Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

oxu210hp-hcd.c

/*
 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
 *
 * This code is *strongly* based on EHCI-HCD code by David Brownell since
 * the chip is a quasi-EHCI compatible.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/dmapool.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/usb.h>
#include <linux/moduleparam.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>

#include "../core/hcd.h"

#include <asm/irq.h>
#include <asm/system.h>
#include <asm/unaligned.h>

#include <linux/irq.h>
#include <linux/platform_device.h>

#include "oxu210hp.h"

#define DRIVER_VERSION "0.0.50"

/*
 * Main defines
 */

#define oxu_dbg(oxu, fmt, args...) \
            dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
#define oxu_err(oxu, fmt, args...) \
            dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
#define oxu_info(oxu, fmt, args...) \
            dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)

static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
{
      return container_of((void *) oxu, struct usb_hcd, hcd_priv);
}

static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
{
      return (struct oxu_hcd *) (hcd->hcd_priv);
}

/*
 * Debug stuff
 */

#undef OXU_URB_TRACE
#undef OXU_VERBOSE_DEBUG

#ifdef OXU_VERBOSE_DEBUG
#define oxu_vdbg              oxu_dbg
#else
#define oxu_vdbg(oxu, fmt, args...) /* Nop */
#endif

#ifdef DEBUG

static int __attribute__((__unused__))
dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
{
      return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
            label, label[0] ? " " : "", status,
            (status & STS_ASS) ? " Async" : "",
            (status & STS_PSS) ? " Periodic" : "",
            (status & STS_RECL) ? " Recl" : "",
            (status & STS_HALT) ? " Halt" : "",
            (status & STS_IAA) ? " IAA" : "",
            (status & STS_FATAL) ? " FATAL" : "",
            (status & STS_FLR) ? " FLR" : "",
            (status & STS_PCD) ? " PCD" : "",
            (status & STS_ERR) ? " ERR" : "",
            (status & STS_INT) ? " INT" : ""
            );
}

static int __attribute__((__unused__))
dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
{
      return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
            label, label[0] ? " " : "", enable,
            (enable & STS_IAA) ? " IAA" : "",
            (enable & STS_FATAL) ? " FATAL" : "",
            (enable & STS_FLR) ? " FLR" : "",
            (enable & STS_PCD) ? " PCD" : "",
            (enable & STS_ERR) ? " ERR" : "",
            (enable & STS_INT) ? " INT" : ""
            );
}

static const char *const fls_strings[] =
    { "1024", "512", "256", "??" };

static int dbg_command_buf(char *buf, unsigned len,
                        const char *label, u32 command)
{
      return scnprintf(buf, len,
            "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
            label, label[0] ? " " : "", command,
            (command & CMD_PARK) ? "park" : "(park)",
            CMD_PARK_CNT(command),
            (command >> 16) & 0x3f,
            (command & CMD_LRESET) ? " LReset" : "",
            (command & CMD_IAAD) ? " IAAD" : "",
            (command & CMD_ASE) ? " Async" : "",
            (command & CMD_PSE) ? " Periodic" : "",
            fls_strings[(command >> 2) & 0x3],
            (command & CMD_RESET) ? " Reset" : "",
            (command & CMD_RUN) ? "RUN" : "HALT"
            );
}

static int dbg_port_buf(char *buf, unsigned len, const char *label,
                        int port, u32 status)
{
      char  *sig;

      /* signaling state */
      switch (status & (3 << 10)) {
      case 0 << 10:
            sig = "se0";
            break;
      case 1 << 10:
            sig = "k";  /* low speed */
            break;
      case 2 << 10:
            sig = "j";
            break;
      default:
            sig = "?";
            break;
      }

      return scnprintf(buf, len,
            "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
            label, label[0] ? " " : "", port, status,
            (status & PORT_POWER) ? " POWER" : "",
            (status & PORT_OWNER) ? " OWNER" : "",
            sig,
            (status & PORT_RESET) ? " RESET" : "",
            (status & PORT_SUSPEND) ? " SUSPEND" : "",
            (status & PORT_RESUME) ? " RESUME" : "",
            (status & PORT_OCC) ? " OCC" : "",
            (status & PORT_OC) ? " OC" : "",
            (status & PORT_PEC) ? " PEC" : "",
            (status & PORT_PE) ? " PE" : "",
            (status & PORT_CSC) ? " CSC" : "",
            (status & PORT_CONNECT) ? " CONNECT" : ""
          );
}

#else

static inline int __attribute__((__unused__))
dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
{ return 0; }

static inline int __attribute__((__unused__))
dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
{ return 0; }

static inline int __attribute__((__unused__))
dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
{ return 0; }

static inline int __attribute__((__unused__))
dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
{ return 0; }

#endif /* DEBUG */

/* functions have the "wrong" filename when they're output... */
#define dbg_status(oxu, label, status) { \
      char _buf[80]; \
      dbg_status_buf(_buf, sizeof _buf, label, status); \
      oxu_dbg(oxu, "%s\n", _buf); \
}

#define dbg_cmd(oxu, label, command) { \
      char _buf[80]; \
      dbg_command_buf(_buf, sizeof _buf, label, command); \
      oxu_dbg(oxu, "%s\n", _buf); \
}

#define dbg_port(oxu, label, port, status) { \
      char _buf[80]; \
      dbg_port_buf(_buf, sizeof _buf, label, port, status); \
      oxu_dbg(oxu, "%s\n", _buf); \
}

/*
 * Module parameters
 */

/* Initial IRQ latency: faster than hw default */
static int log2_irq_thresh;               /* 0 to 6 */
module_param(log2_irq_thresh, int, S_IRUGO);
MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");

/* Initial park setting: slower than hw default */
static unsigned park;
module_param(park, uint, S_IRUGO);
MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");

/* For flakey hardware, ignore overcurrent indicators */
static int ignore_oc;
module_param(ignore_oc, bool, S_IRUGO);
MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");


static void ehci_work(struct oxu_hcd *oxu);
static int oxu_hub_control(struct usb_hcd *hcd,
                        u16 typeReq, u16 wValue, u16 wIndex,
                        char *buf, u16 wLength);

/*
 * Local functions
 */

/* Low level read/write registers functions */
static inline u32 oxu_readl(void *base, u32 reg)
{
      return readl(base + reg);
}

static inline void oxu_writel(void *base, u32 reg, u32 val)
{
      writel(val, base + reg);
}

static inline void timer_action_done(struct oxu_hcd *oxu,
                              enum ehci_timer_action action)
{
      clear_bit(action, &oxu->actions);
}

static inline void timer_action(struct oxu_hcd *oxu,
                              enum ehci_timer_action action)
{
      if (!test_and_set_bit(action, &oxu->actions)) {
            unsigned long t;

            switch (action) {
            case TIMER_IAA_WATCHDOG:
                  t = EHCI_IAA_JIFFIES;
                  break;
            case TIMER_IO_WATCHDOG:
                  t = EHCI_IO_JIFFIES;
                  break;
            case TIMER_ASYNC_OFF:
                  t = EHCI_ASYNC_JIFFIES;
                  break;
            case TIMER_ASYNC_SHRINK:
            default:
                  t = EHCI_SHRINK_JIFFIES;
                  break;
            }
            t += jiffies;
            /* all timings except IAA watchdog can be overridden.
             * async queue SHRINK often precedes IAA.  while it's ready
             * to go OFF neither can matter, and afterwards the IO
             * watchdog stops unless there's still periodic traffic.
             */
            if (action != TIMER_IAA_WATCHDOG
                        && t > oxu->watchdog.expires
                        && timer_pending(&oxu->watchdog))
                  return;
            mod_timer(&oxu->watchdog, t);
      }
}

/*
 * handshake - spin reading hc until handshake completes or fails
 * @ptr: address of hc register to be read
 * @mask: bits to look at in result of read
 * @done: value of those bits when handshake succeeds
 * @usec: timeout in microseconds
 *
 * Returns negative errno, or zero on success
 *
 * Success happens when the "mask" bits have the specified value (hardware
 * handshake done).  There are two failure modes:  "usec" have passed (major
 * hardware flakeout), or the register reads as all-ones (hardware removed).
 *
 * That last failure should_only happen in cases like physical cardbus eject
 * before driver shutdown. But it also seems to be caused by bugs in cardbus
 * bridge shutdown:  shutting down the bridge before the devices using it.
 */
static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
                              u32 mask, u32 done, int usec)
{
      u32 result;

      do {
            result = readl(ptr);
            if (result == ~(u32)0)        /* card removed */
                  return -ENODEV;
            result &= mask;
            if (result == done)
                  return 0;
            udelay(1);
            usec--;
      } while (usec > 0);
      return -ETIMEDOUT;
}

/* Force HC to halt state from unknown (EHCI spec section 2.3) */
static int ehci_halt(struct oxu_hcd *oxu)
{
      u32   temp = readl(&oxu->regs->status);

      /* disable any irqs left enabled by previous code */
      writel(0, &oxu->regs->intr_enable);

      if ((temp & STS_HALT) != 0)
            return 0;

      temp = readl(&oxu->regs->command);
      temp &= ~CMD_RUN;
      writel(temp, &oxu->regs->command);
      return handshake(oxu, &oxu->regs->status,
                    STS_HALT, STS_HALT, 16 * 125);
}

/* Put TDI/ARC silicon into EHCI mode */
static void tdi_reset(struct oxu_hcd *oxu)
{
      u32 __iomem *reg_ptr;
      u32 tmp;

      reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
      tmp = readl(reg_ptr);
      tmp |= 0x3;
      writel(tmp, reg_ptr);
}

/* Reset a non-running (STS_HALT == 1) controller */
static int ehci_reset(struct oxu_hcd *oxu)
{
      int   retval;
      u32   command = readl(&oxu->regs->command);

      command |= CMD_RESET;
      dbg_cmd(oxu, "reset", command);
      writel(command, &oxu->regs->command);
      oxu_to_hcd(oxu)->state = HC_STATE_HALT;
      oxu->next_statechange = jiffies;
      retval = handshake(oxu, &oxu->regs->command,
                      CMD_RESET, 0, 250 * 1000);

      if (retval)
            return retval;

      tdi_reset(oxu);

      return retval;
}

/* Idle the controller (from running) */
static void ehci_quiesce(struct oxu_hcd *oxu)
{
      u32   temp;

#ifdef DEBUG
      if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
            BUG();
#endif

      /* wait for any schedule enables/disables to take effect */
      temp = readl(&oxu->regs->command) << 10;
      temp &= STS_ASS | STS_PSS;
      if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
                        temp, 16 * 125) != 0) {
            oxu_to_hcd(oxu)->state = HC_STATE_HALT;
            return;
      }

      /* then disable anything that's still active */
      temp = readl(&oxu->regs->command);
      temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
      writel(temp, &oxu->regs->command);

      /* hardware can take 16 microframes to turn off ... */
      if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
                        0, 16 * 125) != 0) {
            oxu_to_hcd(oxu)->state = HC_STATE_HALT;
            return;
      }
}

static int check_reset_complete(struct oxu_hcd *oxu, int index,
                        u32 __iomem *status_reg, int port_status)
{
      if (!(port_status & PORT_CONNECT)) {
            oxu->reset_done[index] = 0;
            return port_status;
      }

      /* if reset finished and it's still not enabled -- handoff */
      if (!(port_status & PORT_PE)) {
            oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
                        index+1);
            return port_status;
      } else
            oxu_dbg(oxu, "port %d high speed\n", index + 1);

      return port_status;
}

static void ehci_hub_descriptor(struct oxu_hcd *oxu,
                        struct usb_hub_descriptor *desc)
{
      int ports = HCS_N_PORTS(oxu->hcs_params);
      u16 temp;

      desc->bDescriptorType = 0x29;
      desc->bPwrOn2PwrGood = 10;    /* oxu 1.0, 2.3.9 says 20ms max */
      desc->bHubContrCurrent = 0;

      desc->bNbrPorts = ports;
      temp = 1 + (ports / 8);
      desc->bDescLength = 7 + 2 * temp;

      /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
      memset(&desc->bitmap[0], 0, temp);
      memset(&desc->bitmap[temp], 0xff, temp);

      temp = 0x0008;                /* per-port overcurrent reporting */
      if (HCS_PPC(oxu->hcs_params))
            temp |= 0x0001;         /* per-port power control */
      else
            temp |= 0x0002;         /* no power switching */
      desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
}


/* Allocate an OXU210HP on-chip memory data buffer
 *
 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
 * Each transfer descriptor has one or more on-chip memory data buffers.
 *
 * Data buffers are allocated from a fix sized pool of data blocks.
 * To minimise fragmentation and give reasonable memory utlisation,
 * data buffers are allocated with sizes the power of 2 multiples of
 * the block size, starting on an address a multiple of the allocated size.
 *
 * FIXME: callers of this function require a buffer to be allocated for
 * len=0. This is a waste of on-chip memory and should be fix. Then this
 * function should be changed to not allocate a buffer for len=0.
 */
static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
{
      int n_blocks;     /* minium blocks needed to hold len */
      int a_blocks;     /* blocks allocated */
      int i, j;

      /* Don't allocte bigger than supported */
      if (len > BUFFER_SIZE * BUFFER_NUM) {
            oxu_err(oxu, "buffer too big (%d)\n", len);
            return -ENOMEM;
      }

      spin_lock(&oxu->mem_lock);

      /* Number of blocks needed to hold len */
      n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;

      /* Round the number of blocks up to the power of 2 */
      for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
            ;

      /* Find a suitable available data buffer */
      for (i = 0; i < BUFFER_NUM;
                  i += max(a_blocks, (int)oxu->db_used[i])) {

            /* Check all the required blocks are available */
            for (j = 0; j < a_blocks; j++)
                  if (oxu->db_used[i + j])
                        break;

            if (j != a_blocks)
                  continue;

