Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

s2io.c

/************************************************************************
 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
 * Copyright(c) 2002-2007 Neterion Inc.

 * This software may be used and distributed according to the terms of
 * the GNU General Public License (GPL), incorporated herein by reference.
 * Drivers based on or derived from this code fall under the GPL and must
 * retain the authorship, copyright and license notice.  This file is not
 * a complete program and may only be used when the entire operating
 * system is licensed under the GPL.
 * See the file COPYING in this distribution for more information.
 *
 * Credits:
 * Jeff Garzik          : For pointing out the improper error condition
 *                  check in the s2io_xmit routine and also some
 *                  issues in the Tx watch dog function. Also for
 *                  patiently answering all those innumerable
 *                  questions regaring the 2.6 porting issues.
 * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
 *                  macros available only in 2.6 Kernel.
 * Francois Romieu      : For pointing out all code part that were
 *                  deprecated and also styling related comments.
 * Grant Grundler : For helping me get rid of some Architecture
 *                  dependent code.
 * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
 *
 * The module loadable parameters that are supported by the driver and a brief
 * explaination of all the variables.
 *
 * rx_ring_num : This can be used to program the number of receive rings used
 * in the driver.
 * rx_ring_sz: This defines the number of receive blocks each ring can have.
 *     This is also an array of size 8.
 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
 *          values are 1, 2.
 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
 * tx_fifo_len: This too is an array of 8. Each element defines the number of
 * Tx descriptors that can be associated with each corresponding FIFO.
 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
 *     2(MSI_X). Default value is '2(MSI_X)'
 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
 *     Possible values '1' for enable '0' for disable. Default is '0'
 * lro_max_pkts: This parameter defines maximum number of packets can be
 *     aggregated as a single large packet
 * napi: This parameter used to enable/disable NAPI (polling Rx)
 *     Possible values '1' for enable and '0' for disable. Default is '1'
 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
 *      Possible values '1' for enable and '0' for disable. Default is '0'
 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
 *                 Possible values '1' for enable , '0' for disable.
 *                 Default is '2' - which means disable in promisc mode
 *                 and enable in non-promiscuous mode.
 * multiq: This parameter used to enable/disable MULTIQUEUE support.
 *      Possible values '1' for enable and '0' for disable. Default is '0'
 ************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mdio.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/stddef.h>
#include <linux/ioctl.h>
#include <linux/timex.h>
#include <linux/ethtool.h>
#include <linux/workqueue.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <net/tcp.h>

#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/div64.h>
#include <asm/irq.h>

/* local include */
#include "s2io.h"
#include "s2io-regs.h"

#define DRV_VERSION "2.0.26.25"

/* S2io Driver name & version. */
static char s2io_driver_name[] = "Neterion";
static char s2io_driver_version[] = DRV_VERSION;

static int rxd_size[2] = {32,48};
static int rxd_count[2] = {127,85};

static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
{
      int ret;

      ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
            (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));

      return ret;
}

/*
 * Cards with following subsystem_id have a link state indication
 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
 * macro below identifies these cards given the subsystem_id.
 */
#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
      (dev_type == XFRAME_I_DEVICE) ?                 \
            ((((subid >= 0x600B) && (subid <= 0x600D)) || \
             ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0

#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
                              ADAPTER_STATUS_RMAC_LOCAL_FAULT)))

static inline int is_s2io_card_up(const struct s2io_nic * sp)
{
      return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
}

/* Ethtool related variables and Macros. */
static char s2io_gstrings[][ETH_GSTRING_LEN] = {
      "Register test\t(offline)",
      "Eeprom test\t(offline)",
      "Link test\t(online)",
      "RLDRAM test\t(offline)",
      "BIST Test\t(offline)"
};

static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
      {"tmac_frms"},
      {"tmac_data_octets"},
      {"tmac_drop_frms"},
      {"tmac_mcst_frms"},
      {"tmac_bcst_frms"},
      {"tmac_pause_ctrl_frms"},
      {"tmac_ttl_octets"},
      {"tmac_ucst_frms"},
      {"tmac_nucst_frms"},
      {"tmac_any_err_frms"},
      {"tmac_ttl_less_fb_octets"},
      {"tmac_vld_ip_octets"},
      {"tmac_vld_ip"},
      {"tmac_drop_ip"},
      {"tmac_icmp"},
      {"tmac_rst_tcp"},
      {"tmac_tcp"},
      {"tmac_udp"},
      {"rmac_vld_frms"},
      {"rmac_data_octets"},
      {"rmac_fcs_err_frms"},
      {"rmac_drop_frms"},
      {"rmac_vld_mcst_frms"},
      {"rmac_vld_bcst_frms"},
      {"rmac_in_rng_len_err_frms"},
      {"rmac_out_rng_len_err_frms"},
      {"rmac_long_frms"},
      {"rmac_pause_ctrl_frms"},
      {"rmac_unsup_ctrl_frms"},
      {"rmac_ttl_octets"},
      {"rmac_accepted_ucst_frms"},
      {"rmac_accepted_nucst_frms"},
      {"rmac_discarded_frms"},
      {"rmac_drop_events"},
      {"rmac_ttl_less_fb_octets"},
      {"rmac_ttl_frms"},
      {"rmac_usized_frms"},
      {"rmac_osized_frms"},
      {"rmac_frag_frms"},
      {"rmac_jabber_frms"},
      {"rmac_ttl_64_frms"},
      {"rmac_ttl_65_127_frms"},
      {"rmac_ttl_128_255_frms"},
      {"rmac_ttl_256_511_frms"},
      {"rmac_ttl_512_1023_frms"},
      {"rmac_ttl_1024_1518_frms"},
      {"rmac_ip"},
      {"rmac_ip_octets"},
      {"rmac_hdr_err_ip"},
      {"rmac_drop_ip"},
      {"rmac_icmp"},
      {"rmac_tcp"},
      {"rmac_udp"},
      {"rmac_err_drp_udp"},
      {"rmac_xgmii_err_sym"},
      {"rmac_frms_q0"},
      {"rmac_frms_q1"},
      {"rmac_frms_q2"},
      {"rmac_frms_q3"},
      {"rmac_frms_q4"},
      {"rmac_frms_q5"},
      {"rmac_frms_q6"},
      {"rmac_frms_q7"},
      {"rmac_full_q0"},
      {"rmac_full_q1"},
      {"rmac_full_q2"},
      {"rmac_full_q3"},
      {"rmac_full_q4"},
      {"rmac_full_q5"},
      {"rmac_full_q6"},
      {"rmac_full_q7"},
      {"rmac_pause_cnt"},
      {"rmac_xgmii_data_err_cnt"},
      {"rmac_xgmii_ctrl_err_cnt"},
      {"rmac_accepted_ip"},
      {"rmac_err_tcp"},
      {"rd_req_cnt"},
      {"new_rd_req_cnt"},
      {"new_rd_req_rtry_cnt"},
      {"rd_rtry_cnt"},
      {"wr_rtry_rd_ack_cnt"},
      {"wr_req_cnt"},
      {"new_wr_req_cnt"},
      {"new_wr_req_rtry_cnt"},
      {"wr_rtry_cnt"},
      {"wr_disc_cnt"},
      {"rd_rtry_wr_ack_cnt"},
      {"txp_wr_cnt"},
      {"txd_rd_cnt"},
      {"txd_wr_cnt"},
      {"rxd_rd_cnt"},
      {"rxd_wr_cnt"},
      {"txf_rd_cnt"},
      {"rxf_wr_cnt"}
};

static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
      {"rmac_ttl_1519_4095_frms"},
      {"rmac_ttl_4096_8191_frms"},
      {"rmac_ttl_8192_max_frms"},
      {"rmac_ttl_gt_max_frms"},
      {"rmac_osized_alt_frms"},
      {"rmac_jabber_alt_frms"},
      {"rmac_gt_max_alt_frms"},
      {"rmac_vlan_frms"},
      {"rmac_len_discard"},
      {"rmac_fcs_discard"},
      {"rmac_pf_discard"},
      {"rmac_da_discard"},
      {"rmac_red_discard"},
      {"rmac_rts_discard"},
      {"rmac_ingm_full_discard"},
      {"link_fault_cnt"}
};

static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
      {"\n DRIVER STATISTICS"},
      {"single_bit_ecc_errs"},
      {"double_bit_ecc_errs"},
      {"parity_err_cnt"},
      {"serious_err_cnt"},
      {"soft_reset_cnt"},
      {"fifo_full_cnt"},
      {"ring_0_full_cnt"},
      {"ring_1_full_cnt"},
      {"ring_2_full_cnt"},
      {"ring_3_full_cnt"},
      {"ring_4_full_cnt"},
      {"ring_5_full_cnt"},
      {"ring_6_full_cnt"},
      {"ring_7_full_cnt"},
      {"alarm_transceiver_temp_high"},
      {"alarm_transceiver_temp_low"},
      {"alarm_laser_bias_current_high"},
      {"alarm_laser_bias_current_low"},
      {"alarm_laser_output_power_high"},
      {"alarm_laser_output_power_low"},
      {"warn_transceiver_temp_high"},
      {"warn_transceiver_temp_low"},
      {"warn_laser_bias_current_high"},
      {"warn_laser_bias_current_low"},
      {"warn_laser_output_power_high"},
      {"warn_laser_output_power_low"},
      {"lro_aggregated_pkts"},
      {"lro_flush_both_count"},
      {"lro_out_of_sequence_pkts"},
      {"lro_flush_due_to_max_pkts"},
      {"lro_avg_aggr_pkts"},
      {"mem_alloc_fail_cnt"},
      {"pci_map_fail_cnt"},
      {"watchdog_timer_cnt"},
      {"mem_allocated"},
      {"mem_freed"},
      {"link_up_cnt"},
      {"link_down_cnt"},
      {"link_up_time"},
      {"link_down_time"},
      {"tx_tcode_buf_abort_cnt"},
      {"tx_tcode_desc_abort_cnt"},
      {"tx_tcode_parity_err_cnt"},
      {"tx_tcode_link_loss_cnt"},
      {"tx_tcode_list_proc_err_cnt"},
      {"rx_tcode_parity_err_cnt"},
      {"rx_tcode_abort_cnt"},
      {"rx_tcode_parity_abort_cnt"},
      {"rx_tcode_rda_fail_cnt"},
      {"rx_tcode_unkn_prot_cnt"},
      {"rx_tcode_fcs_err_cnt"},
      {"rx_tcode_buf_size_err_cnt"},
      {"rx_tcode_rxd_corrupt_cnt"},
      {"rx_tcode_unkn_err_cnt"},
      {"tda_err_cnt"},
      {"pfc_err_cnt"},
      {"pcc_err_cnt"},
      {"tti_err_cnt"},
      {"tpa_err_cnt"},
      {"sm_err_cnt"},
      {"lso_err_cnt"},
      {"mac_tmac_err_cnt"},
      {"mac_rmac_err_cnt"},
      {"xgxs_txgxs_err_cnt"},
      {"xgxs_rxgxs_err_cnt"},
      {"rc_err_cnt"},
      {"prc_pcix_err_cnt"},
      {"rpa_err_cnt"},
      {"rda_err_cnt"},
      {"rti_err_cnt"},
      {"mc_err_cnt"}
};

#define S2IO_XENA_STAT_LEN    ARRAY_SIZE(ethtool_xena_stats_keys)
#define S2IO_ENHANCED_STAT_LEN      ARRAY_SIZE(ethtool_enhanced_stats_keys)
#define S2IO_DRIVER_STAT_LEN  ARRAY_SIZE(ethtool_driver_stats_keys)

#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )

#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )

#define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
#define S2IO_STRINGS_LEN      S2IO_TEST_LEN * ETH_GSTRING_LEN

#define S2IO_TIMER_CONF(timer, handle, arg, exp)            \
                  init_timer(&timer);                 \
                  timer.function = handle;            \
                  timer.data = (unsigned long) arg;   \
                  mod_timer(&timer, (jiffies + exp))  \

/* copy mac addr to def_mac_addr array */
static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
{
      sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
      sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
      sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
      sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
      sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
      sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
}

/* Add the vlan */
static void s2io_vlan_rx_register(struct net_device *dev,
                          struct vlan_group *grp)
{
      int i;
      struct s2io_nic *nic = netdev_priv(dev);
      unsigned long flags[MAX_TX_FIFOS];
      struct mac_info *mac_control = &nic->mac_control;
      struct config_param *config = &nic->config;

      for (i = 0; i < config->tx_fifo_num; i++)
            spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);

      nic->vlgrp = grp;
      for (i = config->tx_fifo_num - 1; i >= 0; i--)
            spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
                        flags[i]);
}

/* Unregister the vlan */
static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
      int i;
      struct s2io_nic *nic = netdev_priv(dev);
      unsigned long flags[MAX_TX_FIFOS];
      struct mac_info *mac_control = &nic->mac_control;
      struct config_param *config = &nic->config;

      for (i = 0; i < config->tx_fifo_num; i++)
            spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);

      if (nic->vlgrp)
            vlan_group_set_device(nic->vlgrp, vid, NULL);

      for (i = config->tx_fifo_num - 1; i >= 0; i--)
            spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
                  flags[i]);
}

/*
 * Constants to be programmed into the Xena's registers, to configure
 * the XAUI.
 */

#define     END_SIGN    0x0
static const u64 herc_act_dtx_cfg[] = {
      /* Set address */
      0x8000051536750000ULL, 0x80000515367500E0ULL,
      /* Write data */
      0x8000051536750004ULL, 0x80000515367500E4ULL,
      /* Set address */
      0x80010515003F0000ULL, 0x80010515003F00E0ULL,
      /* Write data */
      0x80010515003F0004ULL, 0x80010515003F00E4ULL,
      /* Set address */
      0x801205150D440000ULL, 0x801205150D4400E0ULL,
      /* Write data */
      0x801205150D440004ULL, 0x801205150D4400E4ULL,
      /* Set address */
      0x80020515F2100000ULL, 0x80020515F21000E0ULL,
      /* Write data */
      0x80020515F2100004ULL, 0x80020515F21000E4ULL,
      /* Done */
      END_SIGN
};

static const u64 xena_dtx_cfg[] = {
      /* Set address */
      0x8000051500000000ULL, 0x80000515000000E0ULL,
      /* Write data */
      0x80000515D9350004ULL, 0x80000515D93500E4ULL,
      /* Set address */
      0x8001051500000000ULL, 0x80010515000000E0ULL,
      /* Write data */
      0x80010515001E0004ULL, 0x80010515001E00E4ULL,
      /* Set address */
      0x8002051500000000ULL, 0x80020515000000E0ULL,
      /* Write data */
      0x80020515F2100004ULL, 0x80020515F21000E4ULL,
      END_SIGN
};

/*
 * Constants for Fixing the MacAddress problem seen mostly on
 * Alpha machines.
 */
static const u64 fix_mac[] = {
      0x0060000000000000ULL, 0x0060600000000000ULL,
      0x0040600000000000ULL, 0x0000600000000000ULL,
      0x0020600000000000ULL, 0x0060600000000000ULL,
      0x0020600000000000ULL, 0x0060600000000000ULL,
      0x0020600000000000ULL, 0x0060600000000000ULL,
      0x0020600000000000ULL, 0x0060600000000000ULL,
      0x0020600000000000ULL, 0x0060600000000000ULL,
      0x0020600000000000ULL, 0x0060600000000000ULL,
      0x0020600000000000ULL, 0x0060600000000000ULL,
      0x0020600000000000ULL, 0x0060600000000000ULL,
      0x0020600000000000ULL, 0x0060600000000000ULL,
      0x0020600000000000ULL, 0x0060600000000000ULL,
      0x0020600000000000ULL, 0x0000600000000000ULL,
      0x0040600000000000ULL, 0x0060600000000000ULL,
      END_SIGN
};

MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);


/* Module Loadable parameters. */
S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
S2IO_PARM_INT(rx_ring_num, 1);
S2IO_PARM_INT(multiq, 0);
S2IO_PARM_INT(rx_ring_mode, 1);
S2IO_PARM_INT(use_continuous_tx_intrs, 1);
S2IO_PARM_INT(rmac_pause_time, 0x100);
S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
S2IO_PARM_INT(shared_splits, 0);
S2IO_PARM_INT(tmac_util_period, 5);
S2IO_PARM_INT(rmac_util_period, 5);
S2IO_PARM_INT(l3l4hdr_size, 128);
/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
/* Frequency of Rx desc syncs expressed as power of 2 */
S2IO_PARM_INT(rxsync_frequency, 3);
/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
S2IO_PARM_INT(intr_type, 2);
/* Large receive offload feature */
static unsigned int lro_enable;
module_param_named(lro, lro_enable, uint, 0);

/* Max pkts to be aggregated by LRO at one time. If not specified,
 * aggregation happens until we hit max IP pkt size(64K)
 */
S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
S2IO_PARM_INT(indicate_max_pkts, 0);

S2IO_PARM_INT(napi, 1);
S2IO_PARM_INT(ufo, 0);
S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);

static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
    {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
static unsigned int rx_ring_sz[MAX_RX_RINGS] =
    {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
static unsigned int rts_frm_len[MAX_RX_RINGS] =
    {[0 ...(MAX_RX_RINGS - 1)] = 0 };

module_param_array(tx_fifo_len, uint, NULL, 0);
module_param_array(rx_ring_sz, uint, NULL, 0);
module_param_array(rts_frm_len, uint, NULL, 0);

/*
 * S2IO device table.
 * This table lists all the devices that this driver supports.
 */
static struct pci_device_id s2io_tbl[] __devinitdata = {
      {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
       PCI_ANY_ID, PCI_ANY_ID},
      {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
       PCI_ANY_ID, PCI_ANY_ID},
      {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
         PCI_ANY_ID, PCI_ANY_ID},
        {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
         PCI_ANY_ID, PCI_ANY_ID},
      {0,}
};

MODULE_DEVICE_TABLE(pci, s2io_tbl);

static struct pci_error_handlers s2io_err_handler = {
      .error_detected = s2io_io_error_detected,
      .slot_reset = s2io_io_slot_reset,
      .resume = s2io_io_resume,
};

static struct pci_driver s2io_driver = {
      .name = "S2IO",
      .id_table = s2io_tbl,
      .probe = s2io_init_nic,
      .remove = __devexit_p(s2io_rem_nic),
      .err_handler = &s2io_err_handler,
};

/* A simplifier macro used both by init and free shared_mem Fns(). */
#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)

/* netqueue manipulation helper functions */
static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
{
      if (!sp->config.multiq) {
            int i;

            for (i = 0; i < sp->config.tx_fifo_num; i++)
                  sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
      }
      netif_tx_stop_all_queues(sp->dev);
}

static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
{
      if (!sp->config.multiq)
            sp->mac_control.fifos[fifo_no].queue_state =
                  FIFO_QUEUE_STOP;

      netif_tx_stop_all_queues(sp->dev);
}

static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
{
      if (!sp->config.multiq) {
            int i;

            for (i = 0; i < sp->config.tx_fifo_num; i++)
                  sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
      }
      netif_tx_start_all_queues(sp->dev);
}

static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
{
      if (!sp->config.multiq)
            sp->mac_control.fifos[fifo_no].queue_state =
                  FIFO_QUEUE_START;

      netif_tx_start_all_queues(sp->dev);
}

static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
{
      if (!sp->config.multiq) {
            int i;

            for (i = 0; i < sp->config.tx_fifo_num; i++)
                  sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
      }
      netif_tx_wake_all_queues(sp->dev);
}

static inline void s2io_wake_tx_queue(
      struct fifo_info *fifo, int cnt, u8 multiq)
{

      if (multiq) {
            if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
                  netif_wake_subqueue(fifo->dev, fifo->fifo_no);
      } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
            if (netif_queue_stopped(fifo->dev)) {
                  fifo->queue_state = FIFO_QUEUE_START;
                  netif_wake_queue(fifo->dev);
            }
      }
}

/**
 * init_shared_mem - Allocation and Initialization of Memory
 * @nic: Device private variable.
 * Description: The function allocates all the memory areas shared
 * between the NIC and the driver. This includes Tx descriptors,
 * Rx descriptors and the statistics block.
 */

static int init_shared_mem(struct s2io_nic *nic)
{
      u32 size;
      void *tmp_v_addr, *tmp_v_addr_next;
      dma_addr_t tmp_p_addr, tmp_p_addr_next;
      struct RxD_block *pre_rxd_blk = NULL;
      int i, j, blk_cnt;
      int lst_size, lst_per_page;
      struct net_device *dev = nic->dev;
      unsigned long tmp;
      struct buffAdd *ba;

      struct mac_info *mac_control;
      struct config_param *config;
      unsigned long long mem_allocated = 0;

      mac_control = &nic->mac_control;
      config = &nic->config;


      /* Allocation and initialization of TXDLs in FIOFs */
      size = 0;
      for (i = 0; i < config->tx_fifo_num; i++) {
            size += config->tx_cfg[i].fifo_len;
      }
      if (size > MAX_AVAILABLE_TXDS) {
            DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
            DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
            return -EINVAL;
      }

      size = 0;
      for (i = 0; i < config->tx_fifo_num; i++) {
            size = config->tx_cfg[i].fifo_len;
            /*
             * Legal values are from 2 to 8192
             */
            if (size < 2) {
                  DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
                  DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
                  DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
                        "are 2 to 8192\n");
                  return -EINVAL;
            }
      }

      lst_size = (sizeof(struct TxD) * config->max_txds);
      lst_per_page = PAGE_SIZE / lst_size;

      for (i = 0; i < config->tx_fifo_num; i++) {
            int fifo_len = config->tx_cfg[i].fifo_len;
            int list_holder_size = fifo_len * sizeof(struct list_info_hold);
            mac_control->fifos[i].list_info = kzalloc(list_holder_size,
                                            GFP_KERNEL);
            if (!mac_control->fifos[i].list_info) {
                  DBG_PRINT(INFO_DBG,
                          "Malloc failed for list_info\n");
                  return -ENOMEM;
            }
            mem_allocated += list_holder_size;
      }
      for (i = 0; i < config->tx_fifo_num; i++) {
            int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
                                    lst_per_page);
            mac_control->fifos[i].tx_curr_put_info.offset = 0;
            mac_control->fifos[i].tx_curr_put_info.fifo_len =
                config->tx_cfg[i].fifo_len - 1;
            mac_control->fifos[i].tx_curr_get_info.offset = 0;
            mac_control->fifos[i].tx_curr_get_info.fifo_len =
                config->tx_cfg[i].fifo_len - 1;
            mac_control->fifos[i].fifo_no = i;
            mac_control->fifos[i].nic = nic;
            mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
            mac_control->fifos[i].dev = dev;

            for (j = 0; j < page_num; j++) {
                  int k = 0;
                  dma_addr_t tmp_p;
                  void *tmp_v;
                  tmp_v = pci_alloc_consistent(nic->pdev,
                                         PAGE_SIZE, &tmp_p);
                  if (!tmp_v) {
                        DBG_PRINT(INFO_DBG,
                                "pci_alloc_consistent ");
                        DBG_PRINT(INFO_DBG, "failed for TxDL\n");
                        return -ENOMEM;
                  }
                  /* If we got a zero DMA address(can happen on
                   * certain platforms like PPC), reallocate.
                   * Store virtual address of page we don't want,
                   * to be freed later.
                   */
                  if (!tmp_p) {
                        mac_control->zerodma_virt_addr = tmp_v;
                        DBG_PRINT(INIT_DBG,
                        "%s: Zero DMA address for TxDL. ", dev->name);
                        DBG_PRINT(INIT_DBG,
                        "Virtual address %p\n", tmp_v);
                        tmp_v = pci_alloc_consistent(nic->pdev,
                                         PAGE_SIZE, &tmp_p);
                        if (!tmp_v) {
                              DBG_PRINT(INFO_DBG,
                                "pci_alloc_consistent ");
                              DBG_PRINT(INFO_DBG, "failed for TxDL\n");
                              return -ENOMEM;
                        }
                        mem_allocated += PAGE_SIZE;
                  }
                  while (k < lst_per_page) {
                        int l = (j * lst_per_page) + k;
                        if (l == config->tx_cfg[i].fifo_len)
                              break;
                        mac_control->fifos[i].list_info[l].list_virt_addr =
                            tmp_v + (k * lst_size);
                        mac_control->fifos[i].list_info[l].list_phy_addr =
                            tmp_p + (k * lst_size);
                        k++;
                  }
            }
      }

      for (i = 0; i < config->tx_fifo_num; i++) {
            size = config->tx_cfg[i].fifo_len;
            mac_control->fifos[i].ufo_in_band_v
                  = kcalloc(size, sizeof(u64), GFP_KERNEL);
            if (!mac_control->fifos[i].ufo_in_band_v)
                  return -ENOMEM;
            mem_allocated += (size * sizeof(u64));
      }

