
out:
      dprintk("<-- %s\n", __func__);
      return status;
}

/*
 * Issue the over-the-wire RPC DESTROY_SESSION.
 * The caller must serialize access to this routine.
 */
int nfs4_proc_destroy_session(struct nfs4_session *session)
{
      int status = 0;
      struct rpc_message msg;

      dprintk("--> nfs4_proc_destroy_session\n");

      /* session is still being setup */
      if (session->clp->cl_cons_state != NFS_CS_READY)
            return status;

      msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_SESSION];
      msg.rpc_argp = session;
      msg.rpc_resp = NULL;
      msg.rpc_cred = NULL;
      status = rpc_call_sync(session->clp->cl_rpcclient, &msg, 0);

      if (status)
            printk(KERN_WARNING
                  "Got error %d from the server on DESTROY_SESSION. "
                  "Session has been destroyed regardless...\n", status);

      dprintk("<-- nfs4_proc_destroy_session\n");
      return status;
}

int nfs4_init_session(struct nfs_server *server)
{
      struct nfs_client *clp = server->nfs_client;
      int ret;

      if (!nfs4_has_session(clp))
            return 0;

      clp->cl_session->fc_attrs.max_rqst_sz = server->wsize;
      clp->cl_session->fc_attrs.max_resp_sz = server->rsize;
      ret = nfs4_recover_expired_lease(server);
      if (!ret)
            ret = nfs4_check_client_ready(clp);
      return ret;
}

/*
 * Renew the cl_session lease.
 */
static int nfs4_proc_sequence(struct nfs_client *clp, struct rpc_cred *cred)
{
      struct nfs4_sequence_args args;
      struct nfs4_sequence_res res;

      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEQUENCE],
            .rpc_argp = &args,
            .rpc_resp = &res,
            .rpc_cred = cred,
      };

      args.sa_cache_this = 0;

      return nfs4_call_sync_sequence(clp, clp->cl_rpcclient, &msg, &args,
                               &res, 0);
}

void nfs41_sequence_call_done(struct rpc_task *task, void *data)
{
      struct nfs_client *clp = (struct nfs_client *)data;

      nfs41_sequence_done(clp, task->tk_msg.rpc_resp, task->tk_status);

      if (task->tk_status < 0) {
            dprintk("%s ERROR %d\n", __func__, task->tk_status);

            if (_nfs4_async_handle_error(task, NULL, clp, NULL)
                                                == -EAGAIN) {
                  nfs4_restart_rpc(task, clp);
                  return;
            }
      }
      nfs41_sequence_free_slot(clp, task->tk_msg.rpc_resp);
      dprintk("%s rpc_cred %p\n", __func__, task->tk_msg.rpc_cred);

      put_rpccred(task->tk_msg.rpc_cred);
      kfree(task->tk_msg.rpc_argp);
      kfree(task->tk_msg.rpc_resp);

      dprintk("<-- %s\n", __func__);
}

static void nfs41_sequence_prepare(struct rpc_task *task, void *data)
{
      struct nfs_client *clp;
      struct nfs4_sequence_args *args;
      struct nfs4_sequence_res *res;

      clp = (struct nfs_client *)data;
      args = task->tk_msg.rpc_argp;
      res = task->tk_msg.rpc_resp;

      if (nfs4_setup_sequence(clp, args, res, 0, task))
            return;
      rpc_call_start(task);
}

static const struct rpc_call_ops nfs41_sequence_ops = {
      .rpc_call_done = nfs41_sequence_call_done,
      .rpc_call_prepare = nfs41_sequence_prepare,
};

static int nfs41_proc_async_sequence(struct nfs_client *clp,
                             struct rpc_cred *cred)
{
      struct nfs4_sequence_args *args;
      struct nfs4_sequence_res *res;
      struct rpc_message msg = {
            .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEQUENCE],
            .rpc_cred = cred,
      };

      args = kzalloc(sizeof(*args), GFP_KERNEL);
      if (!args)
            return -ENOMEM;
      res = kzalloc(sizeof(*res), GFP_KERNEL);
      if (!res) {
            kfree(args);
            return -ENOMEM;
      }
      res->sr_slotid = NFS4_MAX_SLOT_TABLE;
      msg.rpc_argp = args;
      msg.rpc_resp = res;

      return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
                        &nfs41_sequence_ops, (void *)clp);
}

#endif /* CONFIG_NFS_V4_1 */

struct nfs4_state_recovery_ops nfs40_reboot_recovery_ops = {
      .owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT,
      .state_flag_bit   = NFS_STATE_RECLAIM_REBOOT,
      .recover_open     = nfs4_open_reclaim,
      .recover_lock     = nfs4_lock_reclaim,
      .establish_clid = nfs4_init_clientid,
      .get_clid_cred    = nfs4_get_setclientid_cred,
};