            /* Allocate blocks found! */
            qtd->buffer = (void *) &oxu->mem->db_pool[i];
            qtd->buffer_dma = virt_to_phys(qtd->buffer);

            qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
            oxu->db_used[i] = a_blocks;

            spin_unlock(&oxu->mem_lock);

            return 0;
      }

      /* Failed */

      spin_unlock(&oxu->mem_lock);

      return -ENOMEM;
}

static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
{
      int index;

      spin_lock(&oxu->mem_lock);

      index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
                                           / BUFFER_SIZE;
      oxu->db_used[index] = 0;
      qtd->qtd_buffer_len = 0;
      qtd->buffer_dma = 0;
      qtd->buffer = NULL;

      spin_unlock(&oxu->mem_lock);

      return;
}

static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
{
      memset(qtd, 0, sizeof *qtd);
      qtd->qtd_dma = dma;
      qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
      qtd->hw_next = EHCI_LIST_END;
      qtd->hw_alt_next = EHCI_LIST_END;
      INIT_LIST_HEAD(&qtd->qtd_list);
}

static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
{
      int index;

      if (qtd->buffer)
            oxu_buf_free(oxu, qtd);

      spin_lock(&oxu->mem_lock);

      index = qtd - &oxu->mem->qtd_pool[0];
      oxu->qtd_used[index] = 0;

      spin_unlock(&oxu->mem_lock);

      return;
}

static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
{
      int i;
      struct ehci_qtd *qtd = NULL;

      spin_lock(&oxu->mem_lock);

      for (i = 0; i < QTD_NUM; i++)
            if (!oxu->qtd_used[i])
                  break;

      if (i < QTD_NUM) {
            qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
            memset(qtd, 0, sizeof *qtd);

            qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
            qtd->hw_next = EHCI_LIST_END;
            qtd->hw_alt_next = EHCI_LIST_END;
            INIT_LIST_HEAD(&qtd->qtd_list);

            qtd->qtd_dma = virt_to_phys(qtd);

            oxu->qtd_used[i] = 1;
      }

      spin_unlock(&oxu->mem_lock);

      return qtd;
}

static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
{
      int index;

      spin_lock(&oxu->mem_lock);

      index = qh - &oxu->mem->qh_pool[0];
      oxu->qh_used[index] = 0;

      spin_unlock(&oxu->mem_lock);

      return;
}

static void qh_destroy(struct kref *kref)
{
      struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
      struct oxu_hcd *oxu = qh->oxu;

      /* clean qtds first, and know this is not linked */
      if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
            oxu_dbg(oxu, "unused qh not empty!\n");
            BUG();
      }
      if (qh->dummy)
            oxu_qtd_free(oxu, qh->dummy);
      oxu_qh_free(oxu, qh);
}

static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
{
      int i;
      struct ehci_qh *qh = NULL;

      spin_lock(&oxu->mem_lock);

      for (i = 0; i < QHEAD_NUM; i++)
            if (!oxu->qh_used[i])
                  break;

      if (i < QHEAD_NUM) {
            qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
            memset(qh, 0, sizeof *qh);

            kref_init(&qh->kref);
            qh->oxu = oxu;
            qh->qh_dma = virt_to_phys(qh);
            INIT_LIST_HEAD(&qh->qtd_list);

            /* dummy td enables safe urb queuing */
            qh->dummy = ehci_qtd_alloc(oxu);
            if (qh->dummy == NULL) {
                  oxu_dbg(oxu, "no dummy td\n");
                  oxu->qh_used[i] = 0;

                  return NULL;
            }

            oxu->qh_used[i] = 1;
      }

      spin_unlock(&oxu->mem_lock);

      return qh;
}

/* to share a qh (cpu threads, or hc) */
static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
{
      kref_get(&qh->kref);
      return qh;
}

static inline void qh_put(struct ehci_qh *qh)
{
      kref_put(&qh->kref, qh_destroy);
}

static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
{
      int index;

      spin_lock(&oxu->mem_lock);

      index = murb - &oxu->murb_pool[0];
      oxu->murb_used[index] = 0;

      spin_unlock(&oxu->mem_lock);

      return;
}

static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)

{
      int i;
      struct oxu_murb *murb = NULL;

      spin_lock(&oxu->mem_lock);

      for (i = 0; i < MURB_NUM; i++)
            if (!oxu->murb_used[i])
                  break;

      if (i < MURB_NUM) {
            murb = &(oxu->murb_pool)[i];

            oxu->murb_used[i] = 1;
      }

      spin_unlock(&oxu->mem_lock);

      return murb;
}

/* The queue heads and transfer descriptors are managed from pools tied
 * to each of the "per device" structures.
 * This is the initialisation and cleanup code.
 */
static void ehci_mem_cleanup(struct oxu_hcd *oxu)
{
      kfree(oxu->murb_pool);
      oxu->murb_pool = NULL;

      if (oxu->async)
            qh_put(oxu->async);
      oxu->async = NULL;

      del_timer(&oxu->urb_timer);

      oxu->periodic = NULL;

      /* shadow periodic table */
      kfree(oxu->pshadow);
      oxu->pshadow = NULL;
}

/* Remember to add cleanup code (above) if you add anything here.
 */
static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
{
      int i;

      for (i = 0; i < oxu->periodic_size; i++)
            oxu->mem->frame_list[i] = EHCI_LIST_END;
      for (i = 0; i < QHEAD_NUM; i++)
            oxu->qh_used[i] = 0;
      for (i = 0; i < QTD_NUM; i++)
            oxu->qtd_used[i] = 0;

      oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
      if (!oxu->murb_pool)
            goto fail;

      for (i = 0; i < MURB_NUM; i++)
            oxu->murb_used[i] = 0;

      oxu->async = oxu_qh_alloc(oxu);
      if (!oxu->async)
            goto fail;

      oxu->periodic = (__le32 *) &oxu->mem->frame_list;
      oxu->periodic_dma = virt_to_phys(oxu->periodic);

      for (i = 0; i < oxu->periodic_size; i++)
            oxu->periodic[i] = EHCI_LIST_END;

      /* software shadow of hardware table */
      oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
      if (oxu->pshadow != NULL)
            return 0;

fail:
      oxu_dbg(oxu, "couldn't init memory\n");
      ehci_mem_cleanup(oxu);
      return -ENOMEM;
}

/* Fill a qtd, returning how much of the buffer we were able to queue up.
 */
static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
                        int token, int maxpacket)
{
      int i, count;
      u64 addr = buf;

      /* one buffer entry per 4K ... first might be short or unaligned */
      qtd->hw_buf[0] = cpu_to_le32((u32)addr);
      qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
      count = 0x1000 - (buf & 0x0fff);    /* rest of that page */
      if (likely(len < count))            /* ... iff needed */
            count = len;
      else {
            buf +=  0x1000;
            buf &= ~0x0fff;

            /* per-qtd limit: from 16K to 20K (best alignment) */
            for (i = 1; count < len && i < 5; i++) {
                  addr = buf;
                  qtd->hw_buf[i] = cpu_to_le32((u32)addr);
                  qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
                  buf += 0x1000;
                  if ((count + 0x1000) < len)
                        count += 0x1000;
                  else
                        count = len;
            }

            /* short packets may only terminate transfers */
            if (count != len)
                  count -= (count % maxpacket);
      }
      qtd->hw_token = cpu_to_le32((count << 16) | token);
      qtd->length = count;

      return count;
}

static inline void qh_update(struct oxu_hcd *oxu,
                        struct ehci_qh *qh, struct ehci_qtd *qtd)
{
      /* writes to an active overlay are unsafe */
      BUG_ON(qh->qh_state != QH_STATE_IDLE);

      qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
      qh->hw_alt_next = EHCI_LIST_END;

      /* Except for control endpoints, we make hardware maintain data
       * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
       * and set the pseudo-toggle in udev. Only usb_clear_halt() will
       * ever clear it.
       */
      if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
            unsigned    is_out, epnum;

            is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
            epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
            if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
                  qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
                  usb_settoggle(qh->dev, epnum, is_out, 1);
            }
      }

      /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
      wmb();
      qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
}

/* If it weren't for a common silicon quirk (writing the dummy into the qh
 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
 * recovery (including urb dequeue) would need software changes to a QH...
 */
static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
{
      struct ehci_qtd *qtd;

      if (list_empty(&qh->qtd_list))
            qtd = qh->dummy;
      else {
            qtd = list_entry(qh->qtd_list.next,
                        struct ehci_qtd, qtd_list);
            /* first qtd may already be partially processed */
            if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
                  qtd = NULL;
      }

      if (qtd)
            qh_update(oxu, qh, qtd);
}

static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
                        size_t length, u32 token)
{
      /* count IN/OUT bytes, not SETUP (even short packets) */
      if (likely(QTD_PID(token) != 2))
            urb->actual_length += length - QTD_LENGTH(token);

      /* don't modify error codes */
      if (unlikely(urb->status != -EINPROGRESS))
            return;

      /* force cleanup after short read; not always an error */
      if (unlikely(IS_SHORT_READ(token)))
            urb->status = -EREMOTEIO;

      /* serious "can't proceed" faults reported by the hardware */
      if (token & QTD_STS_HALT) {
            if (token & QTD_STS_BABBLE) {
                  /* FIXME "must" disable babbling device's port too */
                  urb->status = -EOVERFLOW;
            } else if (token & QTD_STS_MMF) {
                  /* fs/ls interrupt xfer missed the complete-split */
                  urb->status = -EPROTO;
            } else if (token & QTD_STS_DBE) {
                  urb->status = (QTD_PID(token) == 1) /* IN ? */
                        ? -ENOSR  /* hc couldn't read data */
                        : -ECOMM; /* hc couldn't write data */
            } else if (token & QTD_STS_XACT) {
                  /* timeout, bad crc, wrong PID, etc; retried */
                  if (QTD_CERR(token))
                        urb->status = -EPIPE;
                  else {
                        oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
                              urb->dev->devpath,
                              usb_pipeendpoint(urb->pipe),
                              usb_pipein(urb->pipe) ? "in" : "out");
                        urb->status = -EPROTO;
                  }
            /* CERR nonzero + no errors + halt --> stall */
            } else if (QTD_CERR(token))
                  urb->status = -EPIPE;
            else  /* unknown */
                  urb->status = -EPROTO;

            oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
                  usb_pipedevice(urb->pipe),
                  usb_pipeendpoint(urb->pipe),
                  usb_pipein(urb->pipe) ? "in" : "out",
                  token, urb->status);
      }
}

static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
__releases(oxu->lock)
__acquires(oxu->lock)
{
      if (likely(urb->hcpriv != NULL)) {
            struct ehci_qh    *qh = (struct ehci_qh *) urb->hcpriv;

            /* S-mask in a QH means it's an interrupt urb */
            if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {

                  /* ... update hc-wide periodic stats (for usbfs) */
                  oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
            }
            qh_put(qh);
      }

      urb->hcpriv = NULL;
      switch (urb->status) {
      case -EINPROGRESS:            /* success */
            urb->status = 0;
      default:                /* fault */
            break;
      case -EREMOTEIO:        /* fault or normal */
            if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
                  urb->status = 0;
            break;
      case -ECONNRESET:       /* canceled */
      case -ENOENT:
            break;
      }

#ifdef OXU_URB_TRACE
      oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
            __func__, urb->dev->devpath, urb,
            usb_pipeendpoint(urb->pipe),
            usb_pipein(urb->pipe) ? "in" : "out",
            urb->status,
            urb->actual_length, urb->transfer_buffer_length);
#endif

      /* complete() can reenter this HCD */
      spin_unlock(&oxu->lock);
      usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
      spin_lock(&oxu->lock);
}

static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);

static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);

#define HALT_BIT cpu_to_le32(QTD_STS_HALT)

/* Process and free completed qtds for a qh, returning URBs to drivers.
 * Chases up to qh->hw_current.  Returns number of completions called,
 * indicating how much "real" work we did.
 */
static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
{
      struct ehci_qtd *last = NULL, *end = qh->dummy;
      struct list_head *entry, *tmp;
      int stopped;
      unsigned count = 0;
      int do_status = 0;
      u8 state;
      struct oxu_murb *murb = NULL;

      if (unlikely(list_empty(&qh->qtd_list)))
            return count;

      /* completions (or tasks on other cpus) must never clobber HALT
       * till we've gone through and cleaned everything up, even when
       * they add urbs to this qh's queue or mark them for unlinking.
       *
       * NOTE:  unlinking expects to be done in queue order.
       */
      state = qh->qh_state;
      qh->qh_state = QH_STATE_COMPLETING;
      stopped = (state == QH_STATE_IDLE);

      /* remove de-activated QTDs from front of queue.
       * after faults (including short reads), cleanup this urb
       * then let the queue advance.
       * if queue is stopped, handles unlinks.
       */
      list_for_each_safe(entry, tmp, &qh->qtd_list) {
            struct ehci_qtd   *qtd;
            struct urb *urb;
            u32 token = 0;

            qtd = list_entry(entry, struct ehci_qtd, qtd_list);
            urb = qtd->urb;

            /* Clean up any state from previous QTD ...*/
            if (last) {
                  if (likely(last->urb != urb)) {
                        if (last->urb->complete == NULL) {
                              murb = (struct oxu_murb *) last->urb;
                              last->urb = murb->main;
                              if (murb->last) {
                                    ehci_urb_done(oxu, last->urb);
                                    count++;
                              }
                              oxu_murb_free(oxu, murb);
                        } else {
                              ehci_urb_done(oxu, last->urb);
                              count++;
                        }
                  }
                  oxu_qtd_free(oxu, last);
                  last = NULL;
            }

            /* ignore urbs submitted during completions we reported */
            if (qtd == end)
                  break;

            /* hardware copies qtd out of qh overlay */
            rmb();
            token = le32_to_cpu(qtd->hw_token);

            /* always clean up qtds the hc de-activated */
            if ((token & QTD_STS_ACTIVE) == 0) {

                  if ((token & QTD_STS_HALT) != 0) {
                        stopped = 1;