      /* Allocation and initialization of RXDs in Rings */
      size = 0;
      for (i = 0; i < config->rx_ring_num; i++) {
            if (config->rx_cfg[i].num_rxd %
                (rxd_count[nic->rxd_mode] + 1)) {
                  DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
                  DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
                          i);
                  DBG_PRINT(ERR_DBG, "RxDs per Block");
                  return FAILURE;
            }
            size += config->rx_cfg[i].num_rxd;
            mac_control->rings[i].block_count =
                  config->rx_cfg[i].num_rxd /
                  (rxd_count[nic->rxd_mode] + 1 );
            mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
                  mac_control->rings[i].block_count;
      }
      if (nic->rxd_mode == RXD_MODE_1)
            size = (size * (sizeof(struct RxD1)));
      else
            size = (size * (sizeof(struct RxD3)));

      for (i = 0; i < config->rx_ring_num; i++) {
            mac_control->rings[i].rx_curr_get_info.block_index = 0;
            mac_control->rings[i].rx_curr_get_info.offset = 0;
            mac_control->rings[i].rx_curr_get_info.ring_len =
                config->rx_cfg[i].num_rxd - 1;
            mac_control->rings[i].rx_curr_put_info.block_index = 0;
            mac_control->rings[i].rx_curr_put_info.offset = 0;
            mac_control->rings[i].rx_curr_put_info.ring_len =
                config->rx_cfg[i].num_rxd - 1;
            mac_control->rings[i].nic = nic;
            mac_control->rings[i].ring_no = i;
            mac_control->rings[i].lro = lro_enable;

            blk_cnt = config->rx_cfg[i].num_rxd /
                        (rxd_count[nic->rxd_mode] + 1);
            /*  Allocating all the Rx blocks */
            for (j = 0; j < blk_cnt; j++) {
                  struct rx_block_info *rx_blocks;
                  int l;

                  rx_blocks = &mac_control->rings[i].rx_blocks[j];
                  size = SIZE_OF_BLOCK; //size is always page size
                  tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
                                            &tmp_p_addr);
                  if (tmp_v_addr == NULL) {
                        /*
                         * In case of failure, free_shared_mem()
                         * is called, which should free any
                         * memory that was alloced till the
                         * failure happened.
                         */
                        rx_blocks->block_virt_addr = tmp_v_addr;
                        return -ENOMEM;
                  }
                  mem_allocated += size;
                  memset(tmp_v_addr, 0, size);
                  rx_blocks->block_virt_addr = tmp_v_addr;
                  rx_blocks->block_dma_addr = tmp_p_addr;
                  rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
                                      rxd_count[nic->rxd_mode],
                                      GFP_KERNEL);
                  if (!rx_blocks->rxds)
                        return -ENOMEM;
                  mem_allocated +=
                  (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
                  for (l=0; l<rxd_count[nic->rxd_mode];l++) {
                        rx_blocks->rxds[l].virt_addr =
                              rx_blocks->block_virt_addr +
                              (rxd_size[nic->rxd_mode] * l);
                        rx_blocks->rxds[l].dma_addr =
                              rx_blocks->block_dma_addr +
                              (rxd_size[nic->rxd_mode] * l);
                  }
            }
            /* Interlinking all Rx Blocks */
            for (j = 0; j < blk_cnt; j++) {
                  tmp_v_addr =
                        mac_control->rings[i].rx_blocks[j].block_virt_addr;
                  tmp_v_addr_next =
                        mac_control->rings[i].rx_blocks[(j + 1) %
                                    blk_cnt].block_virt_addr;
                  tmp_p_addr =
                        mac_control->rings[i].rx_blocks[j].block_dma_addr;
                  tmp_p_addr_next =
                        mac_control->rings[i].rx_blocks[(j + 1) %
                                    blk_cnt].block_dma_addr;

                  pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
                  pre_rxd_blk->reserved_2_pNext_RxD_block =
                      (unsigned long) tmp_v_addr_next;
                  pre_rxd_blk->pNext_RxD_Blk_physical =
                      (u64) tmp_p_addr_next;
            }
      }
      if (nic->rxd_mode == RXD_MODE_3B) {
            /*
             * Allocation of Storages for buffer addresses in 2BUFF mode
             * and the buffers as well.
             */
            for (i = 0; i < config->rx_ring_num; i++) {
                  blk_cnt = config->rx_cfg[i].num_rxd /
                     (rxd_count[nic->rxd_mode]+ 1);
                  mac_control->rings[i].ba =
                        kmalloc((sizeof(struct buffAdd *) * blk_cnt),
                             GFP_KERNEL);
                  if (!mac_control->rings[i].ba)
                        return -ENOMEM;
                  mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
                  for (j = 0; j < blk_cnt; j++) {
                        int k = 0;
                        mac_control->rings[i].ba[j] =
                              kmalloc((sizeof(struct buffAdd) *
                                    (rxd_count[nic->rxd_mode] + 1)),
                                    GFP_KERNEL);
                        if (!mac_control->rings[i].ba[j])
                              return -ENOMEM;
                        mem_allocated += (sizeof(struct buffAdd) *  \
                              (rxd_count[nic->rxd_mode] + 1));
                        while (k != rxd_count[nic->rxd_mode]) {
                              ba = &mac_control->rings[i].ba[j][k];

                              ba->ba_0_org = (void *) kmalloc
                                  (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
                              if (!ba->ba_0_org)
                                    return -ENOMEM;
                              mem_allocated +=
                                    (BUF0_LEN + ALIGN_SIZE);
                              tmp = (unsigned long)ba->ba_0_org;
                              tmp += ALIGN_SIZE;
                              tmp &= ~((unsigned long) ALIGN_SIZE);
                              ba->ba_0 = (void *) tmp;

                              ba->ba_1_org = (void *) kmalloc
                                  (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
                              if (!ba->ba_1_org)
                                    return -ENOMEM;
                              mem_allocated
                                    += (BUF1_LEN + ALIGN_SIZE);
                              tmp = (unsigned long) ba->ba_1_org;
                              tmp += ALIGN_SIZE;
                              tmp &= ~((unsigned long) ALIGN_SIZE);
                              ba->ba_1 = (void *) tmp;
                              k++;
                        }
                  }
            }
      }

      /* Allocation and initialization of Statistics block */
      size = sizeof(struct stat_block);
      mac_control->stats_mem = pci_alloc_consistent
          (nic->pdev, size, &mac_control->stats_mem_phy);

      if (!mac_control->stats_mem) {
            /*
             * In case of failure, free_shared_mem() is called, which
             * should free any memory that was alloced till the
             * failure happened.
             */
            return -ENOMEM;
      }
      mem_allocated += size;
      mac_control->stats_mem_sz = size;

      tmp_v_addr = mac_control->stats_mem;
      mac_control->stats_info = (struct stat_block *) tmp_v_addr;
      memset(tmp_v_addr, 0, size);
      DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
              (unsigned long long) tmp_p_addr);
      mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
      return SUCCESS;
}

/**
 * free_shared_mem - Free the allocated Memory
 * @nic:  Device private variable.
 * Description: This function is to free all memory locations allocated by
 * the init_shared_mem() function and return it to the kernel.
 */

static void free_shared_mem(struct s2io_nic *nic)
{
      int i, j, blk_cnt, size;
      void *tmp_v_addr;
      dma_addr_t tmp_p_addr;
      struct mac_info *mac_control;
      struct config_param *config;
      int lst_size, lst_per_page;
      struct net_device *dev;
      int page_num = 0;

      if (!nic)
            return;

      dev = nic->dev;

      mac_control = &nic->mac_control;
      config = &nic->config;

      lst_size = (sizeof(struct TxD) * config->max_txds);
      lst_per_page = PAGE_SIZE / lst_size;

      for (i = 0; i < config->tx_fifo_num; i++) {
            page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
                                          lst_per_page);
            for (j = 0; j < page_num; j++) {
                  int mem_blks = (j * lst_per_page);
                  if (!mac_control->fifos[i].list_info)
                        return;
                  if (!mac_control->fifos[i].list_info[mem_blks].
                         list_virt_addr)
                        break;
                  pci_free_consistent(nic->pdev, PAGE_SIZE,
                                  mac_control->fifos[i].
                                  list_info[mem_blks].
                                  list_virt_addr,
                                  mac_control->fifos[i].
                                  list_info[mem_blks].
                                  list_phy_addr);
                  nic->mac_control.stats_info->sw_stat.mem_freed
                                    += PAGE_SIZE;
            }
            /* If we got a zero DMA address during allocation,
             * free the page now
             */
            if (mac_control->zerodma_virt_addr) {
                  pci_free_consistent(nic->pdev, PAGE_SIZE,
                                  mac_control->zerodma_virt_addr,
                                  (dma_addr_t)0);
                  DBG_PRINT(INIT_DBG,
                        "%s: Freeing TxDL with zero DMA addr. ",
                        dev->name);
                  DBG_PRINT(INIT_DBG, "Virtual address %p\n",
                        mac_control->zerodma_virt_addr);
                  nic->mac_control.stats_info->sw_stat.mem_freed
                                    += PAGE_SIZE;
            }
            kfree(mac_control->fifos[i].list_info);
            nic->mac_control.stats_info->sw_stat.mem_freed +=
            (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
      }

      size = SIZE_OF_BLOCK;
      for (i = 0; i < config->rx_ring_num; i++) {
            blk_cnt = mac_control->rings[i].block_count;
            for (j = 0; j < blk_cnt; j++) {
                  tmp_v_addr = mac_control->rings[i].rx_blocks[j].
                        block_virt_addr;
                  tmp_p_addr = mac_control->rings[i].rx_blocks[j].
                        block_dma_addr;
                  if (tmp_v_addr == NULL)
                        break;
                  pci_free_consistent(nic->pdev, size,
                                  tmp_v_addr, tmp_p_addr);
                  nic->mac_control.stats_info->sw_stat.mem_freed += size;
                  kfree(mac_control->rings[i].rx_blocks[j].rxds);
                  nic->mac_control.stats_info->sw_stat.mem_freed +=
                  ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
            }
      }

      if (nic->rxd_mode == RXD_MODE_3B) {
            /* Freeing buffer storage addresses in 2BUFF mode. */
            for (i = 0; i < config->rx_ring_num; i++) {
                  blk_cnt = config->rx_cfg[i].num_rxd /
                      (rxd_count[nic->rxd_mode] + 1);
                  for (j = 0; j < blk_cnt; j++) {
                        int k = 0;
                        if (!mac_control->rings[i].ba[j])
                              continue;
                        while (k != rxd_count[nic->rxd_mode]) {
                              struct buffAdd *ba =
                                    &mac_control->rings[i].ba[j][k];
                              kfree(ba->ba_0_org);
                              nic->mac_control.stats_info->sw_stat.\
                              mem_freed += (BUF0_LEN + ALIGN_SIZE);
                              kfree(ba->ba_1_org);
                              nic->mac_control.stats_info->sw_stat.\
                              mem_freed += (BUF1_LEN + ALIGN_SIZE);
                              k++;
                        }
                        kfree(mac_control->rings[i].ba[j]);
                        nic->mac_control.stats_info->sw_stat.mem_freed +=
                              (sizeof(struct buffAdd) *
                              (rxd_count[nic->rxd_mode] + 1));
                  }
                  kfree(mac_control->rings[i].ba);
                  nic->mac_control.stats_info->sw_stat.mem_freed +=
                  (sizeof(struct buffAdd *) * blk_cnt);
            }
      }

      for (i = 0; i < nic->config.tx_fifo_num; i++) {
            if (mac_control->fifos[i].ufo_in_band_v) {
                  nic->mac_control.stats_info->sw_stat.mem_freed
                        += (config->tx_cfg[i].fifo_len * sizeof(u64));
                  kfree(mac_control->fifos[i].ufo_in_band_v);
            }
      }

      if (mac_control->stats_mem) {
            nic->mac_control.stats_info->sw_stat.mem_freed +=
                  mac_control->stats_mem_sz;
            pci_free_consistent(nic->pdev,
                            mac_control->stats_mem_sz,
                            mac_control->stats_mem,
                            mac_control->stats_mem_phy);
      }
}

/**
 * s2io_verify_pci_mode -
 */

static int s2io_verify_pci_mode(struct s2io_nic *nic)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      register u64 val64 = 0;
      int     mode;

      val64 = readq(&bar0->pci_mode);
      mode = (u8)GET_PCI_MODE(val64);

      if ( val64 & PCI_MODE_UNKNOWN_MODE)
            return -1;      /* Unknown PCI mode */
      return mode;
}

#define NEC_VENID   0x1033
#define NEC_DEVID   0x0125
static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
{
      struct pci_dev *tdev = NULL;
      while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
            if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
                  if (tdev->bus == s2io_pdev->bus->parent) {
                        pci_dev_put(tdev);
                        return 1;
                  }
            }
      }
      return 0;
}

static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
/**
 * s2io_print_pci_mode -
 */
static int s2io_print_pci_mode(struct s2io_nic *nic)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      register u64 val64 = 0;
      int   mode;
      struct config_param *config = &nic->config;

      val64 = readq(&bar0->pci_mode);
      mode = (u8)GET_PCI_MODE(val64);

      if ( val64 & PCI_MODE_UNKNOWN_MODE)
            return -1;  /* Unknown PCI mode */

      config->bus_speed = bus_speed[mode];

      if (s2io_on_nec_bridge(nic->pdev)) {
            DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
                                          nic->dev->name);
            return mode;
      }

      if (val64 & PCI_MODE_32_BITS) {
            DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
      } else {
            DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
      }

      switch(mode) {
            case PCI_MODE_PCI_33:
                  DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
                  break;
            case PCI_MODE_PCI_66:
                  DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
                  break;
            case PCI_MODE_PCIX_M1_66:
                  DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
                  break;
            case PCI_MODE_PCIX_M1_100:
                  DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
                  break;
            case PCI_MODE_PCIX_M1_133:
                  DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
                  break;
            case PCI_MODE_PCIX_M2_66:
                  DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
                  break;
            case PCI_MODE_PCIX_M2_100:
                  DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
                  break;
            case PCI_MODE_PCIX_M2_133:
                  DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
                  break;
            default:
                  return -1;  /* Unsupported bus speed */
      }

      return mode;
}

/**
 *  init_tti - Initialization transmit traffic interrupt scheme
 *  @nic: device private variable
 *  @link: link status (UP/DOWN) used to enable/disable continuous
 *  transmit interrupts
 *  Description: The function configures transmit traffic interrupts
 *  Return Value:  SUCCESS on success and
 *  '-1' on failure
 */

static int init_tti(struct s2io_nic *nic, int link)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      register u64 val64 = 0;
      int i;
      struct config_param *config;

      config = &nic->config;

      for (i = 0; i < config->tx_fifo_num; i++) {
            /*
             * TTI Initialization. Default Tx timer gets us about
             * 250 interrupts per sec. Continuous interrupts are enabled
             * by default.
             */
            if (nic->device_type == XFRAME_II_DEVICE) {
                  int count = (nic->config.bus_speed * 125)/2;
                  val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
            } else
                  val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);

            val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
                        TTI_DATA1_MEM_TX_URNG_B(0x10) |
                        TTI_DATA1_MEM_TX_URNG_C(0x30) |
                        TTI_DATA1_MEM_TX_TIMER_AC_EN;
            if (i == 0)
                  if (use_continuous_tx_intrs && (link == LINK_UP))
                        val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
            writeq(val64, &bar0->tti_data1_mem);

            if (nic->config.intr_type == MSI_X) {
                  val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
                        TTI_DATA2_MEM_TX_UFC_B(0x100) |
                        TTI_DATA2_MEM_TX_UFC_C(0x200) |
                        TTI_DATA2_MEM_TX_UFC_D(0x300);
            } else {
                  if ((nic->config.tx_steering_type ==
                        TX_DEFAULT_STEERING) &&
                        (config->tx_fifo_num > 1) &&
                        (i >= nic->udp_fifo_idx) &&
                        (i < (nic->udp_fifo_idx +
                        nic->total_udp_fifos)))
                        val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
                              TTI_DATA2_MEM_TX_UFC_B(0x80) |
                              TTI_DATA2_MEM_TX_UFC_C(0x100) |
                              TTI_DATA2_MEM_TX_UFC_D(0x120);
                  else
                        val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
                              TTI_DATA2_MEM_TX_UFC_B(0x20) |
                              TTI_DATA2_MEM_TX_UFC_C(0x40) |
                              TTI_DATA2_MEM_TX_UFC_D(0x80);
            }

            writeq(val64, &bar0->tti_data2_mem);

            val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
                        TTI_CMD_MEM_OFFSET(i);
            writeq(val64, &bar0->tti_command_mem);

            if (wait_for_cmd_complete(&bar0->tti_command_mem,
                  TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
                  return FAILURE;
      }

      return SUCCESS;
}

/**
 *  init_nic - Initialization of hardware
 *  @nic: device private variable
 *  Description: The function sequentially configures every block
 *  of the H/W from their reset values.
 *  Return Value:  SUCCESS on success and
 *  '-1' on failure (endian settings incorrect).
 */

static int init_nic(struct s2io_nic *nic)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      struct net_device *dev = nic->dev;
      register u64 val64 = 0;
      void __iomem *add;
      u32 time;
      int i, j;
      struct mac_info *mac_control;
      struct config_param *config;
      int dtx_cnt = 0;
      unsigned long long mem_share;
      int mem_size;

      mac_control = &nic->mac_control;
      config = &nic->config;

      /* to set the swapper controle on the card */
      if(s2io_set_swapper(nic)) {
            DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
            return -EIO;
      }

      /*
       * Herc requires EOI to be removed from reset before XGXS, so..
       */
      if (nic->device_type & XFRAME_II_DEVICE) {
            val64 = 0xA500000000ULL;
            writeq(val64, &bar0->sw_reset);
            msleep(500);
            val64 = readq(&bar0->sw_reset);
      }

      /* Remove XGXS from reset state */
      val64 = 0;
      writeq(val64, &bar0->sw_reset);
      msleep(500);
      val64 = readq(&bar0->sw_reset);

      /* Ensure that it's safe to access registers by checking
       * RIC_RUNNING bit is reset. Check is valid only for XframeII.
       */
      if (nic->device_type == XFRAME_II_DEVICE) {
            for (i = 0; i < 50; i++) {
                  val64 = readq(&bar0->adapter_status);
                  if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
                        break;
                  msleep(10);
            }
            if (i == 50)
                  return -ENODEV;
      }

      /*  Enable Receiving broadcasts */
      add = &bar0->mac_cfg;
      val64 = readq(&bar0->mac_cfg);
      val64 |= MAC_RMAC_BCAST_ENABLE;
      writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
      writel((u32) val64, add);
      writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
      writel((u32) (val64 >> 32), (add + 4));

      /* Read registers in all blocks */
      val64 = readq(&bar0->mac_int_mask);
      val64 = readq(&bar0->mc_int_mask);
      val64 = readq(&bar0->xgxs_int_mask);

      /*  Set MTU */
      val64 = dev->mtu;
      writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);

      if (nic->device_type & XFRAME_II_DEVICE) {
            while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
                  SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
                                &bar0->dtx_control, UF);
                  if (dtx_cnt & 0x1)
                        msleep(1); /* Necessary!! */
                  dtx_cnt++;
            }
      } else {
            while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
                  SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
                                &bar0->dtx_control, UF);
                  val64 = readq(&bar0->dtx_control);
                  dtx_cnt++;
            }
      }

      /*  Tx DMA Initialization */
      val64 = 0;
      writeq(val64, &bar0->tx_fifo_partition_0);
      writeq(val64, &bar0->tx_fifo_partition_1);
      writeq(val64, &bar0->tx_fifo_partition_2);
      writeq(val64, &bar0->tx_fifo_partition_3);


      for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
            val64 |=
                vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
                   13) | vBIT(config->tx_cfg[i].fifo_priority,
                            ((j * 32) + 5), 3);

            if (i == (config->tx_fifo_num - 1)) {
                  if (i % 2 == 0)
                        i++;
            }

            switch (i) {
            case 1:
                  writeq(val64, &bar0->tx_fifo_partition_0);
                  val64 = 0;
                  j = 0;
                  break;
            case 3:
                  writeq(val64, &bar0->tx_fifo_partition_1);
                  val64 = 0;
                  j = 0;
                  break;
            case 5:
                  writeq(val64, &bar0->tx_fifo_partition_2);
                  val64 = 0;
                  j = 0;
                  break;
            case 7:
                  writeq(val64, &bar0->tx_fifo_partition_3);
                  val64 = 0;
                  j = 0;
                  break;
            default:
                  j++;
                  break;
            }
      }

      /*
       * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
       * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
       */
      if ((nic->device_type == XFRAME_I_DEVICE) &&
            (nic->pdev->revision < 4))
            writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);

      val64 = readq(&bar0->tx_fifo_partition_0);
      DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
              &bar0->tx_fifo_partition_0, (unsigned long long) val64);

      /*
       * Initialization of Tx_PA_CONFIG register to ignore packet
       * integrity checking.
       */
      val64 = readq(&bar0->tx_pa_cfg);
      val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
          TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
      writeq(val64, &bar0->tx_pa_cfg);

      /* Rx DMA intialization. */
      val64 = 0;
      for (i = 0; i < config->rx_ring_num; i++) {
            val64 |=
                vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
                   3);
      }
      writeq(val64, &bar0->rx_queue_priority);

      /*
       * Allocating equal share of memory to all the
       * configured Rings.
       */
      val64 = 0;
      if (nic->device_type & XFRAME_II_DEVICE)
            mem_size = 32;
      else
            mem_size = 64;

      for (i = 0; i < config->rx_ring_num; i++) {
            switch (i) {
            case 0:
                  mem_share = (mem_size / config->rx_ring_num +
                             mem_size % config->rx_ring_num);
                  val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
                  continue;
            case 1:
                  mem_share = (mem_size / config->rx_ring_num);
                  val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
                  continue;
            case 2:
                  mem_share = (mem_size / config->rx_ring_num);
                  val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
                  continue;
            case 3:
                  mem_share = (mem_size / config->rx_ring_num);
                  val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
                  continue;
            case 4:
                  mem_share = (mem_size / config->rx_ring_num);
                  val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
                  continue;
            case 5:
                  mem_share = (mem_size / config->rx_ring_num);
                  val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
                  continue;
            case 6:
                  mem_share = (mem_size / config->rx_ring_num);
                  val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
                  continue;
            case 7:
                  mem_share = (mem_size / config->rx_ring_num);
                  val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
                  continue;
            }
      }
      writeq(val64, &bar0->rx_queue_cfg);

      /*
       * Filling Tx round robin registers
       * as per the number of FIFOs for equal scheduling priority
       */
      switch (config->tx_fifo_num) {
      case 1:
            val64 = 0x0;
            writeq(val64, &bar0->tx_w_round_robin_0);
            writeq(val64, &bar0->tx_w_round_robin_1);
            writeq(val64, &bar0->tx_w_round_robin_2);
            writeq(val64, &bar0->tx_w_round_robin_3);
            writeq(val64, &bar0->tx_w_round_robin_4);
            break;
      case 2:
            val64 = 0x0001000100010001ULL;
            writeq(val64, &bar0->tx_w_round_robin_0);
            writeq(val64, &bar0->tx_w_round_robin_1);
            writeq(val64, &bar0->tx_w_round_robin_2);
            writeq(val64, &bar0->tx_w_round_robin_3);
            val64 = 0x0001000100000000ULL;
            writeq(val64, &bar0->tx_w_round_robin_4);
            break;
      case 3:
            val64 = 0x0001020001020001ULL;
            writeq(val64, &bar0->tx_w_round_robin_0);
            val64 = 0x0200010200010200ULL;
            writeq(val64, &bar0->tx_w_round_robin_1);
            val64 = 0x0102000102000102ULL;
            writeq(val64, &bar0->tx_w_round_robin_2);
            val64 = 0x0001020001020001ULL;
            writeq(val64, &bar0->tx_w_round_robin_3);
            val64 = 0x0200010200000000ULL;
            writeq(val64, &bar0->tx_w_round_robin_4);
            break;
      case 4:
            val64 = 0x0001020300010203ULL;
            writeq(val64, &bar0->tx_w_round_robin_0);
            writeq(val64, &bar0->tx_w_round_robin_1);
            writeq(val64, &bar0->tx_w_round_robin_2);
            writeq(val64, &bar0->tx_w_round_robin_3);
            val64 = 0x0001020300000000ULL;
            writeq(val64, &bar0->tx_w_round_robin_4);
            break;
      case 5:
            val64 = 0x0001020304000102ULL;
            writeq(val64, &bar0->tx_w_round_robin_0);
            val64 = 0x0304000102030400ULL;
            writeq(val64, &bar0->tx_w_round_robin_1);
            val64 = 0x0102030400010203ULL;
            writeq(val64, &bar0->tx_w_round_robin_2);
            val64 = 0x0400010203040001ULL;
            writeq(val64, &bar0->tx_w_round_robin_3);
            val64 = 0x0203040000000000ULL;
            writeq(val64, &bar0->tx_w_round_robin_4);
            break;
      case 6:
            val64 = 0x0001020304050001ULL;
            writeq(val64, &bar0->tx_w_round_robin_0);
            val64 = 0x0203040500010203ULL;
            writeq(val64, &bar0->tx_w_round_robin_1);
            val64 = 0x0405000102030405ULL;
            writeq(val64, &bar0->tx_w_round_robin_2);
            val64 = 0x0001020304050001ULL;
            writeq(val64, &bar0->tx_w_round_robin_3);
            val64 = 0x0203040500000000ULL;
            writeq(val64, &bar0->tx_w_round_robin_4);
            break;
      case 7:
            val64 = 0x0001020304050600ULL;
            writeq(val64, &bar0->tx_w_round_robin_0);
            val64 = 0x0102030405060001ULL;
            writeq(val64, &bar0->tx_w_round_robin_1);
            val64 = 0x0203040506000102ULL;
            writeq(val64, &bar0->tx_w_round_robin_2);
            val64 = 0x0304050600010203ULL;
            writeq(val64, &bar0->tx_w_round_robin_3);
            val64 = 0x0405060000000000ULL;
            writeq(val64, &bar0->tx_w_round_robin_4);
            break;
      case 8:
            val64 = 0x0001020304050607ULL;
            writeq(val64, &bar0->tx_w_round_robin_0);
            writeq(val64, &bar0->tx_w_round_robin_1);
            writeq(val64, &bar0->tx_w_round_robin_2);
            writeq(val64, &bar0->tx_w_round_robin_3);
            val64 = 0x0001020300000000ULL;
            writeq(val64, &bar0->tx_w_round_robin_4);
            break;
      }