#if defined(CONFIG_NFS_V4_1)
struct nfs4_state_recovery_ops nfs41_reboot_recovery_ops = {
      .owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT,
      .state_flag_bit   = NFS_STATE_RECLAIM_REBOOT,
      .recover_open     = nfs4_open_reclaim,
      .recover_lock     = nfs4_lock_reclaim,
      .establish_clid = nfs4_proc_exchange_id,
      .get_clid_cred    = nfs4_get_exchange_id_cred,
};
#endif /* CONFIG_NFS_V4_1 */

struct nfs4_state_recovery_ops nfs40_nograce_recovery_ops = {
      .owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE,
      .state_flag_bit   = NFS_STATE_RECLAIM_NOGRACE,
      .recover_open     = nfs4_open_expired,
      .recover_lock     = nfs4_lock_expired,
      .establish_clid = nfs4_init_clientid,
      .get_clid_cred    = nfs4_get_setclientid_cred,
};

#if defined(CONFIG_NFS_V4_1)
struct nfs4_state_recovery_ops nfs41_nograce_recovery_ops = {
      .owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE,
      .state_flag_bit   = NFS_STATE_RECLAIM_NOGRACE,
      .recover_open     = nfs4_open_expired,
      .recover_lock     = nfs4_lock_expired,
      .establish_clid = nfs4_proc_exchange_id,
      .get_clid_cred    = nfs4_get_exchange_id_cred,
};
#endif /* CONFIG_NFS_V4_1 */

struct nfs4_state_maintenance_ops nfs40_state_renewal_ops = {
      .sched_state_renewal = nfs4_proc_async_renew,
      .get_state_renewal_cred_locked = nfs4_get_renew_cred_locked,
      .renew_lease = nfs4_proc_renew,
};

#if defined(CONFIG_NFS_V4_1)
struct nfs4_state_maintenance_ops nfs41_state_renewal_ops = {
      .sched_state_renewal = nfs41_proc_async_sequence,
      .get_state_renewal_cred_locked = nfs4_get_machine_cred_locked,
      .renew_lease = nfs4_proc_sequence,
};
#endif

/*
 * Per minor version reboot and network partition recovery ops
 */

struct nfs4_state_recovery_ops *nfs4_reboot_recovery_ops[] = {
      &nfs40_reboot_recovery_ops,
#if defined(CONFIG_NFS_V4_1)
      &nfs41_reboot_recovery_ops,
#endif
};

struct nfs4_state_recovery_ops *nfs4_nograce_recovery_ops[] = {
      &nfs40_nograce_recovery_ops,
#if defined(CONFIG_NFS_V4_1)
      &nfs41_nograce_recovery_ops,
#endif
};

struct nfs4_state_maintenance_ops *nfs4_state_renewal_ops[] = {
      &nfs40_state_renewal_ops,
#if defined(CONFIG_NFS_V4_1)
      &nfs41_state_renewal_ops,
#endif
};

static const struct inode_operations nfs4_file_inode_operations = {
      .permission = nfs_permission,
      .getattr    = nfs_getattr,
      .setattr    = nfs_setattr,
      .getxattr   = nfs4_getxattr,
      .setxattr   = nfs4_setxattr,
      .listxattr  = nfs4_listxattr,
};

const struct nfs_rpc_ops nfs_v4_clientops = {
      .version    = 4,              /* protocol version */
      .dentry_ops = &nfs4_dentry_operations,
      .dir_inode_ops    = &nfs4_dir_inode_operations,
      .file_inode_ops   = &nfs4_file_inode_operations,
      .getroot    = nfs4_proc_get_root,
      .getattr    = nfs4_proc_getattr,
      .setattr    = nfs4_proc_setattr,
      .lookupfh   = nfs4_proc_lookupfh,
      .lookup           = nfs4_proc_lookup,
      .access           = nfs4_proc_access,
      .readlink   = nfs4_proc_readlink,
      .create           = nfs4_proc_create,
      .remove           = nfs4_proc_remove,
      .unlink_setup     = nfs4_proc_unlink_setup,
      .unlink_done      = nfs4_proc_unlink_done,
      .rename           = nfs4_proc_rename,
      .link       = nfs4_proc_link,
      .symlink    = nfs4_proc_symlink,
      .mkdir            = nfs4_proc_mkdir,
      .rmdir            = nfs4_proc_remove,
      .readdir    = nfs4_proc_readdir,
      .mknod            = nfs4_proc_mknod,
      .statfs           = nfs4_proc_statfs,
      .fsinfo           = nfs4_proc_fsinfo,
      .pathconf   = nfs4_proc_pathconf,
      .set_capabilities = nfs4_server_capabilities,
      .decode_dirent    = nfs4_decode_dirent,
      .read_setup = nfs4_proc_read_setup,
      .read_done  = nfs4_read_done,
      .write_setup      = nfs4_proc_write_setup,
      .write_done = nfs4_write_done,
      .commit_setup     = nfs4_proc_commit_setup,
      .commit_done      = nfs4_commit_done,
      .lock       = nfs4_proc_lock,
      .clear_acl_cache = nfs4_zap_acl_attr,
      .close_context  = nfs4_close_context,
};

/*
 * Local variables:
 *  c-basic-offset: 8
 * End:
 */

Generated by  Doxygen 1.6.0   Back to index