                  /* magic dummy for some short reads; qh won't advance.
                   * that silicon quirk can kick in with this dummy too.
                   */
                  } else if (IS_SHORT_READ(token) &&
                              !(qtd->hw_alt_next & EHCI_LIST_END)) {
                        stopped = 1;
                        goto halt;
                  }

            /* stop scanning when we reach qtds the hc is using */
            } else if (likely(!stopped &&
                        HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
                  break;

            } else {
                  stopped = 1;

                  if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
                        urb->status = -ESHUTDOWN;

                  /* ignore active urbs unless some previous qtd
                   * for the urb faulted (including short read) or
                   * its urb was canceled.  we may patch qh or qtds.
                   */
                  if (likely(urb->status == -EINPROGRESS))
                        continue;

                  /* issue status after short control reads */
                  if (unlikely(do_status != 0)
                              && QTD_PID(token) == 0 /* OUT */) {
                        do_status = 0;
                        continue;
                  }

                  /* token in overlay may be most current */
                  if (state == QH_STATE_IDLE
                              && cpu_to_le32(qtd->qtd_dma)
                                    == qh->hw_current)
                        token = le32_to_cpu(qh->hw_token);

                  /* force halt for unlinked or blocked qh, so we'll
                   * patch the qh later and so that completions can't
                   * activate it while we "know" it's stopped.
                   */
                  if ((HALT_BIT & qh->hw_token) == 0) {
halt:
                        qh->hw_token |= HALT_BIT;
                        wmb();
                  }
            }

            /* Remove it from the queue */
            qtd_copy_status(oxu, urb->complete ?
                              urb : ((struct oxu_murb *) urb)->main,
                        qtd->length, token);
            if ((usb_pipein(qtd->urb->pipe)) &&
                        (NULL != qtd->transfer_buffer))
                  memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
            do_status = (urb->status == -EREMOTEIO)
                        && usb_pipecontrol(urb->pipe);

            if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
                  last = list_entry(qtd->qtd_list.prev,
                              struct ehci_qtd, qtd_list);
                  last->hw_next = qtd->hw_next;
            }
            list_del(&qtd->qtd_list);
            last = qtd;
      }

      /* last urb's completion might still need calling */
      if (likely(last != NULL)) {
            if (last->urb->complete == NULL) {
                  murb = (struct oxu_murb *) last->urb;
                  last->urb = murb->main;
                  if (murb->last) {
                        ehci_urb_done(oxu, last->urb);
                        count++;
                  }
                  oxu_murb_free(oxu, murb);
            } else {
                  ehci_urb_done(oxu, last->urb);
                  count++;
            }
            oxu_qtd_free(oxu, last);
      }

      /* restore original state; caller must unlink or relink */
      qh->qh_state = state;

      /* be sure the hardware's done with the qh before refreshing
       * it after fault cleanup, or recovering from silicon wrongly
       * overlaying the dummy qtd (which reduces DMA chatter).
       */
      if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
            switch (state) {
            case QH_STATE_IDLE:
                  qh_refresh(oxu, qh);
                  break;
            case QH_STATE_LINKED:
                  /* should be rare for periodic transfers,
                   * except maybe high bandwidth ...
                   */
                  if ((cpu_to_le32(QH_SMASK)
                              & qh->hw_info2) != 0) {
                        intr_deschedule(oxu, qh);
                        (void) qh_schedule(oxu, qh);
                  } else
                        unlink_async(oxu, qh);
                  break;
            /* otherwise, unlink already started */
            }
      }

      return count;
}

/* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
#define hb_mult(wMaxPacketSize)           (1 + (((wMaxPacketSize) >> 11) & 0x03))
/* ... and packet size, for any kind of endpoint descriptor */
#define max_packet(wMaxPacketSize)  ((wMaxPacketSize) & 0x07ff)

/* Reverse of qh_urb_transaction: free a list of TDs.
 * used for cleanup after errors, before HC sees an URB's TDs.
 */
static void qtd_list_free(struct oxu_hcd *oxu,
                        struct urb *urb, struct list_head *qtd_list)
{
      struct list_head *entry, *temp;

      list_for_each_safe(entry, temp, qtd_list) {
            struct ehci_qtd   *qtd;

            qtd = list_entry(entry, struct ehci_qtd, qtd_list);
            list_del(&qtd->qtd_list);
            oxu_qtd_free(oxu, qtd);
      }
}

/* Create a list of filled qtds for this URB; won't link into qh.
 */
static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
                                    struct urb *urb,
                                    struct list_head *head,
                                    gfp_t flags)
{
      struct ehci_qtd   *qtd, *qtd_prev;
      dma_addr_t buf;
      int len, maxpacket;
      int is_input;
      u32 token;
      void *transfer_buf = NULL;
      int ret;

      /*
       * URBs map to sequences of QTDs: one logical transaction
       */
      qtd = ehci_qtd_alloc(oxu);
      if (unlikely(!qtd))
            return NULL;
      list_add_tail(&qtd->qtd_list, head);
      qtd->urb = urb;

      token = QTD_STS_ACTIVE;
      token |= (EHCI_TUNE_CERR << 10);
      /* for split transactions, SplitXState initialized to zero */

      len = urb->transfer_buffer_length;
      is_input = usb_pipein(urb->pipe);
      if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
            urb->transfer_buffer = phys_to_virt(urb->transfer_dma);

      if (usb_pipecontrol(urb->pipe)) {
            /* SETUP pid */
            ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
            if (ret)
                  goto cleanup;

            qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
                        token | (2 /* "setup" */ << 8), 8);
            memcpy(qtd->buffer, qtd->urb->setup_packet,
                        sizeof(struct usb_ctrlrequest));

            /* ... and always at least one more pid */
            token ^= QTD_TOGGLE;
            qtd_prev = qtd;
            qtd = ehci_qtd_alloc(oxu);
            if (unlikely(!qtd))
                  goto cleanup;
            qtd->urb = urb;
            qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
            list_add_tail(&qtd->qtd_list, head);

            /* for zero length DATA stages, STATUS is always IN */
            if (len == 0)
                  token |= (1 /* "in" */ << 8);
      }

      /*
       * Data transfer stage: buffer setup
       */

      ret = oxu_buf_alloc(oxu, qtd, len);
      if (ret)
            goto cleanup;

      buf = qtd->buffer_dma;
      transfer_buf = urb->transfer_buffer;

      if (!is_input)
            memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);

      if (is_input)
            token |= (1 /* "in" */ << 8);
      /* else it's already initted to "out" pid (0 << 8) */

      maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));

      /*
       * buffer gets wrapped in one or more qtds;
       * last one may be "short" (including zero len)
       * and may serve as a control status ack
       */
      for (;;) {
            int this_qtd_len;

            this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
            qtd->transfer_buffer = transfer_buf;
            len -= this_qtd_len;
            buf += this_qtd_len;
            transfer_buf += this_qtd_len;
            if (is_input)
                  qtd->hw_alt_next = oxu->async->hw_alt_next;

            /* qh makes control packets use qtd toggle; maybe switch it */
            if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
                  token ^= QTD_TOGGLE;

            if (likely(len <= 0))
                  break;

            qtd_prev = qtd;
            qtd = ehci_qtd_alloc(oxu);
            if (unlikely(!qtd))
                  goto cleanup;
            if (likely(len > 0)) {
                  ret = oxu_buf_alloc(oxu, qtd, len);
                  if (ret)
                        goto cleanup;
            }
            qtd->urb = urb;
            qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
            list_add_tail(&qtd->qtd_list, head);
      }

      /* unless the bulk/interrupt caller wants a chance to clean
       * up after short reads, hc should advance qh past this urb
       */
      if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
                        || usb_pipecontrol(urb->pipe)))
            qtd->hw_alt_next = EHCI_LIST_END;

      /*
       * control requests may need a terminating data "status" ack;
       * bulk ones may need a terminating short packet (zero length).
       */
      if (likely(urb->transfer_buffer_length != 0)) {
            int   one_more = 0;

            if (usb_pipecontrol(urb->pipe)) {
                  one_more = 1;
                  token ^= 0x0100;  /* "in" <--> "out"  */
                  token |= QTD_TOGGLE;    /* force DATA1 */
            } else if (usb_pipebulk(urb->pipe)
                        && (urb->transfer_flags & URB_ZERO_PACKET)
                        && !(urb->transfer_buffer_length % maxpacket)) {
                  one_more = 1;
            }
            if (one_more) {
                  qtd_prev = qtd;
                  qtd = ehci_qtd_alloc(oxu);
                  if (unlikely(!qtd))
                        goto cleanup;
                  qtd->urb = urb;
                  qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
                  list_add_tail(&qtd->qtd_list, head);

                  /* never any data in such packets */
                  qtd_fill(qtd, 0, 0, token, 0);
            }
      }

      /* by default, enable interrupt on urb completion */
            qtd->hw_token |= cpu_to_le32(QTD_IOC);
      return head;

cleanup:
      qtd_list_free(oxu, urb, head);
      return NULL;
}

/* Each QH holds a qtd list; a QH is used for everything except iso.
 *
 * For interrupt urbs, the scheduler must set the microframe scheduling
 * mask(s) each time the QH gets scheduled.  For highspeed, that's
 * just one microframe in the s-mask.  For split interrupt transactions
 * there are additional complications: c-mask, maybe FSTNs.
 */
static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
                        struct urb *urb, gfp_t flags)
{
      struct ehci_qh *qh = oxu_qh_alloc(oxu);
      u32 info1 = 0, info2 = 0;
      int is_input, type;
      int maxp = 0;

      if (!qh)
            return qh;

      /*
       * init endpoint/device data for this QH
       */
      info1 |= usb_pipeendpoint(urb->pipe) << 8;
      info1 |= usb_pipedevice(urb->pipe) << 0;

      is_input = usb_pipein(urb->pipe);
      type = usb_pipetype(urb->pipe);
      maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);

      /* Compute interrupt scheduling parameters just once, and save.
       * - allowing for high bandwidth, how many nsec/uframe are used?
       * - split transactions need a second CSPLIT uframe; same question
       * - splits also need a schedule gap (for full/low speed I/O)
       * - qh has a polling interval
       *
       * For control/bulk requests, the HC or TT handles these.
       */
      if (type == PIPE_INTERRUPT) {
            qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
                                                is_input, 0,
                        hb_mult(maxp) * max_packet(maxp)));
            qh->start = NO_FRAME;

            if (urb->dev->speed == USB_SPEED_HIGH) {
                  qh->c_usecs = 0;
                  qh->gap_uf = 0;

                  qh->period = urb->interval >> 3;
                  if (qh->period == 0 && urb->interval != 1) {
                        /* NOTE interval 2 or 4 uframes could work.
                         * But interval 1 scheduling is simpler, and
                         * includes high bandwidth.
                         */
                        dbg("intr period %d uframes, NYET!",
                                    urb->interval);
                        goto done;
                  }
            } else {
                  struct usb_tt     *tt = urb->dev->tt;
                  int         think_time;

                  /* gap is f(FS/LS transfer times) */
                  qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
                              is_input, 0, maxp) / (125 * 1000);

                  /* FIXME this just approximates SPLIT/CSPLIT times */
                  if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
                        qh->c_usecs = qh->usecs + HS_USECS(0);
                        qh->usecs = HS_USECS(1);
                  } else {          /* SPLIT+DATA, gap, CSPLIT */
                        qh->usecs += HS_USECS(1);
                        qh->c_usecs = HS_USECS(0);
                  }

                  think_time = tt ? tt->think_time : 0;
                  qh->tt_usecs = NS_TO_US(think_time +
                              usb_calc_bus_time(urb->dev->speed,
                              is_input, 0, max_packet(maxp)));
                  qh->period = urb->interval;
            }
      }

      /* support for tt scheduling, and access to toggles */
      qh->dev = urb->dev;

      /* using TT? */
      switch (urb->dev->speed) {
      case USB_SPEED_LOW:
            info1 |= (1 << 12);     /* EPS "low" */
            /* FALL THROUGH */

      case USB_SPEED_FULL:
            /* EPS 0 means "full" */
            if (type != PIPE_INTERRUPT)
                  info1 |= (EHCI_TUNE_RL_TT << 28);
            if (type == PIPE_CONTROL) {
                  info1 |= (1 << 27);     /* for TT */
                  info1 |= 1 << 14; /* toggle from qtd */
            }
            info1 |= maxp << 16;

            info2 |= (EHCI_TUNE_MULT_TT << 30);
            info2 |= urb->dev->ttport << 23;

            /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */

            break;

      case USB_SPEED_HIGH:          /* no TT involved */
            info1 |= (2 << 12);     /* EPS "high" */
            if (type == PIPE_CONTROL) {
                  info1 |= (EHCI_TUNE_RL_HS << 28);
                  info1 |= 64 << 16;      /* usb2 fixed maxpacket */
                  info1 |= 1 << 14; /* toggle from qtd */
                  info2 |= (EHCI_TUNE_MULT_HS << 30);
            } else if (type == PIPE_BULK) {
                  info1 |= (EHCI_TUNE_RL_HS << 28);
                  info1 |= 512 << 16;     /* usb2 fixed maxpacket */
                  info2 |= (EHCI_TUNE_MULT_HS << 30);
            } else {          /* PIPE_INTERRUPT */
                  info1 |= max_packet(maxp) << 16;
                  info2 |= hb_mult(maxp) << 30;
            }
            break;
      default:
            dbg("bogus dev %p speed %d", urb->dev, urb->dev->speed);
done:
            qh_put(qh);
            return NULL;
      }

      /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */

      /* init as live, toggle clear, advance to dummy */
      qh->qh_state = QH_STATE_IDLE;
      qh->hw_info1 = cpu_to_le32(info1);
      qh->hw_info2 = cpu_to_le32(info2);
      usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
      qh_refresh(oxu, qh);
      return qh;
}

/* Move qh (and its qtds) onto async queue; maybe enable queue.
 */
static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
{
      __le32 dma = QH_NEXT(qh->qh_dma);
      struct ehci_qh *head;