      /* Enable all configured Tx FIFO partitions */
      val64 = readq(&bar0->tx_fifo_partition_0);
      val64 |= (TX_FIFO_PARTITION_EN);
      writeq(val64, &bar0->tx_fifo_partition_0);

      /* Filling the Rx round robin registers as per the
       * number of Rings and steering based on QoS with
       * equal priority.
       */
      switch (config->rx_ring_num) {
      case 1:
            val64 = 0x0;
            writeq(val64, &bar0->rx_w_round_robin_0);
            writeq(val64, &bar0->rx_w_round_robin_1);
            writeq(val64, &bar0->rx_w_round_robin_2);
            writeq(val64, &bar0->rx_w_round_robin_3);
            writeq(val64, &bar0->rx_w_round_robin_4);

            val64 = 0x8080808080808080ULL;
            writeq(val64, &bar0->rts_qos_steering);
            break;
      case 2:
            val64 = 0x0001000100010001ULL;
            writeq(val64, &bar0->rx_w_round_robin_0);
            writeq(val64, &bar0->rx_w_round_robin_1);
            writeq(val64, &bar0->rx_w_round_robin_2);
            writeq(val64, &bar0->rx_w_round_robin_3);
            val64 = 0x0001000100000000ULL;
            writeq(val64, &bar0->rx_w_round_robin_4);

            val64 = 0x8080808040404040ULL;
            writeq(val64, &bar0->rts_qos_steering);
            break;
      case 3:
            val64 = 0x0001020001020001ULL;
            writeq(val64, &bar0->rx_w_round_robin_0);
            val64 = 0x0200010200010200ULL;
            writeq(val64, &bar0->rx_w_round_robin_1);
            val64 = 0x0102000102000102ULL;
            writeq(val64, &bar0->rx_w_round_robin_2);
            val64 = 0x0001020001020001ULL;
            writeq(val64, &bar0->rx_w_round_robin_3);
            val64 = 0x0200010200000000ULL;
            writeq(val64, &bar0->rx_w_round_robin_4);

            val64 = 0x8080804040402020ULL;
            writeq(val64, &bar0->rts_qos_steering);
            break;
      case 4:
            val64 = 0x0001020300010203ULL;
            writeq(val64, &bar0->rx_w_round_robin_0);
            writeq(val64, &bar0->rx_w_round_robin_1);
            writeq(val64, &bar0->rx_w_round_robin_2);
            writeq(val64, &bar0->rx_w_round_robin_3);
            val64 = 0x0001020300000000ULL;
            writeq(val64, &bar0->rx_w_round_robin_4);

            val64 = 0x8080404020201010ULL;
            writeq(val64, &bar0->rts_qos_steering);
            break;
      case 5:
            val64 = 0x0001020304000102ULL;
            writeq(val64, &bar0->rx_w_round_robin_0);
            val64 = 0x0304000102030400ULL;
            writeq(val64, &bar0->rx_w_round_robin_1);
            val64 = 0x0102030400010203ULL;
            writeq(val64, &bar0->rx_w_round_robin_2);
            val64 = 0x0400010203040001ULL;
            writeq(val64, &bar0->rx_w_round_robin_3);
            val64 = 0x0203040000000000ULL;
            writeq(val64, &bar0->rx_w_round_robin_4);

            val64 = 0x8080404020201008ULL;
            writeq(val64, &bar0->rts_qos_steering);
            break;
      case 6:
            val64 = 0x0001020304050001ULL;
            writeq(val64, &bar0->rx_w_round_robin_0);
            val64 = 0x0203040500010203ULL;
            writeq(val64, &bar0->rx_w_round_robin_1);
            val64 = 0x0405000102030405ULL;
            writeq(val64, &bar0->rx_w_round_robin_2);
            val64 = 0x0001020304050001ULL;
            writeq(val64, &bar0->rx_w_round_robin_3);
            val64 = 0x0203040500000000ULL;
            writeq(val64, &bar0->rx_w_round_robin_4);

            val64 = 0x8080404020100804ULL;
            writeq(val64, &bar0->rts_qos_steering);
            break;
      case 7:
            val64 = 0x0001020304050600ULL;
            writeq(val64, &bar0->rx_w_round_robin_0);
            val64 = 0x0102030405060001ULL;
            writeq(val64, &bar0->rx_w_round_robin_1);
            val64 = 0x0203040506000102ULL;
            writeq(val64, &bar0->rx_w_round_robin_2);
            val64 = 0x0304050600010203ULL;
            writeq(val64, &bar0->rx_w_round_robin_3);
            val64 = 0x0405060000000000ULL;
            writeq(val64, &bar0->rx_w_round_robin_4);

            val64 = 0x8080402010080402ULL;
            writeq(val64, &bar0->rts_qos_steering);
            break;
      case 8:
            val64 = 0x0001020304050607ULL;
            writeq(val64, &bar0->rx_w_round_robin_0);
            writeq(val64, &bar0->rx_w_round_robin_1);
            writeq(val64, &bar0->rx_w_round_robin_2);
            writeq(val64, &bar0->rx_w_round_robin_3);
            val64 = 0x0001020300000000ULL;
            writeq(val64, &bar0->rx_w_round_robin_4);

            val64 = 0x8040201008040201ULL;
            writeq(val64, &bar0->rts_qos_steering);
            break;
      }

      /* UDP Fix */
      val64 = 0;
      for (i = 0; i < 8; i++)
            writeq(val64, &bar0->rts_frm_len_n[i]);

      /* Set the default rts frame length for the rings configured */
      val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
      for (i = 0 ; i < config->rx_ring_num ; i++)
            writeq(val64, &bar0->rts_frm_len_n[i]);

      /* Set the frame length for the configured rings
       * desired by the user
       */
      for (i = 0; i < config->rx_ring_num; i++) {
            /* If rts_frm_len[i] == 0 then it is assumed that user not
             * specified frame length steering.
             * If the user provides the frame length then program
             * the rts_frm_len register for those values or else
             * leave it as it is.
             */
            if (rts_frm_len[i] != 0) {
                  writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
                        &bar0->rts_frm_len_n[i]);
            }
      }

      /* Disable differentiated services steering logic */
      for (i = 0; i < 64; i++) {
            if (rts_ds_steer(nic, i, 0) == FAILURE) {
                  DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
                        dev->name);
                  DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
                  return -ENODEV;
            }
      }

      /* Program statistics memory */
      writeq(mac_control->stats_mem_phy, &bar0->stat_addr);

      if (nic->device_type == XFRAME_II_DEVICE) {
            val64 = STAT_BC(0x320);
            writeq(val64, &bar0->stat_byte_cnt);
      }

      /*
       * Initializing the sampling rate for the device to calculate the
       * bandwidth utilization.
       */
      val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
          MAC_RX_LINK_UTIL_VAL(rmac_util_period);
      writeq(val64, &bar0->mac_link_util);

      /*
       * Initializing the Transmit and Receive Traffic Interrupt
       * Scheme.
       */

      /* Initialize TTI */
      if (SUCCESS != init_tti(nic, nic->last_link_state))
            return -ENODEV;

      /* RTI Initialization */
      if (nic->device_type == XFRAME_II_DEVICE) {
            /*
             * Programmed to generate Apprx 500 Intrs per
             * second
             */
            int count = (nic->config.bus_speed * 125)/4;
            val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
      } else
            val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
      val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
             RTI_DATA1_MEM_RX_URNG_B(0x10) |
             RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;

      writeq(val64, &bar0->rti_data1_mem);

      val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
            RTI_DATA2_MEM_RX_UFC_B(0x2) ;
      if (nic->config.intr_type == MSI_X)
          val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
                  RTI_DATA2_MEM_RX_UFC_D(0x40));
      else
          val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
                  RTI_DATA2_MEM_RX_UFC_D(0x80));
      writeq(val64, &bar0->rti_data2_mem);

      for (i = 0; i < config->rx_ring_num; i++) {
            val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
                        | RTI_CMD_MEM_OFFSET(i);
            writeq(val64, &bar0->rti_command_mem);

            /*
             * Once the operation completes, the Strobe bit of the
             * command register will be reset. We poll for this
             * particular condition. We wait for a maximum of 500ms
             * for the operation to complete, if it's not complete
             * by then we return error.
             */
            time = 0;
            while (true) {
                  val64 = readq(&bar0->rti_command_mem);
                  if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
                        break;

                  if (time > 10) {
                        DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
                                dev->name);
                        return -ENODEV;
                  }
                  time++;
                  msleep(50);
            }
      }

      /*
       * Initializing proper values as Pause threshold into all
       * the 8 Queues on Rx side.
       */
      writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
      writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);

      /* Disable RMAC PAD STRIPPING */
      add = &bar0->mac_cfg;
      val64 = readq(&bar0->mac_cfg);
      val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
      writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
      writel((u32) (val64), add);
      writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
      writel((u32) (val64 >> 32), (add + 4));
      val64 = readq(&bar0->mac_cfg);

      /* Enable FCS stripping by adapter */
      add = &bar0->mac_cfg;
      val64 = readq(&bar0->mac_cfg);
      val64 |= MAC_CFG_RMAC_STRIP_FCS;
      if (nic->device_type == XFRAME_II_DEVICE)
            writeq(val64, &bar0->mac_cfg);
      else {
            writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
            writel((u32) (val64), add);
            writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
            writel((u32) (val64 >> 32), (add + 4));
      }

      /*
       * Set the time value to be inserted in the pause frame
       * generated by xena.
       */
      val64 = readq(&bar0->rmac_pause_cfg);
      val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
      val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
      writeq(val64, &bar0->rmac_pause_cfg);

      /*
       * Set the Threshold Limit for Generating the pause frame
       * If the amount of data in any Queue exceeds ratio of
       * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
       * pause frame is generated
       */
      val64 = 0;
      for (i = 0; i < 4; i++) {
            val64 |=
                (((u64) 0xFF00 | nic->mac_control.
                  mc_pause_threshold_q0q3)
                 << (i * 2 * 8));
      }
      writeq(val64, &bar0->mc_pause_thresh_q0q3);

      val64 = 0;
      for (i = 0; i < 4; i++) {
            val64 |=
                (((u64) 0xFF00 | nic->mac_control.
                  mc_pause_threshold_q4q7)
                 << (i * 2 * 8));
      }
      writeq(val64, &bar0->mc_pause_thresh_q4q7);

      /*
       * TxDMA will stop Read request if the number of read split has
       * exceeded the limit pointed by shared_splits
       */
      val64 = readq(&bar0->pic_control);
      val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
      writeq(val64, &bar0->pic_control);

      if (nic->config.bus_speed == 266) {
            writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
            writeq(0x0, &bar0->read_retry_delay);
            writeq(0x0, &bar0->write_retry_delay);
      }

      /*
       * Programming the Herc to split every write transaction
       * that does not start on an ADB to reduce disconnects.
       */
      if (nic->device_type == XFRAME_II_DEVICE) {
            val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
                  MISC_LINK_STABILITY_PRD(3);
            writeq(val64, &bar0->misc_control);
            val64 = readq(&bar0->pic_control2);
            val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
            writeq(val64, &bar0->pic_control2);
      }
      if (strstr(nic->product_name, "CX4")) {
            val64 = TMAC_AVG_IPG(0x17);
            writeq(val64, &bar0->tmac_avg_ipg);
      }

      return SUCCESS;
}
#define LINK_UP_DOWN_INTERRUPT            1
#define MAC_RMAC_ERR_TIMER          2

static int s2io_link_fault_indication(struct s2io_nic *nic)
{
      if (nic->device_type == XFRAME_II_DEVICE)
            return LINK_UP_DOWN_INTERRUPT;
      else
            return MAC_RMAC_ERR_TIMER;
}

/**
 *  do_s2io_write_bits -  update alarm bits in alarm register
 *  @value: alarm bits
 *  @flag: interrupt status
 *  @addr: address value
 *  Description: update alarm bits in alarm register
 *  Return Value:
 *  NONE.
 */
static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
{
      u64 temp64;

      temp64 = readq(addr);

      if(flag == ENABLE_INTRS)
            temp64 &= ~((u64) value);
      else
            temp64 |= ((u64) value);
      writeq(temp64, addr);
}

static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      register u64 gen_int_mask = 0;
      u64 interruptible;

      writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
      if (mask & TX_DMA_INTR) {

            gen_int_mask |= TXDMA_INT_M;

            do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
                        TXDMA_PCC_INT | TXDMA_TTI_INT |
                        TXDMA_LSO_INT | TXDMA_TPA_INT |
                        TXDMA_SM_INT, flag, &bar0->txdma_int_mask);

            do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
                        PFC_MISC_0_ERR | PFC_MISC_1_ERR |
                        PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
                        &bar0->pfc_err_mask);

            do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
                        TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
                        TDA_PCIX_ERR, flag, &bar0->tda_err_mask);

            do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
                        PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
                        PCC_N_SERR | PCC_6_COF_OV_ERR |
                        PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
                        PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
                        PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);

            do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
                        TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);

            do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
                        LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
                        LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
                        flag, &bar0->lso_err_mask);

            do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
                        flag, &bar0->tpa_err_mask);

            do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);

      }

      if (mask & TX_MAC_INTR) {
            gen_int_mask |= TXMAC_INT_M;
            do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
                        &bar0->mac_int_mask);
            do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
                        TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
                        TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
                        flag, &bar0->mac_tmac_err_mask);
      }

      if (mask & TX_XGXS_INTR) {
            gen_int_mask |= TXXGXS_INT_M;
            do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
                        &bar0->xgxs_int_mask);
            do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
                        TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
                        flag, &bar0->xgxs_txgxs_err_mask);
      }

      if (mask & RX_DMA_INTR) {
            gen_int_mask |= RXDMA_INT_M;
            do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
                        RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
                        flag, &bar0->rxdma_int_mask);
            do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
                        RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
                        RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
                        RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
            do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
                        PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
                        PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
                        &bar0->prc_pcix_err_mask);
            do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
                        RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
                        &bar0->rpa_err_mask);
            do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
                        RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
                        RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
                        RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
                        flag, &bar0->rda_err_mask);
            do_s2io_write_bits(RTI_SM_ERR_ALARM |
                        RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
                        flag, &bar0->rti_err_mask);
      }

      if (mask & RX_MAC_INTR) {
            gen_int_mask |= RXMAC_INT_M;
            do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
                        &bar0->mac_int_mask);
            interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
                        RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
                        RMAC_DOUBLE_ECC_ERR;
            if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
                  interruptible |= RMAC_LINK_STATE_CHANGE_INT;
            do_s2io_write_bits(interruptible,
                        flag, &bar0->mac_rmac_err_mask);
      }

      if (mask & RX_XGXS_INTR)
      {
            gen_int_mask |= RXXGXS_INT_M;
            do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
                        &bar0->xgxs_int_mask);
            do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
                        &bar0->xgxs_rxgxs_err_mask);
      }

      if (mask & MC_INTR) {
            gen_int_mask |= MC_INT_M;
            do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
            do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
                        MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
                        &bar0->mc_err_mask);
      }
      nic->general_int_mask = gen_int_mask;

      /* Remove this line when alarm interrupts are enabled */
      nic->general_int_mask = 0;
}
/**
 *  en_dis_able_nic_intrs - Enable or Disable the interrupts
 *  @nic: device private variable,
 *  @mask: A mask indicating which Intr block must be modified and,
 *  @flag: A flag indicating whether to enable or disable the Intrs.
 *  Description: This function will either disable or enable the interrupts
 *  depending on the flag argument. The mask argument can be used to
 *  enable/disable any Intr block.
 *  Return Value: NONE.
 */

static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      register u64 temp64 = 0, intr_mask = 0;

      intr_mask = nic->general_int_mask;

      /*  Top level interrupt classification */
      /*  PIC Interrupts */
      if (mask & TX_PIC_INTR) {
            /*  Enable PIC Intrs in the general intr mask register */
            intr_mask |= TXPIC_INT_M;
            if (flag == ENABLE_INTRS) {
                  /*
                   * If Hercules adapter enable GPIO otherwise
                   * disable all PCIX, Flash, MDIO, IIC and GPIO
                   * interrupts for now.
                   * TODO
                   */
                  if (s2io_link_fault_indication(nic) ==
                              LINK_UP_DOWN_INTERRUPT ) {
                        do_s2io_write_bits(PIC_INT_GPIO, flag,
                                    &bar0->pic_int_mask);
                        do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
                                    &bar0->gpio_int_mask);
                  } else
                        writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
            } else if (flag == DISABLE_INTRS) {
                  /*
                   * Disable PIC Intrs in the general
                   * intr mask register
                   */
                  writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
            }
      }

      /*  Tx traffic interrupts */
      if (mask & TX_TRAFFIC_INTR) {
            intr_mask |= TXTRAFFIC_INT_M;
            if (flag == ENABLE_INTRS) {
                  /*
                   * Enable all the Tx side interrupts
                   * writing 0 Enables all 64 TX interrupt levels
                   */
                  writeq(0x0, &bar0->tx_traffic_mask);
            } else if (flag == DISABLE_INTRS) {
                  /*
                   * Disable Tx Traffic Intrs in the general intr mask
                   * register.
                   */
                  writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
            }
      }

      /*  Rx traffic interrupts */
      if (mask & RX_TRAFFIC_INTR) {
            intr_mask |= RXTRAFFIC_INT_M;
            if (flag == ENABLE_INTRS) {
                  /* writing 0 Enables all 8 RX interrupt levels */
                  writeq(0x0, &bar0->rx_traffic_mask);
            } else if (flag == DISABLE_INTRS) {
                  /*
                   * Disable Rx Traffic Intrs in the general intr mask
                   * register.
                   */
                  writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
            }
      }

      temp64 = readq(&bar0->general_int_mask);
      if (flag == ENABLE_INTRS)
            temp64 &= ~((u64) intr_mask);
      else
            temp64 = DISABLE_ALL_INTRS;
      writeq(temp64, &bar0->general_int_mask);

      nic->general_int_mask = readq(&bar0->general_int_mask);
}

/**
 *  verify_pcc_quiescent- Checks for PCC quiescent state
 *  Return: 1 If PCC is quiescence
 *          0 If PCC is not quiescence
 */
static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
{
      int ret = 0, herc;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64 = readq(&bar0->adapter_status);

      herc = (sp->device_type == XFRAME_II_DEVICE);

      if (flag == false) {
            if ((!herc && (sp->pdev->revision >= 4)) || herc) {
                  if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
                        ret = 1;
            } else {
                  if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
                        ret = 1;
            }
      } else {
            if ((!herc && (sp->pdev->revision >= 4)) || herc) {
                  if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
                       ADAPTER_STATUS_RMAC_PCC_IDLE))
                        ret = 1;
            } else {
                  if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
                       ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
                        ret = 1;
            }
      }

      return ret;
}
/**
 *  verify_xena_quiescence - Checks whether the H/W is ready
 *  Description: Returns whether the H/W is ready to go or not. Depending
 *  on whether adapter enable bit was written or not the comparison
 *  differs and the calling function passes the input argument flag to
 *  indicate this.
 *  Return: 1 If xena is quiescence
 *          0 If Xena is not quiescence
 */

static int verify_xena_quiescence(struct s2io_nic *sp)
{
      int  mode;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64 = readq(&bar0->adapter_status);
      mode = s2io_verify_pci_mode(sp);

      if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
            DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
            return 0;
      }
      if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
      DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
            return 0;
      }
      if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
            DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
            return 0;
      }
      if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
            DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
            return 0;
      }
      if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
            DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
            return 0;
      }
      if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
            DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
            return 0;
      }
      if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
            DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
            return 0;
      }
      if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
            DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
            return 0;
      }

      /*
       * In PCI 33 mode, the P_PLL is not used, and therefore,
       * the the P_PLL_LOCK bit in the adapter_status register will
       * not be asserted.
       */
      if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
            sp->device_type == XFRAME_II_DEVICE && mode !=
            PCI_MODE_PCI_33) {
            DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
            return 0;
      }
      if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
                  ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
            DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
            return 0;
      }
      return 1;
}

/**
 * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
 * @sp: Pointer to device specifc structure
 * Description :
 * New procedure to clear mac address reading  problems on Alpha platforms
 *
 */

static void fix_mac_address(struct s2io_nic * sp)
{
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64;
      int i = 0;

      while (fix_mac[i] != END_SIGN) {
            writeq(fix_mac[i++], &bar0->gpio_control);
            udelay(10);
            val64 = readq(&bar0->gpio_control);
      }
}

/**
 *  start_nic - Turns the device on
 *  @nic : device private variable.
 *  Description:
 *  This function actually turns the device on. Before this  function is
 *  called,all Registers are configured from their reset states
 *  and shared memory is allocated but the NIC is still quiescent. On
 *  calling this function, the device interrupts are cleared and the NIC is
 *  literally switched on by writing into the adapter control register.
 *  Return Value:
 *  SUCCESS on success and -1 on failure.
 */

static int start_nic(struct s2io_nic *nic)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      struct net_device *dev = nic->dev;
      register u64 val64 = 0;
      u16 subid, i;
      struct mac_info *mac_control;
      struct config_param *config;

      mac_control = &nic->mac_control;
      config = &nic->config;

      /*  PRC Initialization and configuration */
      for (i = 0; i < config->rx_ring_num; i++) {
            writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
                   &bar0->prc_rxd0_n[i]);

            val64 = readq(&bar0->prc_ctrl_n[i]);
            if (nic->rxd_mode == RXD_MODE_1)
                  val64 |= PRC_CTRL_RC_ENABLED;
            else
                  val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
            if (nic->device_type == XFRAME_II_DEVICE)
                  val64 |= PRC_CTRL_GROUP_READS;
            val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
            val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
            writeq(val64, &bar0->prc_ctrl_n[i]);
      }

      if (nic->rxd_mode == RXD_MODE_3B) {
            /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
            val64 = readq(&bar0->rx_pa_cfg);
            val64 |= RX_PA_CFG_IGNORE_L2_ERR;
            writeq(val64, &bar0->rx_pa_cfg);
      }

      if (vlan_tag_strip == 0) {
            val64 = readq(&bar0->rx_pa_cfg);
            val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
            writeq(val64, &bar0->rx_pa_cfg);
            nic->vlan_strip_flag = 0;
      }

      /*
       * Enabling MC-RLDRAM. After enabling the device, we timeout
       * for around 100ms, which is approximately the time required
       * for the device to be ready for operation.
       */
      val64 = readq(&bar0->mc_rldram_mrs);
      val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
      SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
      val64 = readq(&bar0->mc_rldram_mrs);

      msleep(100);      /* Delay by around 100 ms. */

      /* Enabling ECC Protection. */
      val64 = readq(&bar0->adapter_control);
      val64 &= ~ADAPTER_ECC_EN;
      writeq(val64, &bar0->adapter_control);

      /*
       * Verify if the device is ready to be enabled, if so enable
       * it.
       */
      val64 = readq(&bar0->adapter_status);
      if (!verify_xena_quiescence(nic)) {
            DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
            DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
                    (unsigned long long) val64);
            return FAILURE;
      }

      /*
       * With some switches, link might be already up at this point.
       * Because of this weird behavior, when we enable laser,
       * we may not get link. We need to handle this. We cannot
       * figure out which switch is misbehaving. So we are forced to
       * make a global change.
       */

      /* Enabling Laser. */
      val64 = readq(&bar0->adapter_control);
      val64 |= ADAPTER_EOI_TX_ON;
      writeq(val64, &bar0->adapter_control);

      if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
            /*
             * Dont see link state interrupts initally on some switches,
             * so directly scheduling the link state task here.
             */
            schedule_work(&nic->set_link_task);
      }
      /* SXE-002: Initialize link and activity LED */
      subid = nic->pdev->subsystem_device;
      if (((subid & 0xFF) >= 0x07) &&
          (nic->device_type == XFRAME_I_DEVICE)) {
            val64 = readq(&bar0->gpio_control);
            val64 |= 0x0000800000000000ULL;
            writeq(val64, &bar0->gpio_control);
            val64 = 0x0411040400000000ULL;
            writeq(val64, (void __iomem *)bar0 + 0x2700);
      }

      return SUCCESS;
}
/**
 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
 */
static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
                              TxD *txdlp, int get_off)
{
      struct s2io_nic *nic = fifo_data->nic;
      struct sk_buff *skb;
      struct TxD *txds;
      u16 j, frg_cnt;

      txds = txdlp;
      if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
            pci_unmap_single(nic->pdev, (dma_addr_t)
                  txds->Buffer_Pointer, sizeof(u64),
                  PCI_DMA_TODEVICE);
            txds++;
      }

      skb = (struct sk_buff *) ((unsigned long)
                  txds->Host_Control);
      if (!skb) {
            memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
            return NULL;
      }
      pci_unmap_single(nic->pdev, (dma_addr_t)
                   txds->Buffer_Pointer,
                   skb->len - skb->data_len,
                   PCI_DMA_TODEVICE);
      frg_cnt = skb_shinfo(skb)->nr_frags;
      if (frg_cnt) {
            txds++;
            for (j = 0; j < frg_cnt; j++, txds++) {
                  skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
                  if (!txds->Buffer_Pointer)
                        break;
                  pci_unmap_page(nic->pdev, (dma_addr_t)
                              txds->Buffer_Pointer,
                               frag->size, PCI_DMA_TODEVICE);
            }
      }
      memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
      return(skb);
}

/**
 *  free_tx_buffers - Free all queued Tx buffers
 *  @nic : device private variable.
 *  Description:
 *  Free all queued Tx buffers.
 *  Return Value: void
*/

static void free_tx_buffers(struct s2io_nic *nic)
{
      struct net_device *dev = nic->dev;
      struct sk_buff *skb;
      struct TxD *txdp;
      int i, j;
      struct mac_info *mac_control;
      struct config_param *config;
      int cnt = 0;

      mac_control = &nic->mac_control;
      config = &nic->config;

      for (i = 0; i < config->tx_fifo_num; i++) {
            unsigned long flags;
            spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
            for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
                  txdp = (struct TxD *) \
                  mac_control->fifos[i].list_info[j].list_virt_addr;
                  skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
                  if (skb) {
                        nic->mac_control.stats_info->sw_stat.mem_freed
                              += skb->truesize;
                        dev_kfree_skb(skb);
                        cnt++;
                  }
            }
            DBG_PRINT(INTR_DBG,
                    "%s:forcibly freeing %d skbs on FIFO%d\n",
                    dev->name, cnt, i);
            mac_control->fifos[i].tx_curr_get_info.offset = 0;
            mac_control->fifos[i].tx_curr_put_info.offset = 0;
            spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
      }
}

/**
 *   stop_nic -  To stop the nic
 *   @nic ; device private variable.
 *   Description:
 *   This function does exactly the opposite of what the start_nic()
 *   function does. This function is called to stop the device.
 *   Return Value:
 *   void.
 */

static void stop_nic(struct s2io_nic *nic)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      register u64 val64 = 0;
      u16 interruptible;
      struct mac_info *mac_control;
      struct config_param *config;

      mac_control = &nic->mac_control;
      config = &nic->config;

      /*  Disable all interrupts */
      en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
      interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
      interruptible |= TX_PIC_INTR;
      en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);

      /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
      val64 = readq(&bar0->adapter_control);
      val64 &= ~(ADAPTER_CNTL_EN);
      writeq(val64, &bar0->adapter_control);
}

/**
 *  fill_rx_buffers - Allocates the Rx side skbs
 *  @ring_info: per ring structure
 *  @from_card_up: If this is true, we will map the buffer to get
 *     the dma address for buf0 and buf1 to give it to the card.
 *     Else we will sync the already mapped buffer to give it to the card.
 *  Description:
 *  The function allocates Rx side skbs and puts the physical
 *  address of these buffers into the RxD buffer pointers, so that the NIC
 *  can DMA the received frame into these locations.
 *  The NIC supports 3 receive modes, viz
 *  1. single buffer,
 *  2. three buffer and
 *  3. Five buffer modes.
 *  Each mode defines how many fragments the received frame will be split
 *  up into by the NIC. The frame is split into L3 header, L4 Header,
 *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
 *  is split into 3 fragments. As of now only single buffer mode is
 *  supported.
 *   Return Value:
 *  SUCCESS on success or an appropriate -ve value on failure.
 */
static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
                        int from_card_up)
{
      struct sk_buff *skb;
      struct RxD_t *rxdp;
      int off, size, block_no, block_no1;
      u32 alloc_tab = 0;
      u32 alloc_cnt;
      u64 tmp;
      struct buffAdd *ba;
      struct RxD_t *first_rxdp = NULL;
      u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
      int rxd_index = 0;
      struct RxD1 *rxdp1;
      struct RxD3 *rxdp3;
      struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;

      alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;

      block_no1 = ring->rx_curr_get_info.block_index;
      while (alloc_tab < alloc_cnt) {
            block_no = ring->rx_curr_put_info.block_index;

            off = ring->rx_curr_put_info.offset;

            rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;

            rxd_index = off + 1;
            if (block_no)
                  rxd_index += (block_no * ring->rxd_count);

            if ((block_no == block_no1) &&
                  (off == ring->rx_curr_get_info.offset) &&
                  (rxdp->Host_Control)) {
                  DBG_PRINT(INTR_DBG, "%s: Get and Put",
                        ring->dev->name);
                  DBG_PRINT(INTR_DBG, " info equated\n");
                  goto end;
            }
            if (off && (off == ring->rxd_count)) {
                  ring->rx_curr_put_info.block_index++;
                  if (ring->rx_curr_put_info.block_index ==
                                          ring->block_count)
                        ring->rx_curr_put_info.block_index = 0;
                  block_no = ring->rx_curr_put_info.block_index;
                  off = 0;
                  ring->rx_curr_put_info.offset = off;
                  rxdp = ring->rx_blocks[block_no].block_virt_addr;
                  DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
                          ring->dev->name, rxdp);

            }

            if ((rxdp->Control_1 & RXD_OWN_XENA) &&
                  ((ring->rxd_mode == RXD_MODE_3B) &&
                        (rxdp->Control_2 & s2BIT(0)))) {
                  ring->rx_curr_put_info.offset = off;
                  goto end;
            }
            /* calculate size of skb based on ring mode */
            size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
                        HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
            if (ring->rxd_mode == RXD_MODE_1)
                  size += NET_IP_ALIGN;
            else
                  size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;

            /* allocate skb */
            skb = dev_alloc_skb(size);
            if(!skb) {
                  DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
                  DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
                  if (first_rxdp) {
                        wmb();
                        first_rxdp->Control_1 |= RXD_OWN_XENA;
                  }
                  stats->mem_alloc_fail_cnt++;

                  return -ENOMEM ;
            }
            stats->mem_allocated += skb->truesize;

            if (ring->rxd_mode == RXD_MODE_1) {
                  /* 1 buffer mode - normal operation mode */
                  rxdp1 = (struct RxD1*)rxdp;
                  memset(rxdp, 0, sizeof(struct RxD1));
                  skb_reserve(skb, NET_IP_ALIGN);
                  rxdp1->Buffer0_ptr = pci_map_single
                      (ring->pdev, skb->data, size - NET_IP_ALIGN,
                        PCI_DMA_FROMDEVICE);
                  if (pci_dma_mapping_error(nic->pdev,
                                    rxdp1->Buffer0_ptr))
                        goto pci_map_failed;

                  rxdp->Control_2 =
                        SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
                  rxdp->Host_Control = (unsigned long) (skb);
            } else if (ring->rxd_mode == RXD_MODE_3B) {
                  /*
                   * 2 buffer mode -
                   * 2 buffer mode provides 128
                   * byte aligned receive buffers.
                   */

                  rxdp3 = (struct RxD3*)rxdp;
                  /* save buffer pointers to avoid frequent dma mapping */
                  Buffer0_ptr = rxdp3->Buffer0_ptr;
                  Buffer1_ptr = rxdp3->Buffer1_ptr;
                  memset(rxdp, 0, sizeof(struct RxD3));
                  /* restore the buffer pointers for dma sync*/
                  rxdp3->Buffer0_ptr = Buffer0_ptr;
                  rxdp3->Buffer1_ptr = Buffer1_ptr;

                  ba = &ring->ba[block_no][off];
                  skb_reserve(skb, BUF0_LEN);
                  tmp = (u64)(unsigned long) skb->data;
                  tmp += ALIGN_SIZE;
                  tmp &= ~ALIGN_SIZE;
                  skb->data = (void *) (unsigned long)tmp;
                  skb_reset_tail_pointer(skb);

                  if (from_card_up) {
                        rxdp3->Buffer0_ptr =
                           pci_map_single(ring->pdev, ba->ba_0,
                              BUF0_LEN, PCI_DMA_FROMDEVICE);
                  if (pci_dma_mapping_error(nic->pdev,
                                    rxdp3->Buffer0_ptr))
                              goto pci_map_failed;
                  } else
                        pci_dma_sync_single_for_device(ring->pdev,
                        (dma_addr_t) rxdp3->Buffer0_ptr,
                            BUF0_LEN, PCI_DMA_FROMDEVICE);

                  rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
                  if (ring->rxd_mode == RXD_MODE_3B) {
                        /* Two buffer mode */

                        /*
                         * Buffer2 will have L3/L4 header plus
                         * L4 payload
                         */
                        rxdp3->Buffer2_ptr = pci_map_single
                        (ring->pdev, skb->data, ring->mtu + 4,
                                    PCI_DMA_FROMDEVICE);

                        if (pci_dma_mapping_error(nic->pdev,
                                          rxdp3->Buffer2_ptr))
                              goto pci_map_failed;

                        if (from_card_up) {
                              rxdp3->Buffer1_ptr =
                                    pci_map_single(ring->pdev,
                                    ba->ba_1, BUF1_LEN,
                                    PCI_DMA_FROMDEVICE);

                              if (pci_dma_mapping_error(nic->pdev,
                                    rxdp3->Buffer1_ptr)) {
                                    pci_unmap_single
                                          (ring->pdev,
                                        (dma_addr_t)(unsigned long)
                                          skb->data,
                                          ring->mtu + 4,
                                          PCI_DMA_FROMDEVICE);
                                    goto pci_map_failed;
                              }
                        }
                        rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
                        rxdp->Control_2 |= SET_BUFFER2_SIZE_3
                                                (ring->mtu + 4);
                  }
                  rxdp->Control_2 |= s2BIT(0);
                  rxdp->Host_Control = (unsigned long) (skb);
            }
            if (alloc_tab & ((1 << rxsync_frequency) - 1))
                  rxdp->Control_1 |= RXD_OWN_XENA;
            off++;
            if (off == (ring->rxd_count + 1))
                  off = 0;
            ring->rx_curr_put_info.offset = off;

            rxdp->Control_2 |= SET_RXD_MARKER;
            if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
                  if (first_rxdp) {
                        wmb();
                        first_rxdp->Control_1 |= RXD_OWN_XENA;
                  }
                  first_rxdp = rxdp;
            }
            ring->rx_bufs_left += 1;
            alloc_tab++;
      }

      end:
      /* Transfer ownership of first descriptor to adapter just before
       * exiting. Before that, use memory barrier so that ownership
       * and other fields are seen by adapter correctly.
       */
      if (first_rxdp) {
            wmb();
            first_rxdp->Control_1 |= RXD_OWN_XENA;
      }

      return SUCCESS;
pci_map_failed:
      stats->pci_map_fail_cnt++;
      stats->mem_freed += skb->truesize;
      dev_kfree_skb_irq(skb);
      return -ENOMEM;
}

static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
{
      struct net_device *dev = sp->dev;
      int j;
      struct sk_buff *skb;
      struct RxD_t *rxdp;
      struct mac_info *mac_control;
      struct buffAdd *ba;
      struct RxD1 *rxdp1;
      struct RxD3 *rxdp3;

      mac_control = &sp->mac_control;
      for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
            rxdp = mac_control->rings[ring_no].
                                rx_blocks[blk].rxds[j].virt_addr;
            skb = (struct sk_buff *)
                  ((unsigned long) rxdp->Host_Control);
            if (!skb) {
                  continue;
            }
            if (sp->rxd_mode == RXD_MODE_1) {
                  rxdp1 = (struct RxD1*)rxdp;
                  pci_unmap_single(sp->pdev, (dma_addr_t)
                        rxdp1->Buffer0_ptr,
                        dev->mtu +
                        HEADER_ETHERNET_II_802_3_SIZE
                        + HEADER_802_2_SIZE +
                        HEADER_SNAP_SIZE,
                        PCI_DMA_FROMDEVICE);
                  memset(rxdp, 0, sizeof(struct RxD1));
            } else if(sp->rxd_mode == RXD_MODE_3B) {
                  rxdp3 = (struct RxD3*)rxdp;
                  ba = &mac_control->rings[ring_no].
                        ba[blk][j];
                  pci_unmap_single(sp->pdev, (dma_addr_t)
                        rxdp3->Buffer0_ptr,
                        BUF0_LEN,
                        PCI_DMA_FROMDEVICE);
                  pci_unmap_single(sp->pdev, (dma_addr_t)
                        rxdp3->Buffer1_ptr,
                        BUF1_LEN,
                        PCI_DMA_FROMDEVICE);
                  pci_unmap_single(sp->pdev, (dma_addr_t)
                        rxdp3->Buffer2_ptr,
                        dev->mtu + 4,
                        PCI_DMA_FROMDEVICE);
                  memset(rxdp, 0, sizeof(struct RxD3));
            }
            sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
            dev_kfree_skb(skb);
            mac_control->rings[ring_no].rx_bufs_left -= 1;
      }
}

/**
 *  free_rx_buffers - Frees all Rx buffers
 *  @sp: device private variable.
 *  Description:
 *  This function will free all Rx buffers allocated by host.
 *  Return Value:
 *  NONE.
 */

static void free_rx_buffers(struct s2io_nic *sp)
{
      struct net_device *dev = sp->dev;
      int i, blk = 0, buf_cnt = 0;
      struct mac_info *mac_control;
      struct config_param *config;

      mac_control = &sp->mac_control;
      config = &sp->config;

      for (i = 0; i < config->rx_ring_num; i++) {
            for (blk = 0; blk < rx_ring_sz[i]; blk++)
                  free_rxd_blk(sp,i,blk);

            mac_control->rings[i].rx_curr_put_info.block_index = 0;
            mac_control->rings[i].rx_curr_get_info.block_index = 0;
            mac_control->rings[i].rx_curr_put_info.offset = 0;
            mac_control->rings[i].rx_curr_get_info.offset = 0;
            mac_control->rings[i].rx_bufs_left = 0;
            DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
                    dev->name, buf_cnt, i);
      }
}

static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
{
      if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
            DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
            DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
      }
      return 0;
}

/**
 * s2io_poll - Rx interrupt handler for NAPI support
 * @napi : pointer to the napi structure.
 * @budget : The number of packets that were budgeted to be processed
 * during  one pass through the 'Poll" function.
 * Description:
 * Comes into picture only if NAPI support has been incorporated. It does
 * the same thing that rx_intr_handler does, but not in a interrupt context
 * also It will process only a given number of packets.
 * Return value:
 * 0 on success and 1 if there are No Rx packets to be processed.
 */

static int s2io_poll_msix(struct napi_struct *napi, int budget)
{
      struct ring_info *ring = container_of(napi, struct ring_info, napi);
      struct net_device *dev = ring->dev;
      struct config_param *config;
      struct mac_info *mac_control;
      int pkts_processed = 0;
      u8 __iomem *addr = NULL;
      u8 val8 = 0;
      struct s2io_nic *nic = netdev_priv(dev);
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      int budget_org = budget;

      config = &nic->config;
      mac_control = &nic->mac_control;

      if (unlikely(!is_s2io_card_up(nic)))
            return 0;

      pkts_processed = rx_intr_handler(ring, budget);
      s2io_chk_rx_buffers(nic, ring);

      if (pkts_processed < budget_org) {
            napi_complete(napi);
            /*Re Enable MSI-Rx Vector*/
            addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
            addr += 7 - ring->ring_no;
            val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
            writeb(val8, addr);
            val8 = readb(addr);
      }
      return pkts_processed;
}
static int s2io_poll_inta(struct napi_struct *napi, int budget)
{
      struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
      struct ring_info *ring;
      struct config_param *config;
      struct mac_info *mac_control;
      int pkts_processed = 0;
      int ring_pkts_processed, i;
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      int budget_org = budget;

      config = &nic->config;
      mac_control = &nic->mac_control;

      if (unlikely(!is_s2io_card_up(nic)))
            return 0;

      for (i = 0; i < config->rx_ring_num; i++) {
            ring = &mac_control->rings[i];
            ring_pkts_processed = rx_intr_handler(ring, budget);
            s2io_chk_rx_buffers(nic, ring);
            pkts_processed += ring_pkts_processed;
            budget -= ring_pkts_processed;
            if (budget <= 0)
                  break;
      }
      if (pkts_processed < budget_org) {
            napi_complete(napi);
            /* Re enable the Rx interrupts for the ring */
            writeq(0, &bar0->rx_traffic_mask);
            readl(&bar0->rx_traffic_mask);
      }
      return pkts_processed;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/**
 * s2io_netpoll - netpoll event handler entry point
 * @dev : pointer to the device structure.
 * Description:
 *    This function will be called by upper layer to check for events on the
 * interface in situations where interrupts are disabled. It is used for
 * specific in-kernel networking tasks, such as remote consoles and kernel
 * debugging over the network (example netdump in RedHat).
 */
static void s2io_netpoll(struct net_device *dev)
{
      struct s2io_nic *nic = netdev_priv(dev);
      struct mac_info *mac_control;
      struct config_param *config;
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
      int i;

      if (pci_channel_offline(nic->pdev))
            return;

      disable_irq(dev->irq);

      mac_control = &nic->mac_control;
      config = &nic->config;

      writeq(val64, &bar0->rx_traffic_int);
      writeq(val64, &bar0->tx_traffic_int);

      /* we need to free up the transmitted skbufs or else netpoll will
       * run out of skbs and will fail and eventually netpoll application such
       * as netdump will fail.
       */
      for (i = 0; i < config->tx_fifo_num; i++)
            tx_intr_handler(&mac_control->fifos[i]);

      /* check for received packet and indicate up to network */
      for (i = 0; i < config->rx_ring_num; i++)
            rx_intr_handler(&mac_control->rings[i], 0);

      for (i = 0; i < config->rx_ring_num; i++) {
            if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
                        -ENOMEM) {
                  DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
                  DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
                  break;
            }
      }
      enable_irq(dev->irq);
      return;
}
#endif

/**
 *  rx_intr_handler - Rx interrupt handler
 *  @ring_info: per ring structure.
 *  @budget: budget for napi processing.
 *  Description:
 *  If the interrupt is because of a received frame or if the
 *  receive ring contains fresh as yet un-processed frames,this function is
 *  called. It picks out the RxD at which place the last Rx processing had
 *  stopped and sends the skb to the OSM's Rx handler and then increments
 *  the offset.
 *  Return Value:
 *  No. of napi packets processed.
 */
static int rx_intr_handler(struct ring_info *ring_data, int budget)
{
      int get_block, put_block;
      struct rx_curr_get_info get_info, put_info;
      struct RxD_t *rxdp;
      struct sk_buff *skb;
      int pkt_cnt = 0, napi_pkts = 0;
      int i;
      struct RxD1* rxdp1;
      struct RxD3* rxdp3;

      get_info = ring_data->rx_curr_get_info;
      get_block = get_info.block_index;
      memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
      put_block = put_info.block_index;
      rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;

      while (RXD_IS_UP2DT(rxdp)) {
            /*
             * If your are next to put index then it's
             * FIFO full condition
             */
            if ((get_block == put_block) &&
                (get_info.offset + 1) == put_info.offset) {
                  DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
                        ring_data->dev->name);
                  break;
            }
            skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
            if (skb == NULL) {
                  DBG_PRINT(ERR_DBG, "%s: The skb is ",
                          ring_data->dev->name);
                  DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
                  return 0;
            }
            if (ring_data->rxd_mode == RXD_MODE_1) {
                  rxdp1 = (struct RxD1*)rxdp;
                  pci_unmap_single(ring_data->pdev, (dma_addr_t)
                        rxdp1->Buffer0_ptr,
                        ring_data->mtu +
                        HEADER_ETHERNET_II_802_3_SIZE +
                        HEADER_802_2_SIZE +
                        HEADER_SNAP_SIZE,
                        PCI_DMA_FROMDEVICE);
            } else if (ring_data->rxd_mode == RXD_MODE_3B) {
                  rxdp3 = (struct RxD3*)rxdp;
                  pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
                        rxdp3->Buffer0_ptr,
                        BUF0_LEN, PCI_DMA_FROMDEVICE);
                  pci_unmap_single(ring_data->pdev, (dma_addr_t)
                        rxdp3->Buffer2_ptr,
                        ring_data->mtu + 4,
                        PCI_DMA_FROMDEVICE);
            }
            prefetch(skb->data);
            rx_osm_handler(ring_data, rxdp);
            get_info.offset++;
            ring_data->rx_curr_get_info.offset = get_info.offset;
            rxdp = ring_data->rx_blocks[get_block].
                        rxds[get_info.offset].virt_addr;
            if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
                  get_info.offset = 0;
                  ring_data->rx_curr_get_info.offset = get_info.offset;
                  get_block++;
                  if (get_block == ring_data->block_count)
                        get_block = 0;
                  ring_data->rx_curr_get_info.block_index = get_block;
                  rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
            }

            if (ring_data->nic->config.napi) {
                  budget--;
                  napi_pkts++;
                  if (!budget)
                        break;
            }
            pkt_cnt++;
            if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
                  break;
      }
      if (ring_data->lro) {
            /* Clear all LRO sessions before exiting */
            for (i=0; i<MAX_LRO_SESSIONS; i++) {
                  struct lro *lro = &ring_data->lro0_n[i];
                  if (lro->in_use) {
                        update_L3L4_header(ring_data->nic, lro);
                        queue_rx_frame(lro->parent, lro->vlan_tag);
                        clear_lro_session(lro);
                  }
            }
      }
      return(napi_pkts);
}

/**
 *  tx_intr_handler - Transmit interrupt handler
 *  @nic : device private variable
 *  Description:
 *  If an interrupt was raised to indicate DMA complete of the
 *  Tx packet, this function is called. It identifies the last TxD
 *  whose buffer was freed and frees all skbs whose data have already
 *  DMA'ed into the NICs internal memory.
 *  Return Value:
 *  NONE
 */

static void tx_intr_handler(struct fifo_info *fifo_data)
{
      struct s2io_nic *nic = fifo_data->nic;
      struct tx_curr_get_info get_info, put_info;
      struct sk_buff *skb = NULL;
      struct TxD *txdlp;
      int pkt_cnt = 0;
      unsigned long flags = 0;
      u8 err_mask;

      if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
                  return;

      get_info = fifo_data->tx_curr_get_info;
      memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
      txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
          list_virt_addr;
      while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
             (get_info.offset != put_info.offset) &&
             (txdlp->Host_Control)) {
            /* Check for TxD errors */
            if (txdlp->Control_1 & TXD_T_CODE) {
                  unsigned long long err;
                  err = txdlp->Control_1 & TXD_T_CODE;
                  if (err & 0x1) {
                        nic->mac_control.stats_info->sw_stat.
                                    parity_err_cnt++;
                  }

                  /* update t_code statistics */
                  err_mask = err >> 48;
                  switch(err_mask) {
                        case 2:
                              nic->mac_control.stats_info->sw_stat.
                                          tx_buf_abort_cnt++;
                        break;

                        case 3:
                              nic->mac_control.stats_info->sw_stat.
                                          tx_desc_abort_cnt++;
                        break;