      /* (re)start the async schedule? */
      head = oxu->async;
      timer_action_done(oxu, TIMER_ASYNC_OFF);
      if (!head->qh_next.qh) {
            u32   cmd = readl(&oxu->regs->command);

            if (!(cmd & CMD_ASE)) {
                  /* in case a clear of CMD_ASE didn't take yet */
                  (void)handshake(oxu, &oxu->regs->status,
                              STS_ASS, 0, 150);
                  cmd |= CMD_ASE | CMD_RUN;
                  writel(cmd, &oxu->regs->command);
                  oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
                  /* posted write need not be known to HC yet ... */
            }
      }

      /* clear halt and/or toggle; and maybe recover from silicon quirk */
      if (qh->qh_state == QH_STATE_IDLE)
            qh_refresh(oxu, qh);

      /* splice right after start */
      qh->qh_next = head->qh_next;
      qh->hw_next = head->hw_next;
      wmb();

      head->qh_next.qh = qh;
      head->hw_next = dma;

      qh->qh_state = QH_STATE_LINKED;
      /* qtd completions reported later by interrupt */
}

#define     QH_ADDR_MASK      cpu_to_le32(0x7f)

/*
 * For control/bulk/interrupt, return QH with these TDs appended.
 * Allocates and initializes the QH if necessary.
 * Returns null if it can't allocate a QH it needs to.
 * If the QH has TDs (urbs) already, that's great.
 */
static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
                        struct urb *urb, struct list_head *qtd_list,
                        int epnum, void   **ptr)
{
      struct ehci_qh *qh = NULL;

      qh = (struct ehci_qh *) *ptr;
      if (unlikely(qh == NULL)) {
            /* can't sleep here, we have oxu->lock... */
            qh = qh_make(oxu, urb, GFP_ATOMIC);
            *ptr = qh;
      }
      if (likely(qh != NULL)) {
            struct ehci_qtd   *qtd;

            if (unlikely(list_empty(qtd_list)))
                  qtd = NULL;
            else
                  qtd = list_entry(qtd_list->next, struct ehci_qtd,
                              qtd_list);

            /* control qh may need patching ... */
            if (unlikely(epnum == 0)) {

                  /* usb_reset_device() briefly reverts to address 0 */
                  if (usb_pipedevice(urb->pipe) == 0)
                        qh->hw_info1 &= ~QH_ADDR_MASK;
            }

            /* just one way to queue requests: swap with the dummy qtd.
             * only hc or qh_refresh() ever modify the overlay.
             */
            if (likely(qtd != NULL)) {
                  struct ehci_qtd   *dummy;
                  dma_addr_t dma;
                  __le32 token;

                  /* to avoid racing the HC, use the dummy td instead of
                   * the first td of our list (becomes new dummy).  both
                   * tds stay deactivated until we're done, when the
                   * HC is allowed to fetch the old dummy (4.10.2).
                   */
                  token = qtd->hw_token;
                  qtd->hw_token = HALT_BIT;
                  wmb();
                  dummy = qh->dummy;

                  dma = dummy->qtd_dma;
                  *dummy = *qtd;
                  dummy->qtd_dma = dma;

                  list_del(&qtd->qtd_list);
                  list_add(&dummy->qtd_list, qtd_list);
                  list_splice(qtd_list, qh->qtd_list.prev);

                  ehci_qtd_init(qtd, qtd->qtd_dma);
                  qh->dummy = qtd;

                  /* hc must see the new dummy at list end */
                  dma = qtd->qtd_dma;
                  qtd = list_entry(qh->qtd_list.prev,
                              struct ehci_qtd, qtd_list);
                  qtd->hw_next = QTD_NEXT(dma);

                  /* let the hc process these next qtds */
                  dummy->hw_token = (token & ~(0x80));
                  wmb();
                  dummy->hw_token = token;

                  urb->hcpriv = qh_get(qh);
            }
      }
      return qh;
}

static int submit_async(struct oxu_hcd    *oxu, struct urb *urb,
                  struct list_head *qtd_list, gfp_t mem_flags)
{
      struct ehci_qtd   *qtd;
      int epnum;
      unsigned long flags;
      struct ehci_qh *qh = NULL;
      int rc = 0;

      qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
      epnum = urb->ep->desc.bEndpointAddress;

#ifdef OXU_URB_TRACE
      oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
            __func__, urb->dev->devpath, urb,
            epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
            urb->transfer_buffer_length,
            qtd, urb->ep->hcpriv);
#endif

      spin_lock_irqsave(&oxu->lock, flags);
      if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
                         &oxu_to_hcd(oxu)->flags))) {
            rc = -ESHUTDOWN;
            goto done;
      }

      qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
      if (unlikely(qh == NULL)) {
            rc = -ENOMEM;
            goto done;
      }

      /* Control/bulk operations through TTs don't need scheduling,
       * the HC and TT handle it when the TT has a buffer ready.
       */
      if (likely(qh->qh_state == QH_STATE_IDLE))
            qh_link_async(oxu, qh_get(qh));
done:
      spin_unlock_irqrestore(&oxu->lock, flags);
      if (unlikely(qh == NULL))
            qtd_list_free(oxu, urb, qtd_list);
      return rc;
}

/* The async qh for the qtds being reclaimed are now unlinked from the HC */

static void end_unlink_async(struct oxu_hcd *oxu)
{
      struct ehci_qh *qh = oxu->reclaim;
      struct ehci_qh *next;

      timer_action_done(oxu, TIMER_IAA_WATCHDOG);

      qh->qh_state = QH_STATE_IDLE;
      qh->qh_next.qh = NULL;
      qh_put(qh);             /* refcount from reclaim */

      /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
      next = qh->reclaim;
      oxu->reclaim = next;
      oxu->reclaim_ready = 0;
      qh->reclaim = NULL;

      qh_completions(oxu, qh);

      if (!list_empty(&qh->qtd_list)
                  && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
            qh_link_async(oxu, qh);
      else {
            qh_put(qh);       /* refcount from async list */

            /* it's not free to turn the async schedule on/off; leave it
             * active but idle for a while once it empties.
             */
            if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
                        && oxu->async->qh_next.qh == NULL)
                  timer_action(oxu, TIMER_ASYNC_OFF);
      }

      if (next) {
            oxu->reclaim = NULL;
            start_unlink_async(oxu, next);
      }
}

/* makes sure the async qh will become idle */
/* caller must own oxu->lock */

static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
{
      int cmd = readl(&oxu->regs->command);
      struct ehci_qh *prev;

#ifdef DEBUG
      assert_spin_locked(&oxu->lock);
      if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
                        && qh->qh_state != QH_STATE_UNLINK_WAIT))
            BUG();
#endif

      /* stop async schedule right now? */
      if (unlikely(qh == oxu->async)) {
            /* can't get here without STS_ASS set */
            if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
                        && !oxu->reclaim) {
                  /* ... and CMD_IAAD clear */
                  writel(cmd & ~CMD_ASE, &oxu->regs->command);
                  wmb();
                  /* handshake later, if we need to */
                  timer_action_done(oxu, TIMER_ASYNC_OFF);
            }
            return;
      }

      qh->qh_state = QH_STATE_UNLINK;
      oxu->reclaim = qh = qh_get(qh);

      prev = oxu->async;
      while (prev->qh_next.qh != qh)
            prev = prev->qh_next.qh;

      prev->hw_next = qh->hw_next;
      prev->qh_next = qh->qh_next;
      wmb();

      if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
            /* if (unlikely(qh->reclaim != 0))
             *    this will recurse, probably not much
             */
            end_unlink_async(oxu);
            return;
      }

      oxu->reclaim_ready = 0;
      cmd |= CMD_IAAD;
      writel(cmd, &oxu->regs->command);
      (void) readl(&oxu->regs->command);
      timer_action(oxu, TIMER_IAA_WATCHDOG);
}

static void scan_async(struct oxu_hcd *oxu)
{
      struct ehci_qh *qh;
      enum ehci_timer_action action = TIMER_IO_WATCHDOG;

      if (!++(oxu->stamp))
            oxu->stamp++;
      timer_action_done(oxu, TIMER_ASYNC_SHRINK);
rescan:
      qh = oxu->async->qh_next.qh;
      if (likely(qh != NULL)) {
            do {
                  /* clean any finished work for this qh */
                  if (!list_empty(&qh->qtd_list)
                              && qh->stamp != oxu->stamp) {
                        int temp;

                        /* unlinks could happen here; completion
                         * reporting drops the lock.  rescan using
                         * the latest schedule, but don't rescan
                         * qhs we already finished (no looping).
                         */
                        qh = qh_get(qh);
                        qh->stamp = oxu->stamp;
                        temp = qh_completions(oxu, qh);
                        qh_put(qh);
                        if (temp != 0)
                              goto rescan;
                  }

                  /* unlink idle entries, reducing HC PCI usage as well
                   * as HCD schedule-scanning costs.  delay for any qh
                   * we just scanned, there's a not-unusual case that it
                   * doesn't stay idle for long.
                   * (plus, avoids some kind of re-activation race.)
                   */
                  if (list_empty(&qh->qtd_list)) {
                        if (qh->stamp == oxu->stamp)
                              action = TIMER_ASYNC_SHRINK;
                        else if (!oxu->reclaim
                                  && qh->qh_state == QH_STATE_LINKED)
                              start_unlink_async(oxu, qh);
                  }

                  qh = qh->qh_next.qh;
            } while (qh);
      }
      if (action == TIMER_ASYNC_SHRINK)
            timer_action(oxu, TIMER_ASYNC_SHRINK);
}

/*
 * periodic_next_shadow - return "next" pointer on shadow list
 * @periodic: host pointer to qh/itd/sitd
 * @tag: hardware tag for type of this record
 */
static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
                                    __le32 tag)
{
      switch (tag) {
      default:
      case Q_TYPE_QH:
            return &periodic->qh->qh_next;
      }
}

/* caller must hold oxu->lock */
static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
{
      union ehci_shadow *prev_p = &oxu->pshadow[frame];
      __le32 *hw_p = &oxu->periodic[frame];
      union ehci_shadow here = *prev_p;

      /* find predecessor of "ptr"; hw and shadow lists are in sync */
      while (here.ptr && here.ptr != ptr) {
            prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
            hw_p = here.hw_next;
            here = *prev_p;
      }
      /* an interrupt entry (at list end) could have been shared */
      if (!here.ptr)
            return;

      /* update shadow and hardware lists ... the old "next" pointers
       * from ptr may still be in use, the caller updates them.
       */
      *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
      *hw_p = *here.hw_next;
}

/* how many of the uframe's 125 usecs are allocated? */
static unsigned short periodic_usecs(struct oxu_hcd *oxu,
                              unsigned frame, unsigned uframe)
{
      __le32 *hw_p = &oxu->periodic[frame];
      union ehci_shadow *q = &oxu->pshadow[frame];
      unsigned usecs = 0;

      while (q->ptr) {
            switch (Q_NEXT_TYPE(*hw_p)) {
            case Q_TYPE_QH:
            default:
                  /* is it in the S-mask? */
                  if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
                        usecs += q->qh->usecs;
                  /* ... or C-mask? */
                  if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
                        usecs += q->qh->c_usecs;
                  hw_p = &q->qh->hw_next;
                  q = &q->qh->qh_next;
                  break;
            }
      }
#ifdef DEBUG
      if (usecs > 100)
            oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
                                    frame * 8 + uframe, usecs);
#endif
      return usecs;
}

static int enable_periodic(struct oxu_hcd *oxu)
{
      u32 cmd;
      int status;

      /* did clearing PSE did take effect yet?
       * takes effect only at frame boundaries...
       */
      status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
      if (status != 0) {
            oxu_to_hcd(oxu)->state = HC_STATE_HALT;
            return status;
      }

      cmd = readl(&oxu->regs->command) | CMD_PSE;
      writel(cmd, &oxu->regs->command);
      /* posted write ... PSS happens later */
      oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;

      /* make sure ehci_work scans these */
      oxu->next_uframe = readl(&oxu->regs->frame_index)
            % (oxu->periodic_size << 3);
      return 0;
}

static int disable_periodic(struct oxu_hcd *oxu)
{
      u32 cmd;
      int status;

      /* did setting PSE not take effect yet?
       * takes effect only at frame boundaries...
       */
      status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
      if (status != 0) {
            oxu_to_hcd(oxu)->state = HC_STATE_HALT;
            return status;
      }

      cmd = readl(&oxu->regs->command) & ~CMD_PSE;
      writel(cmd, &oxu->regs->command);
      /* posted write ... */

      oxu->next_uframe = -1;
      return 0;
}

/* periodic schedule slots have iso tds (normal or split) first, then a
 * sparse tree for active interrupt transfers.
 *
 * this just links in a qh; caller guarantees uframe masks are set right.
 * no FSTN support (yet; oxu 0.96+)
 */
static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
{
      unsigned i;
      unsigned period = qh->period;

      dev_dbg(&qh->dev->dev,
            "link qh%d-%04x/%p start %d [%d/%d us]\n",
            period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
            qh, qh->start, qh->usecs, qh->c_usecs);

      /* high bandwidth, or otherwise every microframe */
      if (period == 0)
            period = 1;

      for (i = qh->start; i < oxu->periodic_size; i += period) {
            union ehci_shadow *prev = &oxu->pshadow[i];
            __le32                  *hw_p = &oxu->periodic[i];
            union ehci_shadow here = *prev;
            __le32                  type = 0;

            /* skip the iso nodes at list head */
            while (here.ptr) {
                  type = Q_NEXT_TYPE(*hw_p);
                  if (type == Q_TYPE_QH)
                        break;
                  prev = periodic_next_shadow(prev, type);
                  hw_p = &here.qh->hw_next;
                  here = *prev;
            }