                        case 7:
                              nic->mac_control.stats_info->sw_stat.
                                          tx_parity_err_cnt++;
                        break;

                        case 10:
                              nic->mac_control.stats_info->sw_stat.
                                          tx_link_loss_cnt++;
                        break;

                        case 15:
                              nic->mac_control.stats_info->sw_stat.
                                          tx_list_proc_err_cnt++;
                        break;
                        }
            }

            skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
            if (skb == NULL) {
                  spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
                  DBG_PRINT(ERR_DBG, "%s: Null skb ",
                  __func__);
                  DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
                  return;
            }
            pkt_cnt++;

            /* Updating the statistics block */
            nic->dev->stats.tx_bytes += skb->len;
            nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
            dev_kfree_skb_irq(skb);

            get_info.offset++;
            if (get_info.offset == get_info.fifo_len + 1)
                  get_info.offset = 0;
            txdlp = (struct TxD *) fifo_data->list_info
                [get_info.offset].list_virt_addr;
            fifo_data->tx_curr_get_info.offset =
                get_info.offset;
      }

      s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);

      spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
}

/**
 *  s2io_mdio_write - Function to write in to MDIO registers
 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
 *  @addr     : address value
 *  @value    : data value
 *  @dev      : pointer to net_device structure
 *  Description:
 *  This function is used to write values to the MDIO registers
 *  NONE
 */
static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
{
      u64 val64 = 0x0;
      struct s2io_nic *sp = netdev_priv(dev);
      struct XENA_dev_config __iomem *bar0 = sp->bar0;

      //address transaction
      val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
                  | MDIO_MMD_DEV_ADDR(mmd_type)
                  | MDIO_MMS_PRT_ADDR(0x0);
      writeq(val64, &bar0->mdio_control);
      val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
      writeq(val64, &bar0->mdio_control);
      udelay(100);

      //Data transaction
      val64 = 0x0;
      val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
                  | MDIO_MMD_DEV_ADDR(mmd_type)
                  | MDIO_MMS_PRT_ADDR(0x0)
                  | MDIO_MDIO_DATA(value)
                  | MDIO_OP(MDIO_OP_WRITE_TRANS);
      writeq(val64, &bar0->mdio_control);
      val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
      writeq(val64, &bar0->mdio_control);
      udelay(100);

      val64 = 0x0;
      val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
      | MDIO_MMD_DEV_ADDR(mmd_type)
      | MDIO_MMS_PRT_ADDR(0x0)
      | MDIO_OP(MDIO_OP_READ_TRANS);
      writeq(val64, &bar0->mdio_control);
      val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
      writeq(val64, &bar0->mdio_control);
      udelay(100);

}

/**
 *  s2io_mdio_read - Function to write in to MDIO registers
 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
 *  @addr     : address value
 *  @dev      : pointer to net_device structure
 *  Description:
 *  This function is used to read values to the MDIO registers
 *  NONE
 */
static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
{
      u64 val64 = 0x0;
      u64 rval64 = 0x0;
      struct s2io_nic *sp = netdev_priv(dev);
      struct XENA_dev_config __iomem *bar0 = sp->bar0;

      /* address transaction */
      val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
                  | MDIO_MMD_DEV_ADDR(mmd_type)
                  | MDIO_MMS_PRT_ADDR(0x0);
      writeq(val64, &bar0->mdio_control);
      val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
      writeq(val64, &bar0->mdio_control);
      udelay(100);

      /* Data transaction */
      val64 = 0x0;
      val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
                  | MDIO_MMD_DEV_ADDR(mmd_type)
                  | MDIO_MMS_PRT_ADDR(0x0)
                  | MDIO_OP(MDIO_OP_READ_TRANS);
      writeq(val64, &bar0->mdio_control);
      val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
      writeq(val64, &bar0->mdio_control);
      udelay(100);

      /* Read the value from regs */
      rval64 = readq(&bar0->mdio_control);
      rval64 = rval64 & 0xFFFF0000;
      rval64 = rval64 >> 16;
      return rval64;
}
/**
 *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
 *  @counter      : couter value to be updated
 *  @flag         : flag to indicate the status
 *  @type         : counter type
 *  Description:
 *  This function is to check the status of the xpak counters value
 *  NONE
 */

static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
{
      u64 mask = 0x3;
      u64 val64;
      int i;
      for(i = 0; i <index; i++)
            mask = mask << 0x2;

      if(flag > 0)
      {
            *counter = *counter + 1;
            val64 = *regs_stat & mask;
            val64 = val64 >> (index * 0x2);
            val64 = val64 + 1;
            if(val64 == 3)
            {
                  switch(type)
                  {
                  case 1:
                        DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
                                "service. Excessive temperatures may "
                                "result in premature transceiver "
                                "failure \n");
                  break;
                  case 2:
                        DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
                                "service Excessive bias currents may "
                                "indicate imminent laser diode "
                                "failure \n");
                  break;
                  case 3:
                        DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
                                "service Excessive laser output "
                                "power may saturate far-end "
                                "receiver\n");
                  break;
                  default:
                        DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
                                "type \n");
                  }
                  val64 = 0x0;
            }
            val64 = val64 << (index * 0x2);
            *regs_stat = (*regs_stat & (~mask)) | (val64);

      } else {
            *regs_stat = *regs_stat & (~mask);
      }
}

/**
 *  s2io_updt_xpak_counter - Function to update the xpak counters
 *  @dev         : pointer to net_device struct
 *  Description:
 *  This function is to upate the status of the xpak counters value
 *  NONE
 */
static void s2io_updt_xpak_counter(struct net_device *dev)
{
      u16 flag  = 0x0;
      u16 type  = 0x0;
      u16 val16 = 0x0;
      u64 val64 = 0x0;
      u64 addr  = 0x0;

      struct s2io_nic *sp = netdev_priv(dev);
      struct stat_block *stat_info = sp->mac_control.stats_info;

      /* Check the communication with the MDIO slave */
      addr = MDIO_CTRL1;
      val64 = 0x0;
      val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
      if((val64 == 0xFFFF) || (val64 == 0x0000))
      {
            DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
                    "Returned %llx\n", (unsigned long long)val64);
            return;
      }

      /* Check for the expected value of control reg 1 */
      if(val64 != MDIO_CTRL1_SPEED10G)
      {
            DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
            DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x%x\n",
                    (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
            return;
      }

      /* Loading the DOM register to MDIO register */
      addr = 0xA100;
      s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
      val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);

      /* Reading the Alarm flags */
      addr = 0xA070;
      val64 = 0x0;
      val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);

      flag = CHECKBIT(val64, 0x7);
      type = 1;
      s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
                        &stat_info->xpak_stat.xpak_regs_stat,
                        0x0, flag, type);

      if(CHECKBIT(val64, 0x6))
            stat_info->xpak_stat.alarm_transceiver_temp_low++;

      flag = CHECKBIT(val64, 0x3);
      type = 2;
      s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
                        &stat_info->xpak_stat.xpak_regs_stat,
                        0x2, flag, type);

      if(CHECKBIT(val64, 0x2))
            stat_info->xpak_stat.alarm_laser_bias_current_low++;

      flag = CHECKBIT(val64, 0x1);
      type = 3;
      s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
                        &stat_info->xpak_stat.xpak_regs_stat,
                        0x4, flag, type);

      if(CHECKBIT(val64, 0x0))
            stat_info->xpak_stat.alarm_laser_output_power_low++;

      /* Reading the Warning flags */
      addr = 0xA074;
      val64 = 0x0;
      val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);

      if(CHECKBIT(val64, 0x7))
            stat_info->xpak_stat.warn_transceiver_temp_high++;

      if(CHECKBIT(val64, 0x6))
            stat_info->xpak_stat.warn_transceiver_temp_low++;

      if(CHECKBIT(val64, 0x3))
            stat_info->xpak_stat.warn_laser_bias_current_high++;

      if(CHECKBIT(val64, 0x2))
            stat_info->xpak_stat.warn_laser_bias_current_low++;

      if(CHECKBIT(val64, 0x1))
            stat_info->xpak_stat.warn_laser_output_power_high++;

      if(CHECKBIT(val64, 0x0))
            stat_info->xpak_stat.warn_laser_output_power_low++;
}

/**
 *  wait_for_cmd_complete - waits for a command to complete.
 *  @sp : private member of the device structure, which is a pointer to the
 *  s2io_nic structure.
 *  Description: Function that waits for a command to Write into RMAC
 *  ADDR DATA registers to be completed and returns either success or
 *  error depending on whether the command was complete or not.
 *  Return value:
 *   SUCCESS on success and FAILURE on failure.
 */

static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
                        int bit_state)
{
      int ret = FAILURE, cnt = 0, delay = 1;
      u64 val64;

      if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
            return FAILURE;

      do {
            val64 = readq(addr);
            if (bit_state == S2IO_BIT_RESET) {
                  if (!(val64 & busy_bit)) {
                        ret = SUCCESS;
                        break;
                  }
            } else {
                  if (!(val64 & busy_bit)) {
                        ret = SUCCESS;
                        break;
                  }
            }

            if(in_interrupt())
                  mdelay(delay);
            else
                  msleep(delay);

            if (++cnt >= 10)
                  delay = 50;
      } while (cnt < 20);
      return ret;
}
/*
 * check_pci_device_id - Checks if the device id is supported
 * @id : device id
 * Description: Function to check if the pci device id is supported by driver.
 * Return value: Actual device id if supported else PCI_ANY_ID
 */
static u16 check_pci_device_id(u16 id)
{
      switch (id) {
      case PCI_DEVICE_ID_HERC_WIN:
      case PCI_DEVICE_ID_HERC_UNI:
            return XFRAME_II_DEVICE;
      case PCI_DEVICE_ID_S2IO_UNI:
      case PCI_DEVICE_ID_S2IO_WIN:
            return XFRAME_I_DEVICE;
      default:
            return PCI_ANY_ID;
      }
}

/**
 *  s2io_reset - Resets the card.
 *  @sp : private member of the device structure.
 *  Description: Function to Reset the card. This function then also
 *  restores the previously saved PCI configuration space registers as
 *  the card reset also resets the configuration space.
 *  Return value:
 *  void.
 */

static void s2io_reset(struct s2io_nic * sp)
{
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64;
      u16 subid, pci_cmd;
      int i;
      u16 val16;
      unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
      unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;

      DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
                  __func__, sp->dev->name);

      /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
      pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));

      val64 = SW_RESET_ALL;
      writeq(val64, &bar0->sw_reset);
      if (strstr(sp->product_name, "CX4")) {
            msleep(750);
      }
      msleep(250);
      for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {

            /* Restore the PCI state saved during initialization. */
            pci_restore_state(sp->pdev);
            pci_read_config_word(sp->pdev, 0x2, &val16);
            if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
                  break;
            msleep(200);
      }

      if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
            DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
      }

      pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);

      s2io_init_pci(sp);

      /* Set swapper to enable I/O register access */
      s2io_set_swapper(sp);

      /* restore mac_addr entries */
      do_s2io_restore_unicast_mc(sp);

      /* Restore the MSIX table entries from local variables */
      restore_xmsi_data(sp);

      /* Clear certain PCI/PCI-X fields after reset */
      if (sp->device_type == XFRAME_II_DEVICE) {
            /* Clear "detected parity error" bit */
            pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);

            /* Clearing PCIX Ecc status register */
            pci_write_config_dword(sp->pdev, 0x68, 0x7C);

            /* Clearing PCI_STATUS error reflected here */
            writeq(s2BIT(62), &bar0->txpic_int_reg);
      }

      /* Reset device statistics maintained by OS */
      memset(&sp->stats, 0, sizeof (struct net_device_stats));

      up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
      down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
      up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
      down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
      reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
      mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
      mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
      watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
      /* save link up/down time/cnt, reset/memory/watchdog cnt */
      memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
      /* restore link up/down time/cnt, reset/memory/watchdog cnt */
      sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
      sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
      sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
      sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
      sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
      sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
      sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
      sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;

      /* SXE-002: Configure link and activity LED to turn it off */
      subid = sp->pdev->subsystem_device;
      if (((subid & 0xFF) >= 0x07) &&
          (sp->device_type == XFRAME_I_DEVICE)) {
            val64 = readq(&bar0->gpio_control);
            val64 |= 0x0000800000000000ULL;
            writeq(val64, &bar0->gpio_control);
            val64 = 0x0411040400000000ULL;
            writeq(val64, (void __iomem *)bar0 + 0x2700);
      }

      /*
       * Clear spurious ECC interrupts that would have occured on
       * XFRAME II cards after reset.
       */
      if (sp->device_type == XFRAME_II_DEVICE) {
            val64 = readq(&bar0->pcc_err_reg);
            writeq(val64, &bar0->pcc_err_reg);
      }

      sp->device_enabled_once = false;
}

/**
 *  s2io_set_swapper - to set the swapper controle on the card
 *  @sp : private member of the device structure,
 *  pointer to the s2io_nic structure.
 *  Description: Function to set the swapper control on the card
 *  correctly depending on the 'endianness' of the system.
 *  Return value:
 *  SUCCESS on success and FAILURE on failure.
 */

static int s2io_set_swapper(struct s2io_nic * sp)
{
      struct net_device *dev = sp->dev;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64, valt, valr;

      /*
       * Set proper endian settings and verify the same by reading
       * the PIF Feed-back register.
       */

      val64 = readq(&bar0->pif_rd_swapper_fb);
      if (val64 != 0x0123456789ABCDEFULL) {
            int i = 0;
            u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
                        0x8100008181000081ULL,  /* FE=1, SE=0 */
                        0x4200004242000042ULL,  /* FE=0, SE=1 */
                        0};                     /* FE=0, SE=0 */

            while(i<4) {
                  writeq(value[i], &bar0->swapper_ctrl);
                  val64 = readq(&bar0->pif_rd_swapper_fb);
                  if (val64 == 0x0123456789ABCDEFULL)
                        break;
                  i++;
            }
            if (i == 4) {
                  DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
                        dev->name);
                  DBG_PRINT(ERR_DBG, "feedback read %llx\n",
                        (unsigned long long) val64);
                  return FAILURE;
            }
            valr = value[i];
      } else {
            valr = readq(&bar0->swapper_ctrl);
      }

      valt = 0x0123456789ABCDEFULL;
      writeq(valt, &bar0->xmsi_address);
      val64 = readq(&bar0->xmsi_address);

      if(val64 != valt) {
            int i = 0;
            u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
                        0x0081810000818100ULL,  /* FE=1, SE=0 */
                        0x0042420000424200ULL,  /* FE=0, SE=1 */
                        0};                     /* FE=0, SE=0 */

            while(i<4) {
                  writeq((value[i] | valr), &bar0->swapper_ctrl);
                  writeq(valt, &bar0->xmsi_address);
                  val64 = readq(&bar0->xmsi_address);
                  if(val64 == valt)
                        break;
                  i++;
            }
            if(i == 4) {
                  unsigned long long x = val64;
                  DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
                  DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
                  return FAILURE;
            }
      }
      val64 = readq(&bar0->swapper_ctrl);
      val64 &= 0xFFFF000000000000ULL;

#ifdef  __BIG_ENDIAN
      /*
       * The device by default set to a big endian format, so a
       * big endian driver need not set anything.
       */
      val64 |= (SWAPPER_CTRL_TXP_FE |
             SWAPPER_CTRL_TXP_SE |
             SWAPPER_CTRL_TXD_R_FE |
             SWAPPER_CTRL_TXD_W_FE |
             SWAPPER_CTRL_TXF_R_FE |
             SWAPPER_CTRL_RXD_R_FE |
             SWAPPER_CTRL_RXD_W_FE |
             SWAPPER_CTRL_RXF_W_FE |
             SWAPPER_CTRL_XMSI_FE |
             SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
      if (sp->config.intr_type == INTA)
            val64 |= SWAPPER_CTRL_XMSI_SE;
      writeq(val64, &bar0->swapper_ctrl);
#else
      /*
       * Initially we enable all bits to make it accessible by the
       * driver, then we selectively enable only those bits that
       * we want to set.
       */
      val64 |= (SWAPPER_CTRL_TXP_FE |
             SWAPPER_CTRL_TXP_SE |
             SWAPPER_CTRL_TXD_R_FE |
             SWAPPER_CTRL_TXD_R_SE |
             SWAPPER_CTRL_TXD_W_FE |
             SWAPPER_CTRL_TXD_W_SE |
             SWAPPER_CTRL_TXF_R_FE |
             SWAPPER_CTRL_RXD_R_FE |
             SWAPPER_CTRL_RXD_R_SE |
             SWAPPER_CTRL_RXD_W_FE |
             SWAPPER_CTRL_RXD_W_SE |
             SWAPPER_CTRL_RXF_W_FE |
             SWAPPER_CTRL_XMSI_FE |
             SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
      if (sp->config.intr_type == INTA)
            val64 |= SWAPPER_CTRL_XMSI_SE;
      writeq(val64, &bar0->swapper_ctrl);
#endif
      val64 = readq(&bar0->swapper_ctrl);

      /*
       * Verifying if endian settings are accurate by reading a
       * feedback register.
       */
      val64 = readq(&bar0->pif_rd_swapper_fb);
      if (val64 != 0x0123456789ABCDEFULL) {
            /* Endian settings are incorrect, calls for another dekko. */
            DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
                    dev->name);
            DBG_PRINT(ERR_DBG, "feedback read %llx\n",
                    (unsigned long long) val64);
            return FAILURE;
      }

      return SUCCESS;
}

static int wait_for_msix_trans(struct s2io_nic *nic, int i)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      u64 val64;
      int ret = 0, cnt = 0;

      do {
            val64 = readq(&bar0->xmsi_access);
            if (!(val64 & s2BIT(15)))
                  break;
            mdelay(1);
            cnt++;
      } while(cnt < 5);
      if (cnt == 5) {
            DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
            ret = 1;
      }

      return ret;
}

static void restore_xmsi_data(struct s2io_nic *nic)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      u64 val64;
      int i, msix_index;


      if (nic->device_type == XFRAME_I_DEVICE)
            return;

      for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
            msix_index = (i) ? ((i-1) * 8 + 1): 0;
            writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
            writeq(nic->msix_info[i].data, &bar0->xmsi_data);
            val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
            writeq(val64, &bar0->xmsi_access);
            if (wait_for_msix_trans(nic, msix_index)) {
                  DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
                  continue;
            }
      }
}

static void store_xmsi_data(struct s2io_nic *nic)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      u64 val64, addr, data;
      int i, msix_index;

      if (nic->device_type == XFRAME_I_DEVICE)
            return;

      /* Store and display */
      for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
            msix_index = (i) ? ((i-1) * 8 + 1): 0;
            val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
            writeq(val64, &bar0->xmsi_access);
            if (wait_for_msix_trans(nic, msix_index)) {
                  DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
                  continue;
            }
            addr = readq(&bar0->xmsi_address);
            data = readq(&bar0->xmsi_data);
            if (addr && data) {
                  nic->msix_info[i].addr = addr;
                  nic->msix_info[i].data = data;
            }
      }
}

static int s2io_enable_msi_x(struct s2io_nic *nic)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      u64 rx_mat;
      u16 msi_control; /* Temp variable */
      int ret, i, j, msix_indx = 1;

      nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
                         GFP_KERNEL);
      if (!nic->entries) {
            DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
                  __func__);
            nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
            return -ENOMEM;
      }
      nic->mac_control.stats_info->sw_stat.mem_allocated
            += (nic->num_entries * sizeof(struct msix_entry));

      memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));

      nic->s2io_entries =
            kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
                           GFP_KERNEL);
      if (!nic->s2io_entries) {
            DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
                  __func__);
            nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
            kfree(nic->entries);
            nic->mac_control.stats_info->sw_stat.mem_freed
                  += (nic->num_entries * sizeof(struct msix_entry));
            return -ENOMEM;
      }
       nic->mac_control.stats_info->sw_stat.mem_allocated
            += (nic->num_entries * sizeof(struct s2io_msix_entry));
      memset(nic->s2io_entries, 0,
            nic->num_entries * sizeof(struct s2io_msix_entry));

      nic->entries[0].entry = 0;
      nic->s2io_entries[0].entry = 0;
      nic->s2io_entries[0].in_use = MSIX_FLG;
      nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
      nic->s2io_entries[0].arg = &nic->mac_control.fifos;

      for (i = 1; i < nic->num_entries; i++) {
            nic->entries[i].entry = ((i - 1) * 8) + 1;
            nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
            nic->s2io_entries[i].arg = NULL;
            nic->s2io_entries[i].in_use = 0;
      }

      rx_mat = readq(&bar0->rx_mat);
      for (j = 0; j < nic->config.rx_ring_num; j++) {
            rx_mat |= RX_MAT_SET(j, msix_indx);
            nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
            nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
            nic->s2io_entries[j+1].in_use = MSIX_FLG;
            msix_indx += 8;
      }
      writeq(rx_mat, &bar0->rx_mat);
      readq(&bar0->rx_mat);

      ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
      /* We fail init if error or we get less vectors than min required */
      if (ret) {
            DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
            kfree(nic->entries);
            nic->mac_control.stats_info->sw_stat.mem_freed
                  += (nic->num_entries * sizeof(struct msix_entry));
            kfree(nic->s2io_entries);
            nic->mac_control.stats_info->sw_stat.mem_freed
                  += (nic->num_entries * sizeof(struct s2io_msix_entry));
            nic->entries = NULL;
            nic->s2io_entries = NULL;
            return -ENOMEM;
      }

      /*
       * To enable MSI-X, MSI also needs to be enabled, due to a bug
       * in the herc NIC. (Temp change, needs to be removed later)
       */
      pci_read_config_word(nic->pdev, 0x42, &msi_control);
      msi_control |= 0x1; /* Enable MSI */
      pci_write_config_word(nic->pdev, 0x42, msi_control);

      return 0;
}

/* Handle software interrupt used during MSI(X) test */
static irqreturn_t s2io_test_intr(int irq, void *dev_id)
{
      struct s2io_nic *sp = dev_id;

      sp->msi_detected = 1;
      wake_up(&sp->msi_wait);

      return IRQ_HANDLED;
}

/* Test interrupt path by forcing a a software IRQ */
static int s2io_test_msi(struct s2io_nic *sp)
{
      struct pci_dev *pdev = sp->pdev;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      int err;
      u64 val64, saved64;

      err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
                  sp->name, sp);
      if (err) {
            DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
                   sp->dev->name, pci_name(pdev), pdev->irq);
            return err;
      }

      init_waitqueue_head (&sp->msi_wait);
      sp->msi_detected = 0;

      saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
      val64 |= SCHED_INT_CTRL_ONE_SHOT;
      val64 |= SCHED_INT_CTRL_TIMER_EN;
      val64 |= SCHED_INT_CTRL_INT2MSI(1);
      writeq(val64, &bar0->scheduled_int_ctrl);

      wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);

      if (!sp->msi_detected) {
            /* MSI(X) test failed, go back to INTx mode */
            DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
                  "using MSI(X) during test\n", sp->dev->name,
                  pci_name(pdev));

            err = -EOPNOTSUPP;
      }

      free_irq(sp->entries[1].vector, sp);

      writeq(saved64, &bar0->scheduled_int_ctrl);

      return err;
}

static void remove_msix_isr(struct s2io_nic *sp)
{
      int i;
      u16 msi_control;

      for (i = 0; i < sp->num_entries; i++) {
            if (sp->s2io_entries[i].in_use ==
                  MSIX_REGISTERED_SUCCESS) {
                  int vector = sp->entries[i].vector;
                  void *arg = sp->s2io_entries[i].arg;
                  free_irq(vector, arg);
            }
      }

      kfree(sp->entries);
      kfree(sp->s2io_entries);
      sp->entries = NULL;
      sp->s2io_entries = NULL;

      pci_read_config_word(sp->pdev, 0x42, &msi_control);
      msi_control &= 0xFFFE; /* Disable MSI */
      pci_write_config_word(sp->pdev, 0x42, msi_control);

      pci_disable_msix(sp->pdev);
}

static void remove_inta_isr(struct s2io_nic *sp)
{
      struct net_device *dev = sp->dev;

      free_irq(sp->pdev->irq, dev);
}

/* ********************************************************* *
 * Functions defined below concern the OS part of the driver *
 * ********************************************************* */

/**
 *  s2io_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver. It mainly calls a
 *  function to allocate Rx buffers and inserts them into the buffer
 *  descriptors and then enables the Rx part of the NIC.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *   file on failure.
 */

static int s2io_open(struct net_device *dev)
{
      struct s2io_nic *sp = netdev_priv(dev);
      int err = 0;

      /*
       * Make sure you have link off by default every time
       * Nic is initialized
       */
      netif_carrier_off(dev);
      sp->last_link_state = 0;

      /* Initialize H/W and enable interrupts */
      err = s2io_card_up(sp);
      if (err) {
            DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
                    dev->name);
            goto hw_init_failed;
      }

      if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
            DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
            s2io_card_down(sp);
            err = -ENODEV;
            goto hw_init_failed;
      }
      s2io_start_all_tx_queue(sp);
      return 0;

hw_init_failed:
      if (sp->config.intr_type == MSI_X) {
            if (sp->entries) {
                  kfree(sp->entries);
                  sp->mac_control.stats_info->sw_stat.mem_freed
                  += (sp->num_entries * sizeof(struct msix_entry));
            }
            if (sp->s2io_entries) {
                  kfree(sp->s2io_entries);
                  sp->mac_control.stats_info->sw_stat.mem_freed
                  += (sp->num_entries * sizeof(struct s2io_msix_entry));
            }
      }
      return err;
}

/**
 *  s2io_close -close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver. It needs to undo exactly
 *  whatever was done by the open entry point,thus it's usually referred to
 *  as the close function.Among other things this function mainly stops the
 *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */

static int s2io_close(struct net_device *dev)
{
      struct s2io_nic *sp = netdev_priv(dev);
      struct config_param *config = &sp->config;
      u64 tmp64;
      int offset;

      /* Return if the device is already closed               *
      *  Can happen when s2io_card_up failed in change_mtu    *
      */
      if (!is_s2io_card_up(sp))
            return 0;

      s2io_stop_all_tx_queue(sp);
      /* delete all populated mac entries */
      for (offset = 1; offset < config->max_mc_addr; offset++) {
            tmp64 = do_s2io_read_unicast_mc(sp, offset);
            if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
                  do_s2io_delete_unicast_mc(sp, tmp64);
      }

      s2io_card_down(sp);

      return 0;
}

/**
 *  s2io_xmit - Tx entry point of te driver
 *  @skb : the socket buffer containing the Tx data.
 *  @dev : device pointer.
 *  Description :
 *  This function is the Tx entry point of the driver. S2IO NIC supports
 *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
 *  NOTE: when device cant queue the pkt,just the trans_start variable will
 *  not be upadted.
 *  Return value:
 *  0 on success & 1 on failure.
 */

static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
{
      struct s2io_nic *sp = netdev_priv(dev);
      u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
      register u64 val64;
      struct TxD *txdp;
      struct TxFIFO_element __iomem *tx_fifo;
      unsigned long flags = 0;
      u16 vlan_tag = 0;
      struct fifo_info *fifo = NULL;
      struct mac_info *mac_control;
      struct config_param *config;
      int do_spin_lock = 1;
      int offload_type;
      int enable_per_list_interrupt = 0;
      struct swStat *stats = &sp->mac_control.stats_info->sw_stat;

      mac_control = &sp->mac_control;
      config = &sp->config;

      DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);

      if (unlikely(skb->len <= 0)) {
            DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
            dev_kfree_skb_any(skb);
            return 0;
      }

      if (!is_s2io_card_up(sp)) {
            DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
                    dev->name);
            dev_kfree_skb(skb);
            return 0;
      }

      queue = 0;
      if (sp->vlgrp && vlan_tx_tag_present(skb))
            vlan_tag = vlan_tx_tag_get(skb);
      if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
            if (skb->protocol == htons(ETH_P_IP)) {
                  struct iphdr *ip;
                  struct tcphdr *th;
                  ip = ip_hdr(skb);

                  if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
                        th = (struct tcphdr *)(((unsigned char *)ip) +
                                    ip->ihl*4);

                        if (ip->protocol == IPPROTO_TCP) {
                              queue_len = sp->total_tcp_fifos;
                              queue = (ntohs(th->source) +
                                          ntohs(th->dest)) &
                                  sp->fifo_selector[queue_len - 1];
                              if (queue >= queue_len)
                                    queue = queue_len - 1;
                        } else if (ip->protocol == IPPROTO_UDP) {
                              queue_len = sp->total_udp_fifos;
                              queue = (ntohs(th->source) +
                                          ntohs(th->dest)) &
                                  sp->fifo_selector[queue_len - 1];
                              if (queue >= queue_len)
                                    queue = queue_len - 1;
                              queue += sp->udp_fifo_idx;
                              if (skb->len > 1024)
                                    enable_per_list_interrupt = 1;
                              do_spin_lock = 0;
                        }
                  }
            }
      } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
            /* get fifo number based on skb->priority value */
            queue = config->fifo_mapping
                              [skb->priority & (MAX_TX_FIFOS - 1)];
      fifo = &mac_control->fifos[queue];

      if (do_spin_lock)
            spin_lock_irqsave(&fifo->tx_lock, flags);
      else {
            if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
                  return NETDEV_TX_LOCKED;
      }

      if (sp->config.multiq) {
            if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
                  spin_unlock_irqrestore(&fifo->tx_lock, flags);
                  return NETDEV_TX_BUSY;
            }
      } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
            if (netif_queue_stopped(dev)) {
                  spin_unlock_irqrestore(&fifo->tx_lock, flags);
                  return NETDEV_TX_BUSY;
            }
      }

      put_off = (u16) fifo->tx_curr_put_info.offset;
      get_off = (u16) fifo->tx_curr_get_info.offset;
      txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;

      queue_len = fifo->tx_curr_put_info.fifo_len + 1;
      /* Avoid "put" pointer going beyond "get" pointer */
      if (txdp->Host_Control ||
               ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
            DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
            s2io_stop_tx_queue(sp, fifo->fifo_no);
            dev_kfree_skb(skb);
            spin_unlock_irqrestore(&fifo->tx_lock, flags);
            return 0;
      }

      offload_type = s2io_offload_type(skb);
      if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
            txdp->Control_1 |= TXD_TCP_LSO_EN;
            txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
      }
      if (skb->ip_summed == CHECKSUM_PARTIAL) {
            txdp->Control_2 |=
                (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
                 TXD_TX_CKO_UDP_EN);
      }
      txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
      txdp->Control_1 |= TXD_LIST_OWN_XENA;
      txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
      if (enable_per_list_interrupt)
            if (put_off & (queue_len >> 5))
                  txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
      if (vlan_tag) {
            txdp->Control_2 |= TXD_VLAN_ENABLE;
            txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
      }

      frg_len = skb->len - skb->data_len;
      if (offload_type == SKB_GSO_UDP) {
            int ufo_size;

            ufo_size = s2io_udp_mss(skb);
            ufo_size &= ~7;
            txdp->Control_1 |= TXD_UFO_EN;
            txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
            txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
#ifdef __BIG_ENDIAN
            /* both variants do cpu_to_be64(be32_to_cpu(...)) */
            fifo->ufo_in_band_v[put_off] =
                        (__force u64)skb_shinfo(skb)->ip6_frag_id;
#else
            fifo->ufo_in_band_v[put_off] =
                        (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
#endif
            txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
            txdp->Buffer_Pointer = pci_map_single(sp->pdev,
                              fifo->ufo_in_band_v,
                              sizeof(u64), PCI_DMA_TODEVICE);
            if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
                  goto pci_map_failed;
            txdp++;
      }

      txdp->Buffer_Pointer = pci_map_single
          (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
      if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
            goto pci_map_failed;

      txdp->Host_Control = (unsigned long) skb;
      txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
      if (offload_type == SKB_GSO_UDP)
            txdp->Control_1 |= TXD_UFO_EN;

      frg_cnt = skb_shinfo(skb)->nr_frags;
      /* For fragmented SKB. */
      for (i = 0; i < frg_cnt; i++) {
            skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
            /* A '0' length fragment will be ignored */
            if (!frag->size)
                  continue;
            txdp++;
            txdp->Buffer_Pointer = (u64) pci_map_page
                (sp->pdev, frag->page, frag->page_offset,
                 frag->size, PCI_DMA_TODEVICE);
            txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
            if (offload_type == SKB_GSO_UDP)
                  txdp->Control_1 |= TXD_UFO_EN;
      }
      txdp->Control_1 |= TXD_GATHER_CODE_LAST;

      if (offload_type == SKB_GSO_UDP)
            frg_cnt++; /* as Txd0 was used for inband header */

      tx_fifo = mac_control->tx_FIFO_start[queue];
      val64 = fifo->list_info[put_off].list_phy_addr;
      writeq(val64, &tx_fifo->TxDL_Pointer);

      val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
             TX_FIFO_LAST_LIST);
      if (offload_type)
            val64 |= TX_FIFO_SPECIAL_FUNC;

      writeq(val64, &tx_fifo->List_Control);

      mmiowb();

      put_off++;
      if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
            put_off = 0;
      fifo->tx_curr_put_info.offset = put_off;

      /* Avoid "put" pointer going beyond "get" pointer */
      if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
            sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
            DBG_PRINT(TX_DBG,
                    "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
                    put_off, get_off);
            s2io_stop_tx_queue(sp, fifo->fifo_no);
      }
      mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
      spin_unlock_irqrestore(&fifo->tx_lock, flags);

      if (sp->config.intr_type == MSI_X)
            tx_intr_handler(fifo);

      return 0;
pci_map_failed:
      stats->pci_map_fail_cnt++;
      s2io_stop_tx_queue(sp, fifo->fifo_no);
      stats->mem_freed += skb->truesize;
      dev_kfree_skb(skb);
      spin_unlock_irqrestore(&fifo->tx_lock, flags);
      return 0;
}

static void
s2io_alarm_handle(unsigned long data)
{
      struct s2io_nic *sp = (struct s2io_nic *)data;
      struct net_device *dev = sp->dev;

      s2io_handle_errors(dev);
      mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
}

static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
{
      struct ring_info *ring = (struct ring_info *)dev_id;
      struct s2io_nic *sp = ring->nic;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;

      if (unlikely(!is_s2io_card_up(sp)))
            return IRQ_HANDLED;

      if (sp->config.napi) {
            u8 __iomem *addr = NULL;
            u8 val8 = 0;

            addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
            addr += (7 - ring->ring_no);
            val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
            writeb(val8, addr);
            val8 = readb(addr);
            napi_schedule(&ring->napi);
      } else {
            rx_intr_handler(ring, 0);
            s2io_chk_rx_buffers(sp, ring);
      }

      return IRQ_HANDLED;
}

static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
{
      int i;
      struct fifo_info *fifos = (struct fifo_info *)dev_id;
      struct s2io_nic *sp = fifos->nic;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      struct config_param *config  = &sp->config;
      u64 reason;

      if (unlikely(!is_s2io_card_up(sp)))
            return IRQ_NONE;

      reason = readq(&bar0->general_int_status);
      if (unlikely(reason == S2IO_MINUS_ONE))
            /* Nothing much can be done. Get out */
            return IRQ_HANDLED;

      if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
            writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);

            if (reason & GEN_INTR_TXPIC)
                  s2io_txpic_intr_handle(sp);

            if (reason & GEN_INTR_TXTRAFFIC)
                  writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);

            for (i = 0; i < config->tx_fifo_num; i++)
                  tx_intr_handler(&fifos[i]);

            writeq(sp->general_int_mask, &bar0->general_int_mask);
            readl(&bar0->general_int_status);
            return IRQ_HANDLED;
      }
      /* The interrupt was not raised by us */
      return IRQ_NONE;
}

static void s2io_txpic_intr_handle(struct s2io_nic *sp)
{
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64;

      val64 = readq(&bar0->pic_int_status);
      if (val64 & PIC_INT_GPIO) {
            val64 = readq(&bar0->gpio_int_reg);
            if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
                (val64 & GPIO_INT_REG_LINK_UP)) {
                  /*
                   * This is unstable state so clear both up/down
                   * interrupt and adapter to re-evaluate the link state.
                   */
                  val64 |=  GPIO_INT_REG_LINK_DOWN;
                  val64 |= GPIO_INT_REG_LINK_UP;
                  writeq(val64, &bar0->gpio_int_reg);
                  val64 = readq(&bar0->gpio_int_mask);
                  val64 &= ~(GPIO_INT_MASK_LINK_UP |
                           GPIO_INT_MASK_LINK_DOWN);
                  writeq(val64, &bar0->gpio_int_mask);
            }
            else if (val64 & GPIO_INT_REG_LINK_UP) {
                  val64 = readq(&bar0->adapter_status);
                        /* Enable Adapter */
                  val64 = readq(&bar0->adapter_control);
                  val64 |= ADAPTER_CNTL_EN;
                  writeq(val64, &bar0->adapter_control);
                  val64 |= ADAPTER_LED_ON;
                  writeq(val64, &bar0->adapter_control);
                  if (!sp->device_enabled_once)
                        sp->device_enabled_once = 1;

                  s2io_link(sp, LINK_UP);
                  /*
                   * unmask link down interrupt and mask link-up
                   * intr
                   */
                  val64 = readq(&bar0->gpio_int_mask);
                  val64 &= ~GPIO_INT_MASK_LINK_DOWN;
                  val64 |= GPIO_INT_MASK_LINK_UP;
                  writeq(val64, &bar0->gpio_int_mask);

            }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
                  val64 = readq(&bar0->adapter_status);
                  s2io_link(sp, LINK_DOWN);
                  /* Link is down so unmaks link up interrupt */
                  val64 = readq(&bar0->gpio_int_mask);
                  val64 &= ~GPIO_INT_MASK_LINK_UP;
                  val64 |= GPIO_INT_MASK_LINK_DOWN;
                  writeq(val64, &bar0->gpio_int_mask);

                  /* turn off LED */
                  val64 = readq(&bar0->adapter_control);
                  val64 = val64 &(~ADAPTER_LED_ON);
                  writeq(val64, &bar0->adapter_control);
            }
      }
      val64 = readq(&bar0->gpio_int_mask);
}

/**
 *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
 *  @value: alarm bits
 *  @addr: address value
 *  @cnt: counter variable
 *  Description: Check for alarm and increment the counter
 *  Return Value:
 *  1 - if alarm bit set
 *  0 - if alarm bit is not set
 */
static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
                    unsigned long long *cnt)
{
      u64 val64;
      val64 = readq(addr);
      if ( val64 & value ) {
            writeq(val64, addr);
            (*cnt)++;
            return 1;
      }
      return 0;

}

/**
 *  s2io_handle_errors - Xframe error indication handler
 *  @nic: device private variable
 *  Description: Handle alarms such as loss of link, single or
 *  double ECC errors, critical and serious errors.
 *  Return Value:
 *  NONE
 */
static void s2io_handle_errors(void * dev_id)
{
      struct net_device *dev = (struct net_device *) dev_id;
      struct s2io_nic *sp = netdev_priv(dev);
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 temp64 = 0,val64=0;
      int i = 0;

      struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
      struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;

      if (!is_s2io_card_up(sp))
            return;

      if (pci_channel_offline(sp->pdev))
            return;

      memset(&sw_stat->ring_full_cnt, 0,
            sizeof(sw_stat->ring_full_cnt));

      /* Handling the XPAK counters update */
      if(stats->xpak_timer_count < 72000) {
            /* waiting for an hour */
            stats->xpak_timer_count++;
      } else {
            s2io_updt_xpak_counter(dev);
            /* reset the count to zero */
            stats->xpak_timer_count = 0;
      }

      /* Handling link status change error Intr */
      if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
            val64 = readq(&bar0->mac_rmac_err_reg);
            writeq(val64, &bar0->mac_rmac_err_reg);
            if (val64 & RMAC_LINK_STATE_CHANGE_INT)
                  schedule_work(&sp->set_link_task);
      }

      /* In case of a serious error, the device will be Reset. */
      if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
                        &sw_stat->serious_err_cnt))
            goto reset;

      /* Check for data parity error */
      if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
                        &sw_stat->parity_err_cnt))
            goto reset;

      /* Check for ring full counter */
      if (sp->device_type == XFRAME_II_DEVICE) {
            val64 = readq(&bar0->ring_bump_counter1);
            for (i=0; i<4; i++) {
                  temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
                  temp64 >>= 64 - ((i+1)*16);
                  sw_stat->ring_full_cnt[i] += temp64;
            }

            val64 = readq(&bar0->ring_bump_counter2);
            for (i=0; i<4; i++) {
                  temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
                  temp64 >>= 64 - ((i+1)*16);
                   sw_stat->ring_full_cnt[i+4] += temp64;
            }
      }

      val64 = readq(&bar0->txdma_int_status);
      /*check for pfc_err*/
      if (val64 & TXDMA_PFC_INT) {
            if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
                        PFC_MISC_0_ERR | PFC_MISC_1_ERR|
                        PFC_PCIX_ERR, &bar0->pfc_err_reg,
                        &sw_stat->pfc_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
                        &sw_stat->pfc_err_cnt);
      }

      /*check for tda_err*/
      if (val64 & TXDMA_TDA_INT) {
            if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
                        TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
                        &sw_stat->tda_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
                        &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
      }
      /*check for pcc_err*/
      if (val64 & TXDMA_PCC_INT) {
            if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
                        | PCC_N_SERR | PCC_6_COF_OV_ERR
                        | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
                        | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
                        | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
                        &sw_stat->pcc_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
                        &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
      }

      /*check for tti_err*/
      if (val64 & TXDMA_TTI_INT) {
            if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
                        &sw_stat->tti_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
                        &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
      }

      /*check for lso_err*/
      if (val64 & TXDMA_LSO_INT) {
            if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
                        | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
                        &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
                        &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
      }

      /*check for tpa_err*/
      if (val64 & TXDMA_TPA_INT) {
            if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
                  &sw_stat->tpa_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
                  &sw_stat->tpa_err_cnt);
      }

      /*check for sm_err*/
      if (val64 & TXDMA_SM_INT) {
            if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
                  &sw_stat->sm_err_cnt))
                  goto reset;
      }

      val64 = readq(&bar0->mac_int_status);
      if (val64 & MAC_INT_STATUS_TMAC_INT) {
            if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
                        &bar0->mac_tmac_err_reg,
                        &sw_stat->mac_tmac_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
                        | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
                        &bar0->mac_tmac_err_reg,
                        &sw_stat->mac_tmac_err_cnt);
      }

      val64 = readq(&bar0->xgxs_int_status);
      if (val64 & XGXS_INT_STATUS_TXGXS) {
            if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
                        &bar0->xgxs_txgxs_err_reg,
                        &sw_stat->xgxs_txgxs_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
                        &bar0->xgxs_txgxs_err_reg,
                        &sw_stat->xgxs_txgxs_err_cnt);
      }

      val64 = readq(&bar0->rxdma_int_status);
      if (val64 & RXDMA_INT_RC_INT_M) {
            if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
                        | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
                        &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
                        | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
                        &sw_stat->rc_err_cnt);
            if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
                        | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
                        &sw_stat->prc_pcix_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
                        | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
                        &sw_stat->prc_pcix_err_cnt);
      }

      if (val64 & RXDMA_INT_RPA_INT_M) {
            if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
                        &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
                        &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
      }

      if (val64 & RXDMA_INT_RDA_INT_M) {
            if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
                        | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
                        | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
                        &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
                        | RDA_MISC_ERR | RDA_PCIX_ERR,
                        &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
      }

      if (val64 & RXDMA_INT_RTI_INT_M) {
            if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
                        &sw_stat->rti_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
                        &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
      }

      val64 = readq(&bar0->mac_int_status);
      if (val64 & MAC_INT_STATUS_RMAC_INT) {
            if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
                        &bar0->mac_rmac_err_reg,
                        &sw_stat->mac_rmac_err_cnt))
                  goto reset;
            do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
                        RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
                        &sw_stat->mac_rmac_err_cnt);
      }

      val64 = readq(&bar0->xgxs_int_status);
      if (val64 & XGXS_INT_STATUS_RXGXS) {
            if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
                        &bar0->xgxs_rxgxs_err_reg,
                        &sw_stat->xgxs_rxgxs_err_cnt))
                  goto reset;
      }

      val64 = readq(&bar0->mc_int_status);
      if(val64 & MC_INT_STATUS_MC_INT) {
            if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
                        &sw_stat->mc_err_cnt))
                  goto reset;

            /* Handling Ecc errors */
            if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
                  writeq(val64, &bar0->mc_err_reg);
                  if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
                        sw_stat->double_ecc_errs++;
                        if (sp->device_type != XFRAME_II_DEVICE) {
                              /*
                               * Reset XframeI only if critical error
                               */
                              if (val64 &
                                    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
                                    MC_ERR_REG_MIRI_ECC_DB_ERR_1))
                                                goto reset;
                              }
                  } else
                        sw_stat->single_ecc_errs++;
            }
      }
      return;

reset:
      s2io_stop_all_tx_queue(sp);
      schedule_work(&sp->rst_timer_task);
      sw_stat->soft_reset_cnt++;
      return;
}

/**
 *  s2io_isr - ISR handler of the device .
 *  @irq: the irq of the device.
 *  @dev_id: a void pointer to the dev structure of the NIC.
 *  Description:  This function is the ISR handler of the device. It
 *  identifies the reason for the interrupt and calls the relevant
 *  service routines. As a contongency measure, this ISR allocates the
 *  recv buffers, if their numbers are below the panic value which is
 *  presently set to 25% of the original number of rcv buffers allocated.
 *  Return value:
 *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
 *   IRQ_NONE: will be returned if interrupt is not from our device
 */
static irqreturn_t s2io_isr(int irq, void *dev_id)
{
      struct net_device *dev = (struct net_device *) dev_id;
      struct s2io_nic *sp = netdev_priv(dev);
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      int i;
      u64 reason = 0;
      struct mac_info *mac_control;
      struct config_param *config;

      /* Pretend we handled any irq's from a disconnected card */
      if (pci_channel_offline(sp->pdev))
            return IRQ_NONE;

      if (!is_s2io_card_up(sp))
            return IRQ_NONE;

      mac_control = &sp->mac_control;
      config = &sp->config;

      /*
       * Identify the cause for interrupt and call the appropriate
       * interrupt handler. Causes for the interrupt could be;
       * 1. Rx of packet.
       * 2. Tx complete.
       * 3. Link down.
       */
      reason = readq(&bar0->general_int_status);

      if (unlikely(reason == S2IO_MINUS_ONE) ) {
            /* Nothing much can be done. Get out */
            return IRQ_HANDLED;
      }

      if (reason & (GEN_INTR_RXTRAFFIC |
            GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
      {
            writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);

            if (config->napi) {
                  if (reason & GEN_INTR_RXTRAFFIC) {
                        napi_schedule(&sp->napi);
                        writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
                        writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
                        readl(&bar0->rx_traffic_int);
                  }
            } else {
                  /*
                   * rx_traffic_int reg is an R1 register, writing all 1's
                   * will ensure that the actual interrupt causing bit
                   * get's cleared and hence a read can be avoided.
                   */
                  if (reason & GEN_INTR_RXTRAFFIC)
                        writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);

                  for (i = 0; i < config->rx_ring_num; i++)
                        rx_intr_handler(&mac_control->rings[i], 0);
            }

            /*
             * tx_traffic_int reg is an R1 register, writing all 1's
             * will ensure that the actual interrupt causing bit get's
             * cleared and hence a read can be avoided.
             */
            if (reason & GEN_INTR_TXTRAFFIC)
                  writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);

            for (i = 0; i < config->tx_fifo_num; i++)
                  tx_intr_handler(&mac_control->fifos[i]);

            if (reason & GEN_INTR_TXPIC)
                  s2io_txpic_intr_handle(sp);

            /*
             * Reallocate the buffers from the interrupt handler itself.
             */
            if (!config->napi) {
                  for (i = 0; i < config->rx_ring_num; i++)
                        s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
            }
            writeq(sp->general_int_mask, &bar0->general_int_mask);
            readl(&bar0->general_int_status);

            return IRQ_HANDLED;

      }
      else if (!reason) {
            /* The interrupt was not raised by us */
            return IRQ_NONE;
      }

      return IRQ_HANDLED;
}

/**
 * s2io_updt_stats -
 */
static void s2io_updt_stats(struct s2io_nic *sp)
{
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64;
      int cnt = 0;

      if (is_s2io_card_up(sp)) {
            /* Apprx 30us on a 133 MHz bus */
            val64 = SET_UPDT_CLICKS(10) |
                  STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
            writeq(val64, &bar0->stat_cfg);
            do {
                  udelay(100);
                  val64 = readq(&bar0->stat_cfg);
                  if (!(val64 & s2BIT(0)))
                        break;
                  cnt++;
                  if (cnt == 5)
                        break; /* Updt failed */
            } while(1);
      }
}

/**
 *  s2io_get_stats - Updates the device statistics structure.
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function updates the device statistics structure in the s2io_nic
 *  structure and returns a pointer to the same.
 *  Return value:
 *  pointer to the updated net_device_stats structure.
 */

static struct net_device_stats *s2io_get_stats(struct net_device *dev)
{
      struct s2io_nic *sp = netdev_priv(dev);
      struct mac_info *mac_control;
      struct config_param *config;
      int i;


      mac_control = &sp->mac_control;
      config = &sp->config;