            /* sorting each branch by period (slow-->fast)
             * enables sharing interior tree nodes
             */
            while (here.ptr && qh != here.qh) {
                  if (qh->period > here.qh->period)
                        break;
                  prev = &here.qh->qh_next;
                  hw_p = &here.qh->hw_next;
                  here = *prev;
            }
            /* link in this qh, unless some earlier pass did that */
            if (qh != here.qh) {
                  qh->qh_next = here;
                  if (here.qh)
                        qh->hw_next = *hw_p;
                  wmb();
                  prev->qh = qh;
                  *hw_p = QH_NEXT(qh->qh_dma);
            }
      }
      qh->qh_state = QH_STATE_LINKED;
      qh_get(qh);

      /* update per-qh bandwidth for usbfs */
      oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
            ? ((qh->usecs + qh->c_usecs) / qh->period)
            : (qh->usecs * 8);

      /* maybe enable periodic schedule processing */
      if (!oxu->periodic_sched++)
            return enable_periodic(oxu);

      return 0;
}

static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
{
      unsigned i;
      unsigned period;

      /* FIXME:
       *   IF this isn't high speed
       *   and this qh is active in the current uframe
       *   (and overlay token SplitXstate is false?)
       * THEN
       *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
       */

      /* high bandwidth, or otherwise part of every microframe */
      period = qh->period;
      if (period == 0)
            period = 1;

      for (i = qh->start; i < oxu->periodic_size; i += period)
            periodic_unlink(oxu, i, qh);

      /* update per-qh bandwidth for usbfs */
      oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
            ? ((qh->usecs + qh->c_usecs) / qh->period)
            : (qh->usecs * 8);

      dev_dbg(&qh->dev->dev,
            "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
            qh->period,
            le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
            qh, qh->start, qh->usecs, qh->c_usecs);

      /* qh->qh_next still "live" to HC */
      qh->qh_state = QH_STATE_UNLINK;
      qh->qh_next.ptr = NULL;
      qh_put(qh);

      /* maybe turn off periodic schedule */
      oxu->periodic_sched--;
      if (!oxu->periodic_sched)
            (void) disable_periodic(oxu);
}

static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
{
      unsigned wait;

      qh_unlink_periodic(oxu, qh);

      /* simple/paranoid:  always delay, expecting the HC needs to read
       * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
       * expect khubd to clean up after any CSPLITs we won't issue.
       * active high speed queues may need bigger delays...
       */
      if (list_empty(&qh->qtd_list)
            || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
            wait = 2;
      else
            wait = 55;  /* worst case: 3 * 1024 */

      udelay(wait);
      qh->qh_state = QH_STATE_IDLE;
      qh->hw_next = EHCI_LIST_END;
      wmb();
}

static int check_period(struct oxu_hcd *oxu,
                  unsigned frame, unsigned uframe,
                  unsigned period, unsigned usecs)
{
      int claimed;

      /* complete split running into next frame?
       * given FSTN support, we could sometimes check...
       */
      if (uframe >= 8)
            return 0;

      /*
       * 80% periodic == 100 usec/uframe available
       * convert "usecs we need" to "max already claimed"
       */
      usecs = 100 - usecs;

      /* we "know" 2 and 4 uframe intervals were rejected; so
       * for period 0, check _every_ microframe in the schedule.
       */
      if (unlikely(period == 0)) {
            do {
                  for (uframe = 0; uframe < 7; uframe++) {
                        claimed = periodic_usecs(oxu, frame, uframe);
                        if (claimed > usecs)
                              return 0;
                  }
            } while ((frame += 1) < oxu->periodic_size);

      /* just check the specified uframe, at that period */
      } else {
            do {
                  claimed = periodic_usecs(oxu, frame, uframe);
                  if (claimed > usecs)
                        return 0;
            } while ((frame += period) < oxu->periodic_size);
      }

      return 1;
}

static int check_intr_schedule(struct oxu_hcd   *oxu,
                        unsigned frame, unsigned uframe,
                        const struct ehci_qh *qh, __le32 *c_maskp)
{
      int retval = -ENOSPC;

      if (qh->c_usecs && uframe >= 6)           /* FSTN territory? */
            goto done;

      if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
            goto done;
      if (!qh->c_usecs) {
            retval = 0;
            *c_maskp = 0;
            goto done;
      }

done:
      return retval;
}

/* "first fit" scheduling policy used the first time through,
 * or when the previous schedule slot can't be re-used.
 */
static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
{
      int         status;
      unsigned    uframe;
      __le32            c_mask;
      unsigned    frame;            /* 0..(qh->period - 1), or NO_FRAME */

      qh_refresh(oxu, qh);
      qh->hw_next = EHCI_LIST_END;
      frame = qh->start;

      /* reuse the previous schedule slots, if we can */
      if (frame < qh->period) {
            uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
            status = check_intr_schedule(oxu, frame, --uframe,
                        qh, &c_mask);
      } else {
            uframe = 0;
            c_mask = 0;
            status = -ENOSPC;
      }

      /* else scan the schedule to find a group of slots such that all
       * uframes have enough periodic bandwidth available.
       */
      if (status) {
            /* "normal" case, uframing flexible except with splits */
            if (qh->period) {
                  frame = qh->period - 1;
                  do {
                        for (uframe = 0; uframe < 8; uframe++) {
                              status = check_intr_schedule(oxu,
                                          frame, uframe, qh,
                                          &c_mask);
                              if (status == 0)
                                    break;
                        }
                  } while (status && frame--);

            /* qh->period == 0 means every uframe */
            } else {
                  frame = 0;
                  status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
            }
            if (status)
                  goto done;
            qh->start = frame;

            /* reset S-frame and (maybe) C-frame masks */
            qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
            qh->hw_info2 |= qh->period
                  ? cpu_to_le32(1 << uframe)
                  : cpu_to_le32(QH_SMASK);
            qh->hw_info2 |= c_mask;
      } else
            oxu_dbg(oxu, "reused qh %p schedule\n", qh);

      /* stuff into the periodic schedule */
      status = qh_link_periodic(oxu, qh);
done:
      return status;
}

static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
                  struct list_head *qtd_list, gfp_t mem_flags)
{
      unsigned epnum;
      unsigned long flags;
      struct ehci_qh *qh;
      int status = 0;
      struct list_head  empty;

      /* get endpoint and transfer/schedule data */
      epnum = urb->ep->desc.bEndpointAddress;

      spin_lock_irqsave(&oxu->lock, flags);

      if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
                         &oxu_to_hcd(oxu)->flags))) {
            status = -ESHUTDOWN;
            goto done;
      }

      /* get qh and force any scheduling errors */
      INIT_LIST_HEAD(&empty);
      qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
      if (qh == NULL) {
            status = -ENOMEM;
            goto done;
      }
      if (qh->qh_state == QH_STATE_IDLE) {
            status = qh_schedule(oxu, qh);
            if (status != 0)
                  goto done;
      }

      /* then queue the urb's tds to the qh */
      qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
      BUG_ON(qh == NULL);

      /* ... update usbfs periodic stats */
      oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;

done:
      spin_unlock_irqrestore(&oxu->lock, flags);
      if (status)
            qtd_list_free(oxu, urb, qtd_list);

      return status;
}

static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
                                    gfp_t mem_flags)
{
      oxu_dbg(oxu, "iso support is missing!\n");
      return -ENOSYS;
}

static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
                                    gfp_t mem_flags)
{
      oxu_dbg(oxu, "split iso support is missing!\n");
      return -ENOSYS;
}

static void scan_periodic(struct oxu_hcd *oxu)
{
      unsigned frame, clock, now_uframe, mod;
      unsigned modified;

      mod = oxu->periodic_size << 3;

      /*
       * When running, scan from last scan point up to "now"
       * else clean up by scanning everything that's left.
       * Touches as few pages as possible:  cache-friendly.
       */
      now_uframe = oxu->next_uframe;
      if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
            clock = readl(&oxu->regs->frame_index);
      else
            clock = now_uframe + mod - 1;
      clock %= mod;

      for (;;) {
            union ehci_shadow q, *q_p;
            __le32                  type, *hw_p;
            unsigned          uframes;

            /* don't scan past the live uframe */
            frame = now_uframe >> 3;
            if (frame == (clock >> 3))
                  uframes = now_uframe & 0x07;
            else {
                  /* safe to scan the whole frame at once */
                  now_uframe |= 0x07;
                  uframes = 8;
            }

restart:
            /* scan each element in frame's queue for completions */
            q_p = &oxu->pshadow[frame];
            hw_p = &oxu->periodic[frame];
            q.ptr = q_p->ptr;
            type = Q_NEXT_TYPE(*hw_p);
            modified = 0;

            while (q.ptr != NULL) {
                  union ehci_shadow temp;
                  int live;

                  live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
                  switch (type) {
                  case Q_TYPE_QH:
                        /* handle any completions */
                        temp.qh = qh_get(q.qh);
                        type = Q_NEXT_TYPE(q.qh->hw_next);
                        q = q.qh->qh_next;
                        modified = qh_completions(oxu, temp.qh);
                        if (unlikely(list_empty(&temp.qh->qtd_list)))
                              intr_deschedule(oxu, temp.qh);
                        qh_put(temp.qh);
                        break;
                  default:
                        dbg("corrupt type %d frame %d shadow %p",
                              type, frame, q.ptr);
                        q.ptr = NULL;
                  }

                  /* assume completion callbacks modify the queue */
                  if (unlikely(modified))
                        goto restart;
            }

            /* Stop when we catch up to the HC */

            /* FIXME:  this assumes we won't get lapped when
             * latencies climb; that should be rare, but...
             * detect it, and just go all the way around.
             * FLR might help detect this case, so long as latencies
             * don't exceed periodic_size msec (default 1.024 sec).
             */

            /* FIXME: likewise assumes HC doesn't halt mid-scan */

            if (now_uframe == clock) {
                  unsigned    now;

                  if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
                        break;
                  oxu->next_uframe = now_uframe;
                  now = readl(&oxu->regs->frame_index) % mod;
                  if (now_uframe == now)
                        break;

                  /* rescan the rest of this frame, then ... */
                  clock = now;
            } else {
                  now_uframe++;
                  now_uframe %= mod;
            }
      }
}

/* On some systems, leaving remote wakeup enabled prevents system shutdown.
 * The firmware seems to think that powering off is a wakeup event!
 * This routine turns off remote wakeup and everything else, on all ports.
 */
static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
{
      int port = HCS_N_PORTS(oxu->hcs_params);

      while (port--)
            writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
}

static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
{
      unsigned port;

      if (!HCS_PPC(oxu->hcs_params))
            return;

      oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
      for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
            (void) oxu_hub_control(oxu_to_hcd(oxu),
                        is_on ? SetPortFeature : ClearPortFeature,
                        USB_PORT_FEAT_POWER,
                        port--, NULL, 0);
      msleep(20);
}

/* Called from some interrupts, timers, and so on.
 * It calls driver completion functions, after dropping oxu->lock.
 */
static void ehci_work(struct oxu_hcd *oxu)
{
      timer_action_done(oxu, TIMER_IO_WATCHDOG);
      if (oxu->reclaim_ready)
            end_unlink_async(oxu);

      /* another CPU may drop oxu->lock during a schedule scan while
       * it reports urb completions.  this flag guards against bogus
       * attempts at re-entrant schedule scanning.
       */
      if (oxu->scanning)
            return;
      oxu->scanning = 1;
      scan_async(oxu);
      if (oxu->next_uframe != -1)
            scan_periodic(oxu);
      oxu->scanning = 0;

      /* the IO watchdog guards against hardware or driver bugs that
       * misplace IRQs, and should let us run completely without IRQs.
       * such lossage has been observed on both VT6202 and VT8235.
       */
      if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
                  (oxu->async->qh_next.ptr != NULL ||
                   oxu->periodic_sched != 0))
            timer_action(oxu, TIMER_IO_WATCHDOG);
}

static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
{
      /* if we need to use IAA and it's busy, defer */
      if (qh->qh_state == QH_STATE_LINKED
                  && oxu->reclaim
                  && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
            struct ehci_qh          *last;

            for (last = oxu->reclaim;
                        last->reclaim;
                        last = last->reclaim)
                  continue;
            qh->qh_state = QH_STATE_UNLINK_WAIT;
            last->reclaim = qh;

      /* bypass IAA if the hc can't care */
      } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
            end_unlink_async(oxu);

      /* something else might have unlinked the qh by now */
      if (qh->qh_state == QH_STATE_LINKED)
            start_unlink_async(oxu, qh);
}

/*
 * USB host controller methods
 */

static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      u32 status, pcd_status = 0;
      int bh;

      spin_lock(&oxu->lock);

      status = readl(&oxu->regs->status);

      /* e.g. cardbus physical eject */
      if (status == ~(u32) 0) {
            oxu_dbg(oxu, "device removed\n");
            goto dead;
      }

      status &= INTR_MASK;
      if (!status) {                /* irq sharing? */
            spin_unlock(&oxu->lock);
            return IRQ_NONE;
      }

      /* clear (just) interrupts */
      writel(status, &oxu->regs->status);
      readl(&oxu->regs->command);   /* unblock posted write */
      bh = 0;

#ifdef OXU_VERBOSE_DEBUG
      /* unrequested/ignored: Frame List Rollover */
      dbg_status(oxu, "irq", status);
#endif

      /* INT, ERR, and IAA interrupt rates can be throttled */

      /* normal [4.15.1.2] or error [4.15.1.1] completion */
      if (likely((status & (STS_INT|STS_ERR)) != 0))
            bh = 1;

      /* complete the unlinking of some qh [4.15.2.3] */
      if (status & STS_IAA) {
            oxu->reclaim_ready = 1;
            bh = 1;
      }

      /* remote wakeup [4.3.1] */
      if (status & STS_PCD) {
            unsigned i = HCS_N_PORTS(oxu->hcs_params);
            pcd_status = status;

            /* resume root hub? */
            if (!(readl(&oxu->regs->command) & CMD_RUN))
                  usb_hcd_resume_root_hub(hcd);

            while (i--) {
                  int pstatus = readl(&oxu->regs->port_status[i]);

                  if (pstatus & PORT_OWNER)
                        continue;
                  if (!(pstatus & PORT_RESUME)
                              || oxu->reset_done[i] != 0)
                        continue;