      /* Configure Stats for immediate updt */
      s2io_updt_stats(sp);

      /* Using sp->stats as a staging area, because reset (due to mtu
         change, for example) will clear some hardware counters */
      dev->stats.tx_packets +=
            le32_to_cpu(mac_control->stats_info->tmac_frms) - 
            sp->stats.tx_packets;
      sp->stats.tx_packets =
            le32_to_cpu(mac_control->stats_info->tmac_frms);
      dev->stats.tx_errors +=
            le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
            sp->stats.tx_errors;
      sp->stats.tx_errors =
            le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
      dev->stats.rx_errors +=
            le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
            sp->stats.rx_errors;
      sp->stats.rx_errors =
            le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
      dev->stats.multicast =
            le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) - 
            sp->stats.multicast;
      sp->stats.multicast =
            le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
      dev->stats.rx_length_errors =
            le64_to_cpu(mac_control->stats_info->rmac_long_frms) - 
            sp->stats.rx_length_errors;
      sp->stats.rx_length_errors =
            le64_to_cpu(mac_control->stats_info->rmac_long_frms);

      /* collect per-ring rx_packets and rx_bytes */
      dev->stats.rx_packets = dev->stats.rx_bytes = 0;
      for (i = 0; i < config->rx_ring_num; i++) {
            dev->stats.rx_packets += mac_control->rings[i].rx_packets;
            dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
      }

      return (&dev->stats);
}

/**
 *  s2io_set_multicast - entry point for multicast address enable/disable.
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled. This also gets
 *  called to set/reset promiscuous mode. Depending on the deivce flag, we
 *  determine, if multicast address must be enabled or if promiscuous mode
 *  is to be disabled etc.
 *  Return value:
 *  void.
 */

static void s2io_set_multicast(struct net_device *dev)
{
      int i, j, prev_cnt;
      struct dev_mc_list *mclist;
      struct s2io_nic *sp = netdev_priv(dev);
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
          0xfeffffffffffULL;
      u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
      void __iomem *add;
      struct config_param *config = &sp->config;

      if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
            /*  Enable all Multicast addresses */
            writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
                   &bar0->rmac_addr_data0_mem);
            writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
                   &bar0->rmac_addr_data1_mem);
            val64 = RMAC_ADDR_CMD_MEM_WE |
                RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
                RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
            writeq(val64, &bar0->rmac_addr_cmd_mem);
            /* Wait till command completes */
            wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
                              RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
                              S2IO_BIT_RESET);

            sp->m_cast_flg = 1;
            sp->all_multi_pos = config->max_mc_addr - 1;
      } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
            /*  Disable all Multicast addresses */
            writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
                   &bar0->rmac_addr_data0_mem);
            writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
                   &bar0->rmac_addr_data1_mem);
            val64 = RMAC_ADDR_CMD_MEM_WE |
                RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
                RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
            writeq(val64, &bar0->rmac_addr_cmd_mem);
            /* Wait till command completes */
            wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
                              RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
                              S2IO_BIT_RESET);

            sp->m_cast_flg = 0;
            sp->all_multi_pos = 0;
      }

      if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
            /*  Put the NIC into promiscuous mode */
            add = &bar0->mac_cfg;
            val64 = readq(&bar0->mac_cfg);
            val64 |= MAC_CFG_RMAC_PROM_ENABLE;

            writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
            writel((u32) val64, add);
            writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
            writel((u32) (val64 >> 32), (add + 4));

            if (vlan_tag_strip != 1) {
                  val64 = readq(&bar0->rx_pa_cfg);
                  val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
                  writeq(val64, &bar0->rx_pa_cfg);
                  sp->vlan_strip_flag = 0;
            }

            val64 = readq(&bar0->mac_cfg);
            sp->promisc_flg = 1;
            DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
                    dev->name);
      } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
            /*  Remove the NIC from promiscuous mode */
            add = &bar0->mac_cfg;
            val64 = readq(&bar0->mac_cfg);
            val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;

            writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
            writel((u32) val64, add);
            writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
            writel((u32) (val64 >> 32), (add + 4));

            if (vlan_tag_strip != 0) {
                  val64 = readq(&bar0->rx_pa_cfg);
                  val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
                  writeq(val64, &bar0->rx_pa_cfg);
                  sp->vlan_strip_flag = 1;
            }

            val64 = readq(&bar0->mac_cfg);
            sp->promisc_flg = 0;
            DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
                    dev->name);
      }

      /*  Update individual M_CAST address list */
      if ((!sp->m_cast_flg) && dev->mc_count) {
            if (dev->mc_count >
                (config->max_mc_addr - config->max_mac_addr)) {
                  DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
                          dev->name);
                  DBG_PRINT(ERR_DBG, "can be added, please enable ");
                  DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
                  return;
            }

            prev_cnt = sp->mc_addr_count;
            sp->mc_addr_count = dev->mc_count;

            /* Clear out the previous list of Mc in the H/W. */
            for (i = 0; i < prev_cnt; i++) {
                  writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
                         &bar0->rmac_addr_data0_mem);
                  writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
                        &bar0->rmac_addr_data1_mem);
                  val64 = RMAC_ADDR_CMD_MEM_WE |
                      RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
                      RMAC_ADDR_CMD_MEM_OFFSET
                      (config->mc_start_offset + i);
                  writeq(val64, &bar0->rmac_addr_cmd_mem);

                  /* Wait for command completes */
                  if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
                              RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
                              S2IO_BIT_RESET)) {
                        DBG_PRINT(ERR_DBG, "%s: Adding ",
                                dev->name);
                        DBG_PRINT(ERR_DBG, "Multicasts failed\n");
                        return;
                  }
            }

            /* Create the new Rx filter list and update the same in H/W. */
            for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
                 i++, mclist = mclist->next) {
                  memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
                         ETH_ALEN);
                  mac_addr = 0;
                  for (j = 0; j < ETH_ALEN; j++) {
                        mac_addr |= mclist->dmi_addr[j];
                        mac_addr <<= 8;
                  }
                  mac_addr >>= 8;
                  writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
                         &bar0->rmac_addr_data0_mem);
                  writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
                        &bar0->rmac_addr_data1_mem);
                  val64 = RMAC_ADDR_CMD_MEM_WE |
                      RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
                      RMAC_ADDR_CMD_MEM_OFFSET
                      (i + config->mc_start_offset);
                  writeq(val64, &bar0->rmac_addr_cmd_mem);

                  /* Wait for command completes */
                  if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
                              RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
                              S2IO_BIT_RESET)) {
                        DBG_PRINT(ERR_DBG, "%s: Adding ",
                                dev->name);
                        DBG_PRINT(ERR_DBG, "Multicasts failed\n");
                        return;
                  }
            }
      }
}

/* read from CAM unicast & multicast addresses and store it in
 * def_mac_addr structure
 */
static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
{
      int offset;
      u64 mac_addr = 0x0;
      struct config_param *config = &sp->config;

      /* store unicast & multicast mac addresses */
      for (offset = 0; offset < config->max_mc_addr; offset++) {
            mac_addr = do_s2io_read_unicast_mc(sp, offset);
            /* if read fails disable the entry */
            if (mac_addr == FAILURE)
                  mac_addr = S2IO_DISABLE_MAC_ENTRY;
            do_s2io_copy_mac_addr(sp, offset, mac_addr);
      }
}

/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
{
      int offset;
      struct config_param *config = &sp->config;
      /* restore unicast mac address */
      for (offset = 0; offset < config->max_mac_addr; offset++)
            do_s2io_prog_unicast(sp->dev,
                  sp->def_mac_addr[offset].mac_addr);

      /* restore multicast mac address */
      for (offset = config->mc_start_offset;
            offset < config->max_mc_addr; offset++)
            do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
}

/* add a multicast MAC address to CAM */
static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
{
      int i;
      u64 mac_addr = 0;
      struct config_param *config = &sp->config;

      for (i = 0; i < ETH_ALEN; i++) {
            mac_addr <<= 8;
            mac_addr |= addr[i];
      }
      if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
            return SUCCESS;

      /* check if the multicast mac already preset in CAM */
      for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
            u64 tmp64;
            tmp64 = do_s2io_read_unicast_mc(sp, i);
            if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
                  break;

            if (tmp64 == mac_addr)
                  return SUCCESS;
      }
      if (i == config->max_mc_addr) {
            DBG_PRINT(ERR_DBG,
                  "CAM full no space left for multicast MAC\n");
            return FAILURE;
      }
      /* Update the internal structure with this new mac address */
      do_s2io_copy_mac_addr(sp, i, mac_addr);

      return (do_s2io_add_mac(sp, mac_addr, i));
}

/* add MAC address to CAM */
static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
{
      u64 val64;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;

      writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
            &bar0->rmac_addr_data0_mem);

      val64 =
            RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
            RMAC_ADDR_CMD_MEM_OFFSET(off);
      writeq(val64, &bar0->rmac_addr_cmd_mem);

      /* Wait till command completes */
      if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
            RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
            S2IO_BIT_RESET)) {
            DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
            return FAILURE;
      }
      return SUCCESS;
}
/* deletes a specified unicast/multicast mac entry from CAM */
static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
{
      int offset;
      u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
      struct config_param *config = &sp->config;

      for (offset = 1;
            offset < config->max_mc_addr; offset++) {
            tmp64 = do_s2io_read_unicast_mc(sp, offset);
            if (tmp64 == addr) {
                  /* disable the entry by writing  0xffffffffffffULL */
                  if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
                        return FAILURE;
                  /* store the new mac list from CAM */
                  do_s2io_store_unicast_mc(sp);
                  return SUCCESS;
            }
      }
      DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
                  (unsigned long long)addr);
      return FAILURE;
}

/* read mac entries from CAM */
static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
{
      u64 tmp64 = 0xffffffffffff0000ULL, val64;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;

      /* read mac addr */
      val64 =
            RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
            RMAC_ADDR_CMD_MEM_OFFSET(offset);
      writeq(val64, &bar0->rmac_addr_cmd_mem);

      /* Wait till command completes */
      if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
            RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
            S2IO_BIT_RESET)) {
            DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
            return FAILURE;
      }
      tmp64 = readq(&bar0->rmac_addr_data0_mem);
      return (tmp64 >> 16);
}

/**
 * s2io_set_mac_addr driver entry point
 */

static int s2io_set_mac_addr(struct net_device *dev, void *p)
{
      struct sockaddr *addr = p;

      if (!is_valid_ether_addr(addr->sa_data))
            return -EINVAL;

      memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);

      /* store the MAC address in CAM */
      return (do_s2io_prog_unicast(dev, dev->dev_addr));
}
/**
 *  do_s2io_prog_unicast - Programs the Xframe mac address
 *  @dev : pointer to the device structure.
 *  @addr: a uchar pointer to the new mac address which is to be set.
 *  Description : This procedure will program the Xframe to receive
 *  frames with new Mac Address
 *  Return value: SUCCESS on success and an appropriate (-)ve integer
 *  as defined in errno.h file on failure.
 */

static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
{
      struct s2io_nic *sp = netdev_priv(dev);
      register u64 mac_addr = 0, perm_addr = 0;
      int i;
      u64 tmp64;
      struct config_param *config = &sp->config;

      /*
      * Set the new MAC address as the new unicast filter and reflect this
      * change on the device address registered with the OS. It will be
      * at offset 0.
      */
      for (i = 0; i < ETH_ALEN; i++) {
            mac_addr <<= 8;
            mac_addr |= addr[i];
            perm_addr <<= 8;
            perm_addr |= sp->def_mac_addr[0].mac_addr[i];
      }

      /* check if the dev_addr is different than perm_addr */
      if (mac_addr == perm_addr)
            return SUCCESS;

      /* check if the mac already preset in CAM */
      for (i = 1; i < config->max_mac_addr; i++) {
            tmp64 = do_s2io_read_unicast_mc(sp, i);
            if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
                  break;

            if (tmp64 == mac_addr) {
                  DBG_PRINT(INFO_DBG,
                  "MAC addr:0x%llx already present in CAM\n",
                  (unsigned long long)mac_addr);
                  return SUCCESS;
            }
      }
      if (i == config->max_mac_addr) {
            DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
            return FAILURE;
      }
      /* Update the internal structure with this new mac address */
      do_s2io_copy_mac_addr(sp, i, mac_addr);
      return (do_s2io_add_mac(sp, mac_addr, i));
}

/**
 * s2io_ethtool_sset - Sets different link parameters.
 * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
 * @info: pointer to the structure with parameters given by ethtool to set
 * link information.
 * Description:
 * The function sets different link parameters provided by the user onto
 * the NIC.
 * Return value:
 * 0 on success.
*/

static int s2io_ethtool_sset(struct net_device *dev,
                       struct ethtool_cmd *info)
{
      struct s2io_nic *sp = netdev_priv(dev);
      if ((info->autoneg == AUTONEG_ENABLE) ||
          (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
            return -EINVAL;
      else {
            s2io_close(sp->dev);
            s2io_open(sp->dev);
      }

      return 0;
}

/**
 * s2io_ethtol_gset - Return link specific information.
 * @sp : private member of the device structure, pointer to the
 *      s2io_nic structure.
 * @info : pointer to the structure with parameters given by ethtool
 * to return link information.
 * Description:
 * Returns link specific information like speed, duplex etc.. to ethtool.
 * Return value :
 * return 0 on success.
 */

static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
{
      struct s2io_nic *sp = netdev_priv(dev);
      info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
      info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
      info->port = PORT_FIBRE;

      /* info->transceiver */
      info->transceiver = XCVR_EXTERNAL;

      if (netif_carrier_ok(sp->dev)) {
            info->speed = 10000;
            info->duplex = DUPLEX_FULL;
      } else {
            info->speed = -1;
            info->duplex = -1;
      }

      info->autoneg = AUTONEG_DISABLE;
      return 0;
}

/**
 * s2io_ethtool_gdrvinfo - Returns driver specific information.
 * @sp : private member of the device structure, which is a pointer to the
 * s2io_nic structure.
 * @info : pointer to the structure with parameters given by ethtool to
 * return driver information.
 * Description:
 * Returns driver specefic information like name, version etc.. to ethtool.
 * Return value:
 *  void
 */

static void s2io_ethtool_gdrvinfo(struct net_device *dev,
                          struct ethtool_drvinfo *info)
{
      struct s2io_nic *sp = netdev_priv(dev);

      strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
      strncpy(info->version, s2io_driver_version, sizeof(info->version));
      strncpy(info->fw_version, "", sizeof(info->fw_version));
      strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
      info->regdump_len = XENA_REG_SPACE;
      info->eedump_len = XENA_EEPROM_SPACE;
}

/**
 *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
 *  @sp: private member of the device structure, which is a pointer to the
 *  s2io_nic structure.
 *  @regs : pointer to the structure with parameters given by ethtool for
 *  dumping the registers.
 *  @reg_space: The input argumnet into which all the registers are dumped.
 *  Description:
 *  Dumps the entire register space of xFrame NIC into the user given
 *  buffer area.
 * Return value :
 * void .
*/

static void s2io_ethtool_gregs(struct net_device *dev,
                         struct ethtool_regs *regs, void *space)
{
      int i;
      u64 reg;
      u8 *reg_space = (u8 *) space;
      struct s2io_nic *sp = netdev_priv(dev);

      regs->len = XENA_REG_SPACE;
      regs->version = sp->pdev->subsystem_device;

      for (i = 0; i < regs->len; i += 8) {
            reg = readq(sp->bar0 + i);
            memcpy((reg_space + i), &reg, 8);
      }
}

/**
 *  s2io_phy_id  - timer function that alternates adapter LED.
 *  @data : address of the private member of the device structure, which
 *  is a pointer to the s2io_nic structure, provided as an u32.
 * Description: This is actually the timer function that alternates the
 * adapter LED bit of the adapter control bit to set/reset every time on
 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
 *  once every second.
*/
static void s2io_phy_id(unsigned long data)
{
      struct s2io_nic *sp = (struct s2io_nic *) data;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64 = 0;
      u16 subid;

      subid = sp->pdev->subsystem_device;
      if ((sp->device_type == XFRAME_II_DEVICE) ||
               ((subid & 0xFF) >= 0x07)) {
            val64 = readq(&bar0->gpio_control);
            val64 ^= GPIO_CTRL_GPIO_0;
            writeq(val64, &bar0->gpio_control);
      } else {
            val64 = readq(&bar0->adapter_control);
            val64 ^= ADAPTER_LED_ON;
            writeq(val64, &bar0->adapter_control);
      }

      mod_timer(&sp->id_timer, jiffies + HZ / 2);
}

/**
 * s2io_ethtool_idnic - To physically identify the nic on the system.
 * @sp : private member of the device structure, which is a pointer to the
 * s2io_nic structure.
 * @id : pointer to the structure with identification parameters given by
 * ethtool.
 * Description: Used to physically identify the NIC on the system.
 * The Link LED will blink for a time specified by the user for
 * identification.
 * NOTE: The Link has to be Up to be able to blink the LED. Hence
 * identification is possible only if it's link is up.
 * Return value:
 * int , returns 0 on success
 */

static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
{
      u64 val64 = 0, last_gpio_ctrl_val;
      struct s2io_nic *sp = netdev_priv(dev);
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u16 subid;

      subid = sp->pdev->subsystem_device;
      last_gpio_ctrl_val = readq(&bar0->gpio_control);
      if ((sp->device_type == XFRAME_I_DEVICE) &&
            ((subid & 0xFF) < 0x07)) {
            val64 = readq(&bar0->adapter_control);
            if (!(val64 & ADAPTER_CNTL_EN)) {
                  printk(KERN_ERR
                         "Adapter Link down, cannot blink LED\n");
                  return -EFAULT;
            }
      }
      if (sp->id_timer.function == NULL) {
            init_timer(&sp->id_timer);
            sp->id_timer.function = s2io_phy_id;
            sp->id_timer.data = (unsigned long) sp;
      }
      mod_timer(&sp->id_timer, jiffies);
      if (data)
            msleep_interruptible(data * HZ);
      else
            msleep_interruptible(MAX_FLICKER_TIME);
      del_timer_sync(&sp->id_timer);

      if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
            writeq(last_gpio_ctrl_val, &bar0->gpio_control);
            last_gpio_ctrl_val = readq(&bar0->gpio_control);
      }

      return 0;
}

static void s2io_ethtool_gringparam(struct net_device *dev,
                                    struct ethtool_ringparam *ering)
{
      struct s2io_nic *sp = netdev_priv(dev);
      int i,tx_desc_count=0,rx_desc_count=0;

      if (sp->rxd_mode == RXD_MODE_1)
            ering->rx_max_pending = MAX_RX_DESC_1;
      else if (sp->rxd_mode == RXD_MODE_3B)
            ering->rx_max_pending = MAX_RX_DESC_2;

      ering->tx_max_pending = MAX_TX_DESC;
      for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
            tx_desc_count += sp->config.tx_cfg[i].fifo_len;

      DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
      ering->tx_pending = tx_desc_count;
      rx_desc_count = 0;
      for (i = 0 ; i < sp->config.rx_ring_num ; i++)
            rx_desc_count += sp->config.rx_cfg[i].num_rxd;

      ering->rx_pending = rx_desc_count;

      ering->rx_mini_max_pending = 0;
      ering->rx_mini_pending = 0;
      if(sp->rxd_mode == RXD_MODE_1)
            ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
      else if (sp->rxd_mode == RXD_MODE_3B)
            ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
      ering->rx_jumbo_pending = rx_desc_count;
}

/**
 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
 * @sp : private member of the device structure, which is a pointer to the
 *    s2io_nic structure.
 * @ep : pointer to the structure with pause parameters given by ethtool.
 * Description:
 * Returns the Pause frame generation and reception capability of the NIC.
 * Return value:
 *  void
 */
static void s2io_ethtool_getpause_data(struct net_device *dev,
                               struct ethtool_pauseparam *ep)
{
      u64 val64;
      struct s2io_nic *sp = netdev_priv(dev);
      struct XENA_dev_config __iomem *bar0 = sp->bar0;

      val64 = readq(&bar0->rmac_pause_cfg);
      if (val64 & RMAC_PAUSE_GEN_ENABLE)
            ep->tx_pause = true;
      if (val64 & RMAC_PAUSE_RX_ENABLE)
            ep->rx_pause = true;
      ep->autoneg = false;
}

/**
 * s2io_ethtool_setpause_data -  set/reset pause frame generation.
 * @sp : private member of the device structure, which is a pointer to the
 *      s2io_nic structure.
 * @ep : pointer to the structure with pause parameters given by ethtool.
 * Description:
 * It can be used to set or reset Pause frame generation or reception
 * support of the NIC.
 * Return value:
 * int, returns 0 on Success
 */

static int s2io_ethtool_setpause_data(struct net_device *dev,
                         struct ethtool_pauseparam *ep)
{
      u64 val64;
      struct s2io_nic *sp = netdev_priv(dev);
      struct XENA_dev_config __iomem *bar0 = sp->bar0;

      val64 = readq(&bar0->rmac_pause_cfg);
      if (ep->tx_pause)
            val64 |= RMAC_PAUSE_GEN_ENABLE;
      else
            val64 &= ~RMAC_PAUSE_GEN_ENABLE;
      if (ep->rx_pause)
            val64 |= RMAC_PAUSE_RX_ENABLE;
      else
            val64 &= ~RMAC_PAUSE_RX_ENABLE;
      writeq(val64, &bar0->rmac_pause_cfg);
      return 0;
}

/**
 * read_eeprom - reads 4 bytes of data from user given offset.
 * @sp : private member of the device structure, which is a pointer to the
 *      s2io_nic structure.
 * @off : offset at which the data must be written
 * @data : Its an output parameter where the data read at the given
 *    offset is stored.
 * Description:
 * Will read 4 bytes of data from the user given offset and return the
 * read data.
 * NOTE: Will allow to read only part of the EEPROM visible through the
 *   I2C bus.
 * Return value:
 *  -1 on failure and 0 on success.
 */

#define S2IO_DEV_ID           5
static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
{
      int ret = -1;
      u32 exit_cnt = 0;
      u64 val64;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;

      if (sp->device_type == XFRAME_I_DEVICE) {
            val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
                I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
                I2C_CONTROL_CNTL_START;
            SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);

            while (exit_cnt < 5) {
                  val64 = readq(&bar0->i2c_control);
                  if (I2C_CONTROL_CNTL_END(val64)) {
                        *data = I2C_CONTROL_GET_DATA(val64);
                        ret = 0;
                        break;
                  }
                  msleep(50);
                  exit_cnt++;
            }
      }

      if (sp->device_type == XFRAME_II_DEVICE) {
            val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
                  SPI_CONTROL_BYTECNT(0x3) |
                  SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
            SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
            val64 |= SPI_CONTROL_REQ;
            SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
            while (exit_cnt < 5) {
                  val64 = readq(&bar0->spi_control);
                  if (val64 & SPI_CONTROL_NACK) {
                        ret = 1;
                        break;
                  } else if (val64 & SPI_CONTROL_DONE) {
                        *data = readq(&bar0->spi_data);
                        *data &= 0xffffff;
                        ret = 0;
                        break;
                  }
                  msleep(50);
                  exit_cnt++;
            }
      }
      return ret;
}