                  /* start 20 msec resume signaling from this port,
                   * and make khubd collect PORT_STAT_C_SUSPEND to
                   * stop that signaling.
                   */
                  oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
                  oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
                  mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
            }
      }

      /* PCI errors [4.15.2.4] */
      if (unlikely((status & STS_FATAL) != 0)) {
            /* bogus "fatal" IRQs appear on some chips... why?  */
            status = readl(&oxu->regs->status);
            dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
            dbg_status(oxu, "fatal", status);
            if (status & STS_HALT) {
                  oxu_err(oxu, "fatal error\n");
dead:
                  ehci_reset(oxu);
                  writel(0, &oxu->regs->configured_flag);
                  /* generic layer kills/unlinks all urbs, then
                   * uses oxu_stop to clean up the rest
                   */
                  bh = 1;
            }
      }

      if (bh)
            ehci_work(oxu);
      spin_unlock(&oxu->lock);
      if (pcd_status & STS_PCD)
            usb_hcd_poll_rh_status(hcd);
      return IRQ_HANDLED;
}

static irqreturn_t oxu_irq(struct usb_hcd *hcd)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      int ret = IRQ_HANDLED;

      u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
      u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);

      /* Disable all interrupt */
      oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);

      if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
            (!oxu->is_otg && (status & OXU_USBSPHI)))
            oxu210_hcd_irq(hcd);
      else
            ret = IRQ_NONE;

      /* Enable all interrupt back */
      oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);

      return ret;
}

static void oxu_watchdog(unsigned long param)
{
      struct oxu_hcd    *oxu = (struct oxu_hcd *) param;
      unsigned long flags;

      spin_lock_irqsave(&oxu->lock, flags);

      /* lost IAA irqs wedge things badly; seen with a vt8235 */
      if (oxu->reclaim) {
            u32 status = readl(&oxu->regs->status);
            if (status & STS_IAA) {
                  oxu_vdbg(oxu, "lost IAA\n");
                  writel(STS_IAA, &oxu->regs->status);
                  oxu->reclaim_ready = 1;
            }
      }

      /* stop async processing after it's idled a bit */
      if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
            start_unlink_async(oxu, oxu->async);

      /* oxu could run by timer, without IRQs ... */
      ehci_work(oxu);

      spin_unlock_irqrestore(&oxu->lock, flags);
}

/* One-time init, only for memory state.
 */
static int oxu_hcd_init(struct usb_hcd *hcd)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      u32 temp;
      int retval;
      u32 hcc_params;

      spin_lock_init(&oxu->lock);

      init_timer(&oxu->watchdog);
      oxu->watchdog.function = oxu_watchdog;
      oxu->watchdog.data = (unsigned long) oxu;

      /*
       * hw default: 1K periodic list heads, one per frame.
       * periodic_size can shrink by USBCMD update if hcc_params allows.
       */
      oxu->periodic_size = DEFAULT_I_TDPS;
      retval = ehci_mem_init(oxu, GFP_KERNEL);
      if (retval < 0)
            return retval;

      /* controllers may cache some of the periodic schedule ... */
      hcc_params = readl(&oxu->caps->hcc_params);
      if (HCC_ISOC_CACHE(hcc_params))           /* full frame cache */
            oxu->i_thresh = 8;
      else                          /* N microframes cached */
            oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);

      oxu->reclaim = NULL;
      oxu->reclaim_ready = 0;
      oxu->next_uframe = -1;

      /*
       * dedicate a qh for the async ring head, since we couldn't unlink
       * a 'real' qh without stopping the async schedule [4.8].  use it
       * as the 'reclamation list head' too.
       * its dummy is used in hw_alt_next of many tds, to prevent the qh
       * from automatically advancing to the next td after short reads.
       */
      oxu->async->qh_next.qh = NULL;
      oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
      oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
      oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
      oxu->async->hw_qtd_next = EHCI_LIST_END;
      oxu->async->qh_state = QH_STATE_LINKED;
      oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);

      /* clear interrupt enables, set irq latency */
      if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
            log2_irq_thresh = 0;
      temp = 1 << (16 + log2_irq_thresh);
      if (HCC_CANPARK(hcc_params)) {
            /* HW default park == 3, on hardware that supports it (like
             * NVidia and ALI silicon), maximizes throughput on the async
             * schedule by avoiding QH fetches between transfers.
             *
             * With fast usb storage devices and NForce2, "park" seems to
             * make problems:  throughput reduction (!), data errors...
             */
            if (park) {
                  park = min(park, (unsigned) 3);
                  temp |= CMD_PARK;
                  temp |= park << 8;
            }
            oxu_dbg(oxu, "park %d\n", park);
      }
      if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
            /* periodic schedule size can be smaller than default */
            temp &= ~(3 << 2);
            temp |= (EHCI_TUNE_FLS << 2);
      }
      oxu->command = temp;

      return 0;
}

/* Called during probe() after chip reset completes.
 */
static int oxu_reset(struct usb_hcd *hcd)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      int ret;

      spin_lock_init(&oxu->mem_lock);
      INIT_LIST_HEAD(&oxu->urb_list);
      oxu->urb_len = 0;

      /* FIMXE */
      hcd->self.controller->dma_mask = NULL;

      if (oxu->is_otg) {
            oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
            oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
                  HC_LENGTH(readl(&oxu->caps->hc_capbase));

            oxu->mem = hcd->regs + OXU_SPH_MEM;
      } else {
            oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
            oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
                  HC_LENGTH(readl(&oxu->caps->hc_capbase));

            oxu->mem = hcd->regs + OXU_OTG_MEM;
      }

      oxu->hcs_params = readl(&oxu->caps->hcs_params);
      oxu->sbrn = 0x20;

      ret = oxu_hcd_init(hcd);
      if (ret)
            return ret;

      return 0;
}

static int oxu_run(struct usb_hcd *hcd)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      int retval;
      u32 temp, hcc_params;

      hcd->uses_new_polling = 1;
      hcd->poll_rh = 0;

      /* EHCI spec section 4.1 */
      retval = ehci_reset(oxu);
      if (retval != 0) {
            ehci_mem_cleanup(oxu);
            return retval;
      }
      writel(oxu->periodic_dma, &oxu->regs->frame_list);
      writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);

      /* hcc_params controls whether oxu->regs->segment must (!!!)
       * be used; it constrains QH/ITD/SITD and QTD locations.
       * pci_pool consistent memory always uses segment zero.
       * streaming mappings for I/O buffers, like pci_map_single(),
       * can return segments above 4GB, if the device allows.
       *
       * NOTE:  the dma mask is visible through dma_supported(), so
       * drivers can pass this info along ... like NETIF_F_HIGHDMA,
       * Scsi_Host.highmem_io, and so forth.  It's readonly to all
       * host side drivers though.
       */
      hcc_params = readl(&oxu->caps->hcc_params);
      if (HCC_64BIT_ADDR(hcc_params))
            writel(0, &oxu->regs->segment);

      oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
                        CMD_ASE | CMD_RESET);
      oxu->command |= CMD_RUN;
      writel(oxu->command, &oxu->regs->command);
      dbg_cmd(oxu, "init", oxu->command);

      /*
       * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
       * are explicitly handed to companion controller(s), so no TT is
       * involved with the root hub.  (Except where one is integrated,
       * and there's no companion controller unless maybe for USB OTG.)
       */
      hcd->state = HC_STATE_RUNNING;
      writel(FLAG_CF, &oxu->regs->configured_flag);
      readl(&oxu->regs->command);   /* unblock posted writes */

      temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
      oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
            ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
            temp >> 8, temp & 0xff, DRIVER_VERSION,
            ignore_oc ? ", overcurrent ignored" : "");

      writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */

      return 0;
}

static void oxu_stop(struct usb_hcd *hcd)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);

      /* Turn off port power on all root hub ports. */
      ehci_port_power(oxu, 0);

      /* no more interrupts ... */
      del_timer_sync(&oxu->watchdog);

      spin_lock_irq(&oxu->lock);
      if (HC_IS_RUNNING(hcd->state))
            ehci_quiesce(oxu);

      ehci_reset(oxu);
      writel(0, &oxu->regs->intr_enable);
      spin_unlock_irq(&oxu->lock);

      /* let companion controllers work when we aren't */
      writel(0, &oxu->regs->configured_flag);

      /* root hub is shut down separately (first, when possible) */
      spin_lock_irq(&oxu->lock);
      if (oxu->async)
            ehci_work(oxu);
      spin_unlock_irq(&oxu->lock);
      ehci_mem_cleanup(oxu);

      dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
}

/* Kick in for silicon on any bus (not just pci, etc).
 * This forcibly disables dma and IRQs, helping kexec and other cases
 * where the next system software may expect clean state.
 */
static void oxu_shutdown(struct usb_hcd *hcd)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);

      (void) ehci_halt(oxu);
      ehci_turn_off_all_ports(oxu);

      /* make BIOS/etc use companion controller during reboot */
      writel(0, &oxu->regs->configured_flag);

      /* unblock posted writes */
      readl(&oxu->regs->configured_flag);
}

/* Non-error returns are a promise to giveback() the urb later
 * we drop ownership so next owner (or urb unlink) can get it
 *
 * urb + dev is in hcd.self.controller.urb_list
 * we're queueing TDs onto software and hardware lists
 *
 * hcd-specific init for hcpriv hasn't been done yet
 *
 * NOTE:  control, bulk, and interrupt share the same code to append TDs
 * to a (possibly active) QH, and the same QH scanning code.
 */
static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
                        gfp_t mem_flags)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      struct list_head qtd_list;

      INIT_LIST_HEAD(&qtd_list);

      switch (usb_pipetype(urb->pipe)) {
      case PIPE_CONTROL:
      case PIPE_BULK:
      default:
            if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
                  return -ENOMEM;
            return submit_async(oxu, urb, &qtd_list, mem_flags);

      case PIPE_INTERRUPT:
            if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
                  return -ENOMEM;
            return intr_submit(oxu, urb, &qtd_list, mem_flags);

      case PIPE_ISOCHRONOUS:
            if (urb->dev->speed == USB_SPEED_HIGH)
                  return itd_submit(oxu, urb, mem_flags);
            else
                  return sitd_submit(oxu, urb, mem_flags);
      }
}

/* This function is responsible for breaking URBs with big data size
 * into smaller size and processing small urbs in sequence.
 */
static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
                        gfp_t mem_flags)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      int num, rem;
      int transfer_buffer_length;
      void *transfer_buffer;
      struct urb *murb;
      int i, ret;

      /* If not bulk pipe just enqueue the URB */
      if (!usb_pipebulk(urb->pipe))
            return __oxu_urb_enqueue(hcd, urb, mem_flags);

      /* Otherwise we should verify the USB transfer buffer size! */
      transfer_buffer = urb->transfer_buffer;
      transfer_buffer_length = urb->transfer_buffer_length;

      num = urb->transfer_buffer_length / 4096;
      rem = urb->transfer_buffer_length % 4096;
      if (rem != 0)
            num++;

      /* If URB is smaller than 4096 bytes just enqueue it! */
      if (num == 1)
            return __oxu_urb_enqueue(hcd, urb, mem_flags);

      /* Ok, we have more job to do! :) */

      for (i = 0; i < num - 1; i++) {
            /* Get free micro URB poll till a free urb is recieved */

            do {
                  murb = (struct urb *) oxu_murb_alloc(oxu);
                  if (!murb)
                        schedule();
            } while (!murb);

            /* Coping the urb */
            memcpy(murb, urb, sizeof(struct urb));

            murb->transfer_buffer_length = 4096;
            murb->transfer_buffer = transfer_buffer + i * 4096;

            /* Null pointer for the encodes that this is a micro urb */
            murb->complete = NULL;

            ((struct oxu_murb *) murb)->main = urb;
            ((struct oxu_murb *) murb)->last = 0;

            /* This loop is to guarantee urb to be processed when there's
             * not enough resources at a particular time by retrying.
             */
            do {
                  ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
                  if (ret)
                        schedule();
            } while (ret);
      }

      /* Last urb requires special handling  */

      /* Get free micro URB poll till a free urb is recieved */
      do {
            murb = (struct urb *) oxu_murb_alloc(oxu);
            if (!murb)
                  schedule();
      } while (!murb);

      /* Coping the urb */
      memcpy(murb, urb, sizeof(struct urb));

      murb->transfer_buffer_length = rem > 0 ? rem : 4096;
      murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;

      /* Null pointer for the encodes that this is a micro urb */
      murb->complete = NULL;

      ((struct oxu_murb *) murb)->main = urb;
      ((struct oxu_murb *) murb)->last = 1;

      do {
            ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
            if (ret)
                  schedule();
      } while (ret);

      return ret;
}

/* Remove from hardware lists.
 * Completions normally happen asynchronously
 */
static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      struct ehci_qh *qh;
      unsigned long flags;

      spin_lock_irqsave(&oxu->lock, flags);
      switch (usb_pipetype(urb->pipe)) {
      case PIPE_CONTROL:
      case PIPE_BULK:
      default:
            qh = (struct ehci_qh *) urb->hcpriv;
            if (!qh)
                  break;
            unlink_async(oxu, qh);
            break;

      case PIPE_INTERRUPT:
            qh = (struct ehci_qh *) urb->hcpriv;
            if (!qh)
                  break;
            switch (qh->qh_state) {
            case QH_STATE_LINKED:
                  intr_deschedule(oxu, qh);
                  /* FALL THROUGH */
            case QH_STATE_IDLE:
                  qh_completions(oxu, qh);
                  break;
            default:
                  oxu_dbg(oxu, "bogus qh %p state %d\n",
                              qh, qh->qh_state);
                  goto done;
            }

            /* reschedule QH iff another request is queued */
            if (!list_empty(&qh->qtd_list)
                        && HC_IS_RUNNING(hcd->state)) {
                  int status;

                  status = qh_schedule(oxu, qh);
                  spin_unlock_irqrestore(&oxu->lock, flags);

                  if (status != 0) {
                        /* shouldn't happen often, but ...
                         * FIXME kill those tds' urbs
                         */
                        err("can't reschedule qh %p, err %d",
                              qh, status);
                  }
                  return status;
            }
            break;
      }
done:
      spin_unlock_irqrestore(&oxu->lock, flags);
      return 0;
}

/* Bulk qh holds the data toggle */
static void oxu_endpoint_disable(struct usb_hcd *hcd,
                              struct usb_host_endpoint *ep)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      unsigned long           flags;
      struct ehci_qh          *qh, *tmp;

      /* ASSERT:  any requests/urbs are being unlinked */
      /* ASSERT:  nobody can be submitting urbs for this any more */

rescan:
      spin_lock_irqsave(&oxu->lock, flags);
      qh = ep->hcpriv;
      if (!qh)
            goto done;

      /* endpoints can be iso streams.  for now, we don't
       * accelerate iso completions ... so spin a while.
       */
      if (qh->hw_info1 == 0) {
            oxu_vdbg(oxu, "iso delay\n");
            goto idle_timeout;
      }

      if (!HC_IS_RUNNING(hcd->state))
            qh->qh_state = QH_STATE_IDLE;
      switch (qh->qh_state) {
      case QH_STATE_LINKED:
            for (tmp = oxu->async->qh_next.qh;
                        tmp && tmp != qh;
                        tmp = tmp->qh_next.qh)
                  continue;
            /* periodic qh self-unlinks on empty */
            if (!tmp)
                  goto nogood;
            unlink_async(oxu, qh);
            /* FALL THROUGH */
      case QH_STATE_UNLINK:         /* wait for hw to finish? */
idle_timeout:
            spin_unlock_irqrestore(&oxu->lock, flags);
            schedule_timeout_uninterruptible(1);
            goto rescan;
      case QH_STATE_IDLE:           /* fully unlinked */
            if (list_empty(&qh->qtd_list)) {
                  qh_put(qh);
                  break;
            }
            /* else FALL THROUGH */
      default:
nogood:
            /* caller was supposed to have unlinked any requests;
             * that's not our job.  just leak this memory.
             */
            oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
                  qh, ep->desc.bEndpointAddress, qh->qh_state,
                  list_empty(&qh->qtd_list) ? "" : "(has tds)");
            break;
      }
      ep->hcpriv = NULL;
done:
      spin_unlock_irqrestore(&oxu->lock, flags);
      return;
}

static int oxu_get_frame(struct usb_hcd *hcd)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);

      return (readl(&oxu->regs->frame_index) >> 3) %
            oxu->periodic_size;
}

/* Build "status change" packet (one or two bytes) from HC registers */
static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      u32 temp, mask, status = 0;
      int ports, i, retval = 1;
      unsigned long flags;

      /* if !USB_SUSPEND, root hub timers won't get shut down ... */
      if (!HC_IS_RUNNING(hcd->state))
            return 0;

      /* init status to no-changes */
      buf[0] = 0;
      ports = HCS_N_PORTS(oxu->hcs_params);
      if (ports > 7) {
            buf[1] = 0;
            retval++;
      }

      /* Some boards (mostly VIA?) report bogus overcurrent indications,
       * causing massive log spam unless we completely ignore them.  It
       * may be relevant that VIA VT8235 controlers, where PORT_POWER is
       * always set, seem to clear PORT_OCC and PORT_CSC when writing to
       * PORT_POWER; that's surprising, but maybe within-spec.
       */
      if (!ignore_oc)
            mask = PORT_CSC | PORT_PEC | PORT_OCC;
      else
            mask = PORT_CSC | PORT_PEC;

      /* no hub change reports (bit 0) for now (power, ...) */

      /* port N changes (bit N)? */
      spin_lock_irqsave(&oxu->lock, flags);
      for (i = 0; i < ports; i++) {
            temp = readl(&oxu->regs->port_status[i]);

            /*
             * Return status information even for ports with OWNER set.
             * Otherwise khubd wouldn't see the disconnect event when a
             * high-speed device is switched over to the companion
             * controller by the user.
             */

            if (!(temp & PORT_CONNECT))
                  oxu->reset_done[i] = 0;
            if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
                        time_after_eq(jiffies, oxu->reset_done[i]))) {
                  if (i < 7)
                        buf[0] |= 1 << (i + 1);
                  else
                        buf[1] |= 1 << (i - 7);
                  status = STS_PCD;
            }
      }
      /* FIXME autosuspend idle root hubs */
      spin_unlock_irqrestore(&oxu->lock, flags);
      return status ? retval : 0;
}

/* Returns the speed of a device attached to a port on the root hub. */
static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
                                    unsigned int portsc)
{
      switch ((portsc >> 26) & 3) {
      case 0:
            return 0;
      case 1:
            return 1 << USB_PORT_FEAT_LOWSPEED;
      case 2:
      default:
            return 1 << USB_PORT_FEAT_HIGHSPEED;
      }
}

#define     PORT_WAKE_BITS    (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
                        u16 wValue, u16 wIndex, char *buf, u16 wLength)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      int ports = HCS_N_PORTS(oxu->hcs_params);
      u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
      u32 temp, status;
      unsigned long     flags;
      int retval = 0;
      unsigned selector;

      /*
       * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
       * HCS_INDICATOR may say we can change LEDs to off/amber/green.
       * (track current state ourselves) ... blink for diagnostics,
       * power, "this is the one", etc.  EHCI spec supports this.
       */

      spin_lock_irqsave(&oxu->lock, flags);
      switch (typeReq) {
      case ClearHubFeature:
            switch (wValue) {
            case C_HUB_LOCAL_POWER:
            case C_HUB_OVER_CURRENT:
                  /* no hub-wide feature/status flags */
                  break;
            default:
                  goto error;
            }
            break;
      case ClearPortFeature:
            if (!wIndex || wIndex > ports)
                  goto error;
            wIndex--;
            temp = readl(status_reg);

            /*
             * Even if OWNER is set, so the port is owned by the
             * companion controller, khubd needs to be able to clear
             * the port-change status bits (especially
             * USB_PORT_FEAT_C_CONNECTION).
             */

            switch (wValue) {
            case USB_PORT_FEAT_ENABLE:
                  writel(temp & ~PORT_PE, status_reg);
                  break;
            case USB_PORT_FEAT_C_ENABLE:
                  writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
                  break;
            case USB_PORT_FEAT_SUSPEND:
                  if (temp & PORT_RESET)
                        goto error;
                  if (temp & PORT_SUSPEND) {
                        if ((temp & PORT_PE) == 0)
                              goto error;
                        /* resume signaling for 20 msec */
                        temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
                        writel(temp | PORT_RESUME, status_reg);
                        oxu->reset_done[wIndex] = jiffies
                                    + msecs_to_jiffies(20);
                  }
                  break;
            case USB_PORT_FEAT_C_SUSPEND:
                  /* we auto-clear this feature */
                  break;
            case USB_PORT_FEAT_POWER:
                  if (HCS_PPC(oxu->hcs_params))
                        writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
                                status_reg);
                  break;
            case USB_PORT_FEAT_C_CONNECTION:
                  writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
                  break;
            case USB_PORT_FEAT_C_OVER_CURRENT:
                  writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
                  break;
            case USB_PORT_FEAT_C_RESET:
                  /* GetPortStatus clears reset */
                  break;
            default:
                  goto error;
            }
            readl(&oxu->regs->command);   /* unblock posted write */
            break;
      case GetHubDescriptor:
            ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
                  buf);
            break;
      case GetHubStatus:
            /* no hub-wide feature/status flags */
            memset(buf, 0, 4);
            break;
      case GetPortStatus:
            if (!wIndex || wIndex > ports)
                  goto error;
            wIndex--;
            status = 0;
            temp = readl(status_reg);

            /* wPortChange bits */
            if (temp & PORT_CSC)
                  status |= 1 << USB_PORT_FEAT_C_CONNECTION;
            if (temp & PORT_PEC)
                  status |= 1 << USB_PORT_FEAT_C_ENABLE;
            if ((temp & PORT_OCC) && !ignore_oc)
                  status |= 1 << USB_PORT_FEAT_C_OVER_CURRENT;

            /* whoever resumes must GetPortStatus to complete it!! */
            if (temp & PORT_RESUME) {

                  /* Remote Wakeup received? */
                  if (!oxu->reset_done[wIndex]) {
                        /* resume signaling for 20 msec */
                        oxu->reset_done[wIndex] = jiffies
                                    + msecs_to_jiffies(20);
                        /* check the port again */
                        mod_timer(&oxu_to_hcd(oxu)->rh_timer,
                                    oxu->reset_done[wIndex]);
                  }

                  /* resume completed? */
                  else if (time_after_eq(jiffies,
                              oxu->reset_done[wIndex])) {
                        status |= 1 << USB_PORT_FEAT_C_SUSPEND;
                        oxu->reset_done[wIndex] = 0;

                        /* stop resume signaling */
                        temp = readl(status_reg);
                        writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
                              status_reg);
                        retval = handshake(oxu, status_reg,
                                 PORT_RESUME, 0, 2000 /* 2msec */);
                        if (retval != 0) {
                              oxu_err(oxu,
                                    "port %d resume error %d\n",
                                    wIndex + 1, retval);
                              goto error;
                        }
                        temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
                  }
            }

            /* whoever resets must GetPortStatus to complete it!! */
            if ((temp & PORT_RESET)
                        && time_after_eq(jiffies,
                              oxu->reset_done[wIndex])) {
                  status |= 1 << USB_PORT_FEAT_C_RESET;
                  oxu->reset_done[wIndex] = 0;

                  /* force reset to complete */
                  writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
                              status_reg);
                  /* REVISIT:  some hardware needs 550+ usec to clear
                   * this bit; seems too long to spin routinely...
                   */
                  retval = handshake(oxu, status_reg,
                              PORT_RESET, 0, 750);
                  if (retval != 0) {
                        oxu_err(oxu, "port %d reset error %d\n",
                              wIndex + 1, retval);
                        goto error;
                  }

                  /* see what we found out */
                  temp = check_reset_complete(oxu, wIndex, status_reg,
                              readl(status_reg));
            }

            /* transfer dedicated ports to the companion hc */
            if ((temp & PORT_CONNECT) &&
                        test_bit(wIndex, &oxu->companion_ports)) {
                  temp &= ~PORT_RWC_BITS;
                  temp |= PORT_OWNER;
                  writel(temp, status_reg);
                  oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
                  temp = readl(status_reg);
            }

            /*
             * Even if OWNER is set, there's no harm letting khubd
             * see the wPortStatus values (they should all be 0 except
             * for PORT_POWER anyway).
             */

            if (temp & PORT_CONNECT) {
                  status |= 1 << USB_PORT_FEAT_CONNECTION;
                  /* status may be from integrated TT */
                  status |= oxu_port_speed(oxu, temp);
            }
            if (temp & PORT_PE)
                  status |= 1 << USB_PORT_FEAT_ENABLE;
            if (temp & (PORT_SUSPEND|PORT_RESUME))
                  status |= 1 << USB_PORT_FEAT_SUSPEND;
            if (temp & PORT_OC)
                  status |= 1 << USB_PORT_FEAT_OVER_CURRENT;
            if (temp & PORT_RESET)
                  status |= 1 << USB_PORT_FEAT_RESET;
            if (temp & PORT_POWER)
                  status |= 1 << USB_PORT_FEAT_POWER;

#ifndef     OXU_VERBOSE_DEBUG
      if (status & ~0xffff)   /* only if wPortChange is interesting */
#endif
            dbg_port(oxu, "GetStatus", wIndex + 1, temp);
            put_unaligned(cpu_to_le32(status), (__le32 *) buf);
            break;
      case SetHubFeature:
            switch (wValue) {
            case C_HUB_LOCAL_POWER:
            case C_HUB_OVER_CURRENT:
                  /* no hub-wide feature/status flags */
                  break;
            default:
                  goto error;
            }
            break;
      case SetPortFeature:
            selector = wIndex >> 8;
            wIndex &= 0xff;
            if (!wIndex || wIndex > ports)
                  goto error;
            wIndex--;
            temp = readl(status_reg);
            if (temp & PORT_OWNER)
                  break;

            temp &= ~PORT_RWC_BITS;
            switch (wValue) {
            case USB_PORT_FEAT_SUSPEND:
                  if ((temp & PORT_PE) == 0
                              || (temp & PORT_RESET) != 0)
                        goto error;
                  if (device_may_wakeup(&hcd->self.root_hub->dev))
                        temp |= PORT_WAKE_BITS;
                  writel(temp | PORT_SUSPEND, status_reg);
                  break;
            case USB_PORT_FEAT_POWER:
                  if (HCS_PPC(oxu->hcs_params))
                        writel(temp | PORT_POWER, status_reg);
                  break;
            case USB_PORT_FEAT_RESET:
                  if (temp & PORT_RESUME)
                        goto error;
                  /* line status bits may report this as low speed,
                   * which can be fine if this root hub has a
                   * transaction translator built in.
                   */
                  oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
                  temp |= PORT_RESET;
                  temp &= ~PORT_PE;

                  /*
                   * caller must wait, then call GetPortStatus
                   * usb 2.0 spec says 50 ms resets on root
                   */
                  oxu->reset_done[wIndex] = jiffies
                              + msecs_to_jiffies(50);
                  writel(temp, status_reg);
                  break;

            /* For downstream facing ports (these):  one hub port is put
             * into test mode according to USB2 11.24.2.13, then the hub
             * must be reset (which for root hub now means rmmod+modprobe,
             * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
             * about the EHCI-specific stuff.
             */
            case USB_PORT_FEAT_TEST:
                  if (!selector || selector > 5)
                        goto error;
                  ehci_quiesce(oxu);
                  ehci_halt(oxu);
                  temp |= selector << 16;
                  writel(temp, status_reg);
                  break;

            default:
                  goto error;
            }
            readl(&oxu->regs->command);   /* unblock posted writes */
            break;

      default:
error:
            /* "stall" on error */
            retval = -EPIPE;
      }
      spin_unlock_irqrestore(&oxu->lock, flags);
      return retval;
}

#ifdef CONFIG_PM

static int oxu_bus_suspend(struct usb_hcd *hcd)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      int port;
      int mask;

      oxu_dbg(oxu, "suspend root hub\n");

      if (time_before(jiffies, oxu->next_statechange))
            msleep(5);

      port = HCS_N_PORTS(oxu->hcs_params);
      spin_lock_irq(&oxu->lock);

      /* stop schedules, clean any completed work */
      if (HC_IS_RUNNING(hcd->state)) {
            ehci_quiesce(oxu);
            hcd->state = HC_STATE_QUIESCING;
      }
      oxu->command = readl(&oxu->regs->command);
      if (oxu->reclaim)
            oxu->reclaim_ready = 1;
      ehci_work(oxu);

      /* Unlike other USB host controller types, EHCI doesn't have
       * any notion of "global" or bus-wide suspend.  The driver has
       * to manually suspend all the active unsuspended ports, and
       * then manually resume them in the bus_resume() routine.
       */
      oxu->bus_suspended = 0;
      while (port--) {
            u32 __iomem *reg = &oxu->regs->port_status[port];
            u32 t1 = readl(reg) & ~PORT_RWC_BITS;
            u32 t2 = t1;

            /* keep track of which ports we suspend */
            if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
                        !(t1 & PORT_SUSPEND)) {
                  t2 |= PORT_SUSPEND;
                  set_bit(port, &oxu->bus_suspended);
            }

            /* enable remote wakeup on all ports */
            if (device_may_wakeup(&hcd->self.root_hub->dev))
                  t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
            else
                  t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);

            if (t1 != t2) {
                  oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
                        port + 1, t1, t2);
                  writel(t2, reg);
            }
      }

      /* turn off now-idle HC */
      del_timer_sync(&oxu->watchdog);
      ehci_halt(oxu);
      hcd->state = HC_STATE_SUSPENDED;

      /* allow remote wakeup */
      mask = INTR_MASK;
      if (!device_may_wakeup(&hcd->self.root_hub->dev))
            mask &= ~STS_PCD;
      writel(mask, &oxu->regs->intr_enable);
      readl(&oxu->regs->intr_enable);

      oxu->next_statechange = jiffies + msecs_to_jiffies(10);
      spin_unlock_irq(&oxu->lock);
      return 0;
}

/* Caller has locked the root hub, and should reset/reinit on error */
static int oxu_bus_resume(struct usb_hcd *hcd)
{
      struct oxu_hcd *oxu = hcd_to_oxu(hcd);
      u32 temp;
      int i;

      if (time_before(jiffies, oxu->next_statechange))
            msleep(5);
      spin_lock_irq(&oxu->lock);

      /* Ideally and we've got a real resume here, and no port's power
       * was lost.  (For PCI, that means Vaux was maintained.)  But we
       * could instead be restoring a swsusp snapshot -- so that BIOS was
       * the last user of the controller, not reset/pm hardware keeping
       * state we gave to it.
       */
      temp = readl(&oxu->regs->intr_enable);
      oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");

      /* at least some APM implementations will try to deliver
       * IRQs right away, so delay them until we're ready.
       */
      writel(0, &oxu->regs->intr_enable);

      /* re-init operational registers */
      writel(0, &oxu->regs->segment);
      writel(oxu->periodic_dma, &oxu->regs->frame_list);
      writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);

      /* restore CMD_RUN, framelist size, and irq threshold */
      writel(oxu->command, &oxu->regs->command);

      /* Some controller/firmware combinations need a delay during which
       * they set up the port statuses.  See Bugzilla #8190. */
      mdelay(8);

      /* manually resume the ports we suspended during bus_suspend() */
      i = HCS_N_PORTS(oxu->hcs_params);
      while (i--) {
            temp = readl(&oxu->regs->port_status[i]);
            temp &= ~(PORT_RWC_BITS
                  | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
            if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
                  oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
                  temp |= PORT_RESUME;
            }
            writel(temp, &oxu->regs->port_status[i]);
      }
      i = HCS_N_PORTS(oxu->hcs_params);
      mdelay(20);
      while (i--) {
            temp = readl(&oxu->regs->port_status[i]);
            if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
                  temp &= ~(PORT_RWC_BITS | PORT_RESUME);
                  writel(temp, &oxu->regs->port_status[i]);
                  oxu_vdbg(oxu, "resumed port %d\n", i + 1);
            }
      }
      (void) readl(&oxu->regs->command);

      /* maybe re-activate the schedule(s) */
      temp = 0;
      if (oxu->async->qh_next.qh)
            temp |= CMD_ASE;
      if (oxu->periodic_sched)
            temp |= CMD_PSE;
      if (temp) {
            oxu->command |= temp;
            writel(oxu->command, &oxu->regs->command);
      }

      oxu->next_statechange = jiffies + msecs_to_jiffies(5);
      hcd->state = HC_STATE_RUNNING;

      /* Now we can safely re-enable irqs */
      writel(INTR_MASK, &oxu->regs->intr_enable);

      spin_unlock_irq(&oxu->lock);
      return 0;
}

#else

static int oxu_bus_suspend(struct usb_hcd *hcd)
{
      return 0;
}

static int oxu_bus_resume(struct usb_hcd *hcd)
{
      return 0;
}

#endif      /* CONFIG_PM */

static const struct hc_driver oxu_hc_driver = {
      .description =          "oxu210hp_hcd",
      .product_desc =         "oxu210hp HCD",
      .hcd_priv_size =  sizeof(struct oxu_hcd),

      /*
       * Generic hardware linkage
       */
      .irq =                  oxu_irq,
      .flags =          HCD_MEMORY | HCD_USB2,

      /*
       * Basic lifecycle operations
       */
      .reset =          oxu_reset,
      .start =          oxu_run,
      .stop =                 oxu_stop,
      .shutdown =       oxu_shutdown,

      /*
       * Managing i/o requests and associated device resources
       */
      .urb_enqueue =          oxu_urb_enqueue,
      .urb_dequeue =          oxu_urb_dequeue,
      .endpoint_disable =     oxu_endpoint_disable,

      /*
       * Scheduling support
       */
      .get_frame_number =     oxu_get_frame,

      /*
       * Root hub support
       */
      .hub_status_data =      oxu_hub_status_data,
      .hub_control =          oxu_hub_control,
      .bus_suspend =          oxu_bus_suspend,
      .bus_resume =           oxu_bus_resume,
};

/*
 * Module stuff
 */

static void oxu_configuration(struct platform_device *pdev, void *base)
{
      u32 tmp;

      /* Initialize top level registers.
       * First write ever
       */
      oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
      oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
      oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);

      tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
      oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);

      oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
                              OXU_COMPARATOR | OXU_ASO_OP);

      tmp = oxu_readl(base, OXU_CLKCTRL_SET);
      oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);

      /* Clear all top interrupt enable */
      oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);

      /* Clear all top interrupt status */
      oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);

      /* Enable all needed top interrupt except OTG SPH core */
      oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
}

static int oxu_verify_id(struct platform_device *pdev, void *base)
{
      u32 id;
      char *bo[] = {
            "reserved",
            "128-pin LQFP",
            "84-pin TFBGA",
            "reserved",
      };

      /* Read controller signature register to find a match */
      id = oxu_readl(base, OXU_DEVICEID);
      dev_info(&pdev->dev, "device ID %x\n", id);
      if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
            return -1;

      dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
            id >> OXU_REV_SHIFT,
            bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
            (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
            (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);

      return 0;
}

static const struct hc_driver oxu_hc_driver;
static struct usb_hcd *oxu_create(struct platform_device *pdev,
                        unsigned long memstart, unsigned long memlen,
                        void *base, int irq, int otg)
{
      struct device *dev = &pdev->dev;

      struct usb_hcd *hcd;
      struct oxu_hcd *oxu;
      int ret;

      /* Set endian mode and host mode */
      oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
                        OXU_USBMODE,
                        OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);

      hcd = usb_create_hcd(&oxu_hc_driver, dev,
                        otg ? "oxu210hp_otg" : "oxu210hp_sph");
      if (!hcd)
            return ERR_PTR(-ENOMEM);

      hcd->rsrc_start = memstart;
      hcd->rsrc_len = memlen;
      hcd->regs = base;
      hcd->irq = irq;
      hcd->state = HC_STATE_HALT;

      oxu = hcd_to_oxu(hcd);
      oxu->is_otg = otg;

      ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
      if (ret < 0)
            return ERR_PTR(ret);

      return hcd;
}

static int oxu_init(struct platform_device *pdev,
                        unsigned long memstart, unsigned long memlen,
                        void *base, int irq)
{
      struct oxu_info *info = platform_get_drvdata(pdev);
      struct usb_hcd *hcd;
      int ret;

      /* First time configuration at start up */
      oxu_configuration(pdev, base);

      ret = oxu_verify_id(pdev, base);
      if (ret) {
            dev_err(&pdev->dev, "no devices found!\n");
            return -ENODEV;
      }

      /* Create the OTG controller */
      hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
      if (IS_ERR(hcd)) {
            dev_err(&pdev->dev, "cannot create OTG controller!\n");
            ret = PTR_ERR(hcd);
            goto error_create_otg;
      }
      info->hcd[0] = hcd;

      /* Create the SPH host controller */
      hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
      if (IS_ERR(hcd)) {
            dev_err(&pdev->dev, "cannot create SPH controller!\n");
            ret = PTR_ERR(hcd);
            goto error_create_sph;
      }
      info->hcd[1] = hcd;

      oxu_writel(base, OXU_CHIPIRQEN_SET,
            oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);

      return 0;

error_create_sph:
      usb_remove_hcd(info->hcd[0]);
      usb_put_hcd(info->hcd[0]);

error_create_otg:
      return ret;
}

static int oxu_drv_probe(struct platform_device *pdev)
{
      struct resource *res;
      void *base;
      unsigned long memstart, memlen;
      int irq, ret;
      struct oxu_info *info;

      if (usb_disabled())
            return -ENODEV;

      /*
       * Get the platform resources
       */
      res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
      if (!res) {
            dev_err(&pdev->dev,
                  "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
            return -ENODEV;
      }
      irq = res->start;
      dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);

      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
      if (!res) {
            dev_err(&pdev->dev, "no registers address! Check %s setup!\n",
                  dev_name(&pdev->dev));
            return -ENODEV;
      }
      memstart = res->start;
      memlen = res->end - res->start + 1;
      dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen);
      if (!request_mem_region(memstart, memlen,
                        oxu_hc_driver.description)) {
            dev_dbg(&pdev->dev, "memory area already in use\n");
            return -EBUSY;
      }

      ret = set_irq_type(irq, IRQF_TRIGGER_FALLING);
      if (ret) {
            dev_err(&pdev->dev, "error setting irq type\n");
            ret = -EFAULT;
            goto error_set_irq_type;
      }

      base = ioremap(memstart, memlen);
      if (!base) {
            dev_dbg(&pdev->dev, "error mapping memory\n");
            ret = -EFAULT;
            goto error_ioremap;
      }

      /* Allocate a driver data struct to hold useful info for both
       * SPH & OTG devices
       */
      info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL);
      if (!info) {
            dev_dbg(&pdev->dev, "error allocating memory\n");
            ret = -EFAULT;
            goto error_alloc;
      }
      platform_set_drvdata(pdev, info);

      ret = oxu_init(pdev, memstart, memlen, base, irq);
      if (ret < 0) {
            dev_dbg(&pdev->dev, "cannot init USB devices\n");
            goto error_init;
      }

      dev_info(&pdev->dev, "devices enabled and running\n");
      platform_set_drvdata(pdev, info);

      return 0;

error_init:
      kfree(info);
      platform_set_drvdata(pdev, NULL);

error_alloc:
      iounmap(base);

error_set_irq_type:
error_ioremap:
      release_mem_region(memstart, memlen);

      dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
      return ret;
}

static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
{
      usb_remove_hcd(hcd);
      usb_put_hcd(hcd);
}

static int oxu_drv_remove(struct platform_device *pdev)
{
      struct oxu_info *info = platform_get_drvdata(pdev);
      unsigned long memstart = info->hcd[0]->rsrc_start,
                  memlen = info->hcd[0]->rsrc_len;
      void *base = info->hcd[0]->regs;

      oxu_remove(pdev, info->hcd[0]);
      oxu_remove(pdev, info->hcd[1]);

      iounmap(base);
      release_mem_region(memstart, memlen);

      kfree(info);
      platform_set_drvdata(pdev, NULL);

      return 0;
}

static void oxu_drv_shutdown(struct platform_device *pdev)
{
      oxu_drv_remove(pdev);
}

#if 0
/* FIXME: TODO */
static int oxu_drv_suspend(struct device *dev)
{
      struct platform_device *pdev = to_platform_device(dev);
      struct usb_hcd *hcd = dev_get_drvdata(dev);

      return 0;
}

static int oxu_drv_resume(struct device *dev)
{
      struct platform_device *pdev = to_platform_device(dev);
      struct usb_hcd *hcd = dev_get_drvdata(dev);

      return 0;
}
#else
#define oxu_drv_suspend NULL
#define oxu_drv_resume  NULL
#endif

static struct platform_driver oxu_driver = {
      .probe            = oxu_drv_probe,
      .remove           = oxu_drv_remove,
      .shutdown   = oxu_drv_shutdown,
      .suspend    = oxu_drv_suspend,
      .resume           = oxu_drv_resume,
      .driver = {
            .name = "oxu210hp-hcd",
            .bus = &platform_bus_type
      }
};

static int __init oxu_module_init(void)
{
      int retval = 0;

      retval = platform_driver_register(&oxu_driver);
      if (retval < 0)
            return retval;

      return retval;
}

static void __exit oxu_module_cleanup(void)
{
      platform_driver_unregister(&oxu_driver);
}

module_init(oxu_module_init);
module_exit(oxu_module_cleanup);

MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index