/**
 *  write_eeprom - actually writes the relevant part of the data value.
 *  @sp : private member of the device structure, which is a pointer to the
 *       s2io_nic structure.
 *  @off : offset at which the data must be written
 *  @data : The data that is to be written
 *  @cnt : Number of bytes of the data that are actually to be written into
 *  the Eeprom. (max of 3)
 * Description:
 *  Actually writes the relevant part of the data value into the Eeprom
 *  through the I2C bus.
 * Return value:
 *  0 on success, -1 on failure.
 */

static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
{
      int exit_cnt = 0, ret = -1;
      u64 val64;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;

      if (sp->device_type == XFRAME_I_DEVICE) {
            val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
                I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
                I2C_CONTROL_CNTL_START;
            SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);

            while (exit_cnt < 5) {
                  val64 = readq(&bar0->i2c_control);
                  if (I2C_CONTROL_CNTL_END(val64)) {
                        if (!(val64 & I2C_CONTROL_NACK))
                              ret = 0;
                        break;
                  }
                  msleep(50);
                  exit_cnt++;
            }
      }

      if (sp->device_type == XFRAME_II_DEVICE) {
            int write_cnt = (cnt == 8) ? 0 : cnt;
            writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);

            val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
                  SPI_CONTROL_BYTECNT(write_cnt) |
                  SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
            SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
            val64 |= SPI_CONTROL_REQ;
            SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
            while (exit_cnt < 5) {
                  val64 = readq(&bar0->spi_control);
                  if (val64 & SPI_CONTROL_NACK) {
                        ret = 1;
                        break;
                  } else if (val64 & SPI_CONTROL_DONE) {
                        ret = 0;
                        break;
                  }
                  msleep(50);
                  exit_cnt++;
            }
      }
      return ret;
}
static void s2io_vpd_read(struct s2io_nic *nic)
{
      u8 *vpd_data;
      u8 data;
      int i=0, cnt, fail = 0;
      int vpd_addr = 0x80;

      if (nic->device_type == XFRAME_II_DEVICE) {
            strcpy(nic->product_name, "Xframe II 10GbE network adapter");
            vpd_addr = 0x80;
      }
      else {
            strcpy(nic->product_name, "Xframe I 10GbE network adapter");
            vpd_addr = 0x50;
      }
      strcpy(nic->serial_num, "NOT AVAILABLE");

      vpd_data = kmalloc(256, GFP_KERNEL);
      if (!vpd_data) {
            nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
            return;
      }
      nic->mac_control.stats_info->sw_stat.mem_allocated += 256;

      for (i = 0; i < 256; i +=4 ) {
            pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
            pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
            pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
            for (cnt = 0; cnt <5; cnt++) {
                  msleep(2);
                  pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
                  if (data == 0x80)
                        break;
            }
            if (cnt >= 5) {
                  DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
                  fail = 1;
                  break;
            }
            pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
                              (u32 *)&vpd_data[i]);
      }

      if(!fail) {
            /* read serial number of adapter */
            for (cnt = 0; cnt < 256; cnt++) {
            if ((vpd_data[cnt] == 'S') &&
                  (vpd_data[cnt+1] == 'N') &&
                  (vpd_data[cnt+2] < VPD_STRING_LEN)) {
                        memset(nic->serial_num, 0, VPD_STRING_LEN);
                        memcpy(nic->serial_num, &vpd_data[cnt + 3],
                              vpd_data[cnt+2]);
                        break;
                  }
            }
      }

      if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
            memset(nic->product_name, 0, vpd_data[1]);
            memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
      }
      kfree(vpd_data);
      nic->mac_control.stats_info->sw_stat.mem_freed += 256;
}

/**
 *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
 *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
 *  @eeprom : pointer to the user level structure provided by ethtool,
 *  containing all relevant information.
 *  @data_buf : user defined value to be written into Eeprom.
 *  Description: Reads the values stored in the Eeprom at given offset
 *  for a given length. Stores these values int the input argument data
 *  buffer 'data_buf' and returns these to the caller (ethtool.)
 *  Return value:
 *  int  0 on success
 */

static int s2io_ethtool_geeprom(struct net_device *dev,
                   struct ethtool_eeprom *eeprom, u8 * data_buf)
{
      u32 i, valid;
      u64 data;
      struct s2io_nic *sp = netdev_priv(dev);

      eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);

      if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
            eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;

      for (i = 0; i < eeprom->len; i += 4) {
            if (read_eeprom(sp, (eeprom->offset + i), &data)) {
                  DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
                  return -EFAULT;
            }
            valid = INV(data);
            memcpy((data_buf + i), &valid, 4);
      }
      return 0;
}

/**
 *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
 *  @sp : private member of the device structure, which is a pointer to the
 *  s2io_nic structure.
 *  @eeprom : pointer to the user level structure provided by ethtool,
 *  containing all relevant information.
 *  @data_buf ; user defined value to be written into Eeprom.
 *  Description:
 *  Tries to write the user provided value in the Eeprom, at the offset
 *  given by the user.
 *  Return value:
 *  0 on success, -EFAULT on failure.
 */

static int s2io_ethtool_seeprom(struct net_device *dev,
                        struct ethtool_eeprom *eeprom,
                        u8 * data_buf)
{
      int len = eeprom->len, cnt = 0;
      u64 valid = 0, data;
      struct s2io_nic *sp = netdev_priv(dev);

      if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
            DBG_PRINT(ERR_DBG,
                    "ETHTOOL_WRITE_EEPROM Err: Magic value ");
            DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
                    eeprom->magic);
            return -EFAULT;
      }

      while (len) {
            data = (u32) data_buf[cnt] & 0x000000FF;
            if (data) {
                  valid = (u32) (data << 24);
            } else
                  valid = data;

            if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
                  DBG_PRINT(ERR_DBG,
                          "ETHTOOL_WRITE_EEPROM Err: Cannot ");
                  DBG_PRINT(ERR_DBG,
                          "write into the specified offset\n");
                  return -EFAULT;
            }
            cnt++;
            len--;
      }

      return 0;
}

/**
 * s2io_register_test - reads and writes into all clock domains.
 * @sp : private member of the device structure, which is a pointer to the
 * s2io_nic structure.
 * @data : variable that returns the result of each of the test conducted b
 * by the driver.
 * Description:
 * Read and write into all clock domains. The NIC has 3 clock domains,
 * see that registers in all the three regions are accessible.
 * Return value:
 * 0 on success.
 */

static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
{
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64 = 0, exp_val;
      int fail = 0;

      val64 = readq(&bar0->pif_rd_swapper_fb);
      if (val64 != 0x123456789abcdefULL) {
            fail = 1;
            DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
      }

      val64 = readq(&bar0->rmac_pause_cfg);
      if (val64 != 0xc000ffff00000000ULL) {
            fail = 1;
            DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
      }

      val64 = readq(&bar0->rx_queue_cfg);
      if (sp->device_type == XFRAME_II_DEVICE)
            exp_val = 0x0404040404040404ULL;
      else
            exp_val = 0x0808080808080808ULL;
      if (val64 != exp_val) {
            fail = 1;
            DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
      }

      val64 = readq(&bar0->xgxs_efifo_cfg);
      if (val64 != 0x000000001923141EULL) {
            fail = 1;
            DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
      }

      val64 = 0x5A5A5A5A5A5A5A5AULL;
      writeq(val64, &bar0->xmsi_data);
      val64 = readq(&bar0->xmsi_data);
      if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
            fail = 1;
            DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
      }

      val64 = 0xA5A5A5A5A5A5A5A5ULL;
      writeq(val64, &bar0->xmsi_data);
      val64 = readq(&bar0->xmsi_data);
      if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
            fail = 1;
            DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
      }

      *data = fail;
      return fail;
}

/**
 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
 * @sp : private member of the device structure, which is a pointer to the
 * s2io_nic structure.
 * @data:variable that returns the result of each of the test conducted by
 * the driver.
 * Description:
 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
 * register.
 * Return value:
 * 0 on success.
 */

static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
{
      int fail = 0;
      u64 ret_data, org_4F0, org_7F0;
      u8 saved_4F0 = 0, saved_7F0 = 0;
      struct net_device *dev = sp->dev;

      /* Test Write Error at offset 0 */
      /* Note that SPI interface allows write access to all areas
       * of EEPROM. Hence doing all negative testing only for Xframe I.
       */
      if (sp->device_type == XFRAME_I_DEVICE)
            if (!write_eeprom(sp, 0, 0, 3))
                  fail = 1;

      /* Save current values at offsets 0x4F0 and 0x7F0 */
      if (!read_eeprom(sp, 0x4F0, &org_4F0))
            saved_4F0 = 1;
      if (!read_eeprom(sp, 0x7F0, &org_7F0))
            saved_7F0 = 1;

      /* Test Write at offset 4f0 */
      if (write_eeprom(sp, 0x4F0, 0x012345, 3))
            fail = 1;
      if (read_eeprom(sp, 0x4F0, &ret_data))
            fail = 1;

      if (ret_data != 0x012345) {
            DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
                  "Data written %llx Data read %llx\n",
                  dev->name, (unsigned long long)0x12345,
                  (unsigned long long)ret_data);
            fail = 1;
      }

      /* Reset the EEPROM data go FFFF */
      write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);

      /* Test Write Request Error at offset 0x7c */
      if (sp->device_type == XFRAME_I_DEVICE)
            if (!write_eeprom(sp, 0x07C, 0, 3))
                  fail = 1;

      /* Test Write Request at offset 0x7f0 */
      if (write_eeprom(sp, 0x7F0, 0x012345, 3))
            fail = 1;
      if (read_eeprom(sp, 0x7F0, &ret_data))
            fail = 1;

      if (ret_data != 0x012345) {
            DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
                  "Data written %llx Data read %llx\n",
                  dev->name, (unsigned long long)0x12345,
                  (unsigned long long)ret_data);
            fail = 1;
      }

      /* Reset the EEPROM data go FFFF */
      write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);

      if (sp->device_type == XFRAME_I_DEVICE) {
            /* Test Write Error at offset 0x80 */
            if (!write_eeprom(sp, 0x080, 0, 3))
                  fail = 1;

            /* Test Write Error at offset 0xfc */
            if (!write_eeprom(sp, 0x0FC, 0, 3))
                  fail = 1;

            /* Test Write Error at offset 0x100 */
            if (!write_eeprom(sp, 0x100, 0, 3))
                  fail = 1;

            /* Test Write Error at offset 4ec */
            if (!write_eeprom(sp, 0x4EC, 0, 3))
                  fail = 1;
      }

      /* Restore values at offsets 0x4F0 and 0x7F0 */
      if (saved_4F0)
            write_eeprom(sp, 0x4F0, org_4F0, 3);
      if (saved_7F0)
            write_eeprom(sp, 0x7F0, org_7F0, 3);

      *data = fail;
      return fail;
}

/**
 * s2io_bist_test - invokes the MemBist test of the card .
 * @sp : private member of the device structure, which is a pointer to the
 * s2io_nic structure.
 * @data:variable that returns the result of each of the test conducted by
 * the driver.
 * Description:
 * This invokes the MemBist test of the card. We give around
 * 2 secs time for the Test to complete. If it's still not complete
 * within this peiod, we consider that the test failed.
 * Return value:
 * 0 on success and -1 on failure.
 */

static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
{
      u8 bist = 0;
      int cnt = 0, ret = -1;

      pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
      bist |= PCI_BIST_START;
      pci_write_config_word(sp->pdev, PCI_BIST, bist);

      while (cnt < 20) {
            pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
            if (!(bist & PCI_BIST_START)) {
                  *data = (bist & PCI_BIST_CODE_MASK);
                  ret = 0;
                  break;
            }
            msleep(100);
            cnt++;
      }

      return ret;
}

/**
 * s2io-link_test - verifies the link state of the nic
 * @sp ; private member of the device structure, which is a pointer to the
 * s2io_nic structure.
 * @data: variable that returns the result of each of the test conducted by
 * the driver.
 * Description:
 * The function verifies the link state of the NIC and updates the input
 * argument 'data' appropriately.
 * Return value:
 * 0 on success.
 */

static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
{
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64;

      val64 = readq(&bar0->adapter_status);
      if(!(LINK_IS_UP(val64)))
            *data = 1;
      else
            *data = 0;

      return *data;
}

/**
 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
 * @sp - private member of the device structure, which is a pointer to the
 * s2io_nic structure.
 * @data - variable that returns the result of each of the test
 * conducted by the driver.
 * Description:
 *  This is one of the offline test that tests the read and write
 *  access to the RldRam chip on the NIC.
 * Return value:
 *  0 on success.
 */

static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
{
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      u64 val64;
      int cnt, iteration = 0, test_fail = 0;

      val64 = readq(&bar0->adapter_control);
      val64 &= ~ADAPTER_ECC_EN;
      writeq(val64, &bar0->adapter_control);

      val64 = readq(&bar0->mc_rldram_test_ctrl);
      val64 |= MC_RLDRAM_TEST_MODE;
      SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);

      val64 = readq(&bar0->mc_rldram_mrs);
      val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
      SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);

      val64 |= MC_RLDRAM_MRS_ENABLE;
      SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);

      while (iteration < 2) {
            val64 = 0x55555555aaaa0000ULL;
            if (iteration == 1) {
                  val64 ^= 0xFFFFFFFFFFFF0000ULL;
            }
            writeq(val64, &bar0->mc_rldram_test_d0);

            val64 = 0xaaaa5a5555550000ULL;
            if (iteration == 1) {
                  val64 ^= 0xFFFFFFFFFFFF0000ULL;
            }
            writeq(val64, &bar0->mc_rldram_test_d1);

            val64 = 0x55aaaaaaaa5a0000ULL;
            if (iteration == 1) {
                  val64 ^= 0xFFFFFFFFFFFF0000ULL;
            }
            writeq(val64, &bar0->mc_rldram_test_d2);

            val64 = (u64) (0x0000003ffffe0100ULL);
            writeq(val64, &bar0->mc_rldram_test_add);

            val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
                  MC_RLDRAM_TEST_GO;
            SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);

            for (cnt = 0; cnt < 5; cnt++) {
                  val64 = readq(&bar0->mc_rldram_test_ctrl);
                  if (val64 & MC_RLDRAM_TEST_DONE)
                        break;
                  msleep(200);
            }

            if (cnt == 5)
                  break;

            val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
            SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);

            for (cnt = 0; cnt < 5; cnt++) {
                  val64 = readq(&bar0->mc_rldram_test_ctrl);
                  if (val64 & MC_RLDRAM_TEST_DONE)
                        break;
                  msleep(500);
            }

            if (cnt == 5)
                  break;

            val64 = readq(&bar0->mc_rldram_test_ctrl);
            if (!(val64 & MC_RLDRAM_TEST_PASS))
                  test_fail = 1;

            iteration++;
      }

      *data = test_fail;

      /* Bring the adapter out of test mode */
      SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);

      return test_fail;
}

/**
 *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
 *  @sp : private member of the device structure, which is a pointer to the
 *  s2io_nic structure.
 *  @ethtest : pointer to a ethtool command specific structure that will be
 *  returned to the user.
 *  @data : variable that returns the result of each of the test
 * conducted by the driver.
 * Description:
 *  This function conducts 6 tests ( 4 offline and 2 online) to determine
 *  the health of the card.
 * Return value:
 *  void
 */

static void s2io_ethtool_test(struct net_device *dev,
                        struct ethtool_test *ethtest,
                        uint64_t * data)
{
      struct s2io_nic *sp = netdev_priv(dev);
      int orig_state = netif_running(sp->dev);

      if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
            /* Offline Tests. */
            if (orig_state)
                  s2io_close(sp->dev);

            if (s2io_register_test(sp, &data[0]))
                  ethtest->flags |= ETH_TEST_FL_FAILED;

            s2io_reset(sp);

            if (s2io_rldram_test(sp, &data[3]))
                  ethtest->flags |= ETH_TEST_FL_FAILED;

            s2io_reset(sp);

            if (s2io_eeprom_test(sp, &data[1]))
                  ethtest->flags |= ETH_TEST_FL_FAILED;

            if (s2io_bist_test(sp, &data[4]))
                  ethtest->flags |= ETH_TEST_FL_FAILED;

            if (orig_state)
                  s2io_open(sp->dev);

            data[2] = 0;
      } else {
            /* Online Tests. */
            if (!orig_state) {
                  DBG_PRINT(ERR_DBG,
                          "%s: is not up, cannot run test\n",
                          dev->name);
                  data[0] = -1;
                  data[1] = -1;
                  data[2] = -1;
                  data[3] = -1;
                  data[4] = -1;
            }

            if (s2io_link_test(sp, &data[2]))
                  ethtest->flags |= ETH_TEST_FL_FAILED;

            data[0] = 0;
            data[1] = 0;
            data[3] = 0;
            data[4] = 0;
      }
}

static void s2io_get_ethtool_stats(struct net_device *dev,
                           struct ethtool_stats *estats,
                           u64 * tmp_stats)
{
      int i = 0, k;
      struct s2io_nic *sp = netdev_priv(dev);
      struct stat_block *stat_info = sp->mac_control.stats_info;

      s2io_updt_stats(sp);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
            le32_to_cpu(stat_info->tmac_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
            le32_to_cpu(stat_info->tmac_data_octets);
      tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
            le32_to_cpu(stat_info->tmac_mcst_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
            le32_to_cpu(stat_info->tmac_bcst_frms);
      tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
        tmp_stats[i++] =
                (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
                le32_to_cpu(stat_info->tmac_ttl_octets);
      tmp_stats[i++] =
                (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
                le32_to_cpu(stat_info->tmac_ucst_frms);
      tmp_stats[i++] =
                (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
                le32_to_cpu(stat_info->tmac_nucst_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
            le32_to_cpu(stat_info->tmac_any_err_frms);
        tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
      tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
            le32_to_cpu(stat_info->tmac_vld_ip);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
            le32_to_cpu(stat_info->tmac_drop_ip);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
            le32_to_cpu(stat_info->tmac_icmp);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
            le32_to_cpu(stat_info->tmac_rst_tcp);
      tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
      tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
            le32_to_cpu(stat_info->tmac_udp);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_vld_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_data_octets);
      tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
      tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_vld_mcst_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_vld_bcst_frms);
      tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
      tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
      tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
      tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
      tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
        tmp_stats[i++] =
                (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_ttl_octets);
        tmp_stats[i++] =
                (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
            << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
      tmp_stats[i++] =
                (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
                 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_discarded_frms);
        tmp_stats[i++] =
                (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
                 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_usized_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_osized_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_frag_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_jabber_frms);
      tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_ip);
      tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
      tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_drop_ip);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_icmp);
      tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_udp);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_err_drp_udp);
      tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
        tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
        tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
        tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
        tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
        tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
        tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
        tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
        tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_pause_cnt);
      tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
        tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
      tmp_stats[i++] =
            (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
            le32_to_cpu(stat_info->rmac_accepted_ip);
      tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
      tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
      tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);

      /* Enhanced statistics exist only for Hercules */
      if(sp->device_type == XFRAME_II_DEVICE) {
            tmp_stats[i++] =
                        le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
            tmp_stats[i++] =
                        le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
            tmp_stats[i++] =
                        le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
            tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
            tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
            tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
            tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
            tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
            tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
            tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
            tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
            tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
            tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
            tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
            tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
            tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
      }

      tmp_stats[i++] = 0;
      tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
      tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
      tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
      tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
      for (k = 0; k < MAX_RX_RINGS; k++)
            tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
      tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
      tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
      tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
      tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
      tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
      tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
      tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
      tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
      tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
      tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
      tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
      tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
      tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
      tmp_stats[i++] = stat_info->sw_stat.sending_both;
      tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
      tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
      if (stat_info->sw_stat.num_aggregations) {
            u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
            int count = 0;
            /*
             * Since 64-bit divide does not work on all platforms,
             * do repeated subtraction.
             */
            while (tmp >= stat_info->sw_stat.num_aggregations) {
                  tmp -= stat_info->sw_stat.num_aggregations;
                  count++;
            }
            tmp_stats[i++] = count;
      }
      else
            tmp_stats[i++] = 0;
      tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
      tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
      tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
      tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
      tmp_stats[i++] = stat_info->sw_stat.mem_freed;
      tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
      tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
      tmp_stats[i++] = stat_info->sw_stat.link_up_time;
      tmp_stats[i++] = stat_info->sw_stat.link_down_time;

      tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
      tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
      tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
      tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;

      tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
      tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
}

static int s2io_ethtool_get_regs_len(struct net_device *dev)
{
      return (XENA_REG_SPACE);
}


static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
{
      struct s2io_nic *sp = netdev_priv(dev);

      return (sp->rx_csum);
}

static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
{
      struct s2io_nic *sp = netdev_priv(dev);

      if (data)
            sp->rx_csum = 1;
      else
            sp->rx_csum = 0;

      return 0;
}

static int s2io_get_eeprom_len(struct net_device *dev)
{
      return (XENA_EEPROM_SPACE);
}

static int s2io_get_sset_count(struct net_device *dev, int sset)
{
      struct s2io_nic *sp = netdev_priv(dev);

      switch (sset) {
      case ETH_SS_TEST:
            return S2IO_TEST_LEN;
      case ETH_SS_STATS:
            switch(sp->device_type) {
            case XFRAME_I_DEVICE:
                  return XFRAME_I_STAT_LEN;
            case XFRAME_II_DEVICE:
                  return XFRAME_II_STAT_LEN;
            default:
                  return 0;
            }
      default:
            return -EOPNOTSUPP;
      }
}

static void s2io_ethtool_get_strings(struct net_device *dev,
                             u32 stringset, u8 * data)
{
      int stat_size = 0;
      struct s2io_nic *sp = netdev_priv(dev);

      switch (stringset) {
      case ETH_SS_TEST:
            memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
            break;
      case ETH_SS_STATS:
            stat_size = sizeof(ethtool_xena_stats_keys);
            memcpy(data, &ethtool_xena_stats_keys,stat_size);
            if(sp->device_type == XFRAME_II_DEVICE) {
                  memcpy(data + stat_size,
                        &ethtool_enhanced_stats_keys,
                        sizeof(ethtool_enhanced_stats_keys));
                  stat_size += sizeof(ethtool_enhanced_stats_keys);
            }

            memcpy(data + stat_size, &ethtool_driver_stats_keys,
                  sizeof(ethtool_driver_stats_keys));
      }
}

static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
{
      if (data)
            dev->features |= NETIF_F_IP_CSUM;
      else
            dev->features &= ~NETIF_F_IP_CSUM;

      return 0;
}

static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
{
      return (dev->features & NETIF_F_TSO) != 0;
}
static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
{
      if (data)
            dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
      else
            dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

      return 0;
}

static const struct ethtool_ops netdev_ethtool_ops = {
      .get_settings = s2io_ethtool_gset,
      .set_settings = s2io_ethtool_sset,
      .get_drvinfo = s2io_ethtool_gdrvinfo,
      .get_regs_len = s2io_ethtool_get_regs_len,
      .get_regs = s2io_ethtool_gregs,
      .get_link = ethtool_op_get_link,
      .get_eeprom_len = s2io_get_eeprom_len,
      .get_eeprom = s2io_ethtool_geeprom,
      .set_eeprom = s2io_ethtool_seeprom,
      .get_ringparam = s2io_ethtool_gringparam,
      .get_pauseparam = s2io_ethtool_getpause_data,
      .set_pauseparam = s2io_ethtool_setpause_data,
      .get_rx_csum = s2io_ethtool_get_rx_csum,
      .set_rx_csum = s2io_ethtool_set_rx_csum,
      .set_tx_csum = s2io_ethtool_op_set_tx_csum,
      .set_sg = ethtool_op_set_sg,
      .get_tso = s2io_ethtool_op_get_tso,
      .set_tso = s2io_ethtool_op_set_tso,
      .set_ufo = ethtool_op_set_ufo,
      .self_test = s2io_ethtool_test,
      .get_strings = s2io_ethtool_get_strings,
      .phys_id = s2io_ethtool_idnic,
      .get_ethtool_stats = s2io_get_ethtool_stats,
      .get_sset_count = s2io_get_sset_count,
};

/**
 *  s2io_ioctl - Entry point for the Ioctl
 *  @dev :  Device pointer.
 *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd :  This is used to distinguish between the different commands that
 *  can be passed to the IOCTL functions.
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, hence
 *  function always return EOPNOTSUPPORTED
 */

static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
      return -EOPNOTSUPP;
}

/**
 *  s2io_change_mtu - entry point to change MTU size for the device.
 *   @dev : device pointer.
 *   @new_mtu : the new MTU size for the device.
 *   Description: A driver entry point to change MTU size for the device.
 *   Before changing the MTU the device must be stopped.
 *  Return value:
 *   0 on success and an appropriate (-)ve integer as defined in errno.h
 *   file on failure.
 */

static int s2io_change_mtu(struct net_device *dev, int new_mtu)
{
      struct s2io_nic *sp = netdev_priv(dev);
      int ret = 0;

      if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
            DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
                    dev->name);
            return -EPERM;
      }

      dev->mtu = new_mtu;
      if (netif_running(dev)) {
            s2io_stop_all_tx_queue(sp);
            s2io_card_down(sp);
            ret = s2io_card_up(sp);
            if (ret) {
                  DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
                          __func__);
                  return ret;
            }
            s2io_wake_all_tx_queue(sp);
      } else { /* Device is down */
            struct XENA_dev_config __iomem *bar0 = sp->bar0;
            u64 val64 = new_mtu;

            writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
      }

      return ret;
}

/**
 * s2io_set_link - Set the LInk status
 * @data: long pointer to device private structue
 * Description: Sets the link status for the adapter
 */

static void s2io_set_link(struct work_struct *work)
{
      struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
      struct net_device *dev = nic->dev;
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      register u64 val64;
      u16 subid;

      rtnl_lock();

      if (!netif_running(dev))
            goto out_unlock;

      if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
            /* The card is being reset, no point doing anything */
            goto out_unlock;
      }

      subid = nic->pdev->subsystem_device;
      if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
            /*
             * Allow a small delay for the NICs self initiated
             * cleanup to complete.
             */
            msleep(100);
      }

      val64 = readq(&bar0->adapter_status);
      if (LINK_IS_UP(val64)) {
            if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
                  if (verify_xena_quiescence(nic)) {
                        val64 = readq(&bar0->adapter_control);
                        val64 |= ADAPTER_CNTL_EN;
                        writeq(val64, &bar0->adapter_control);
                        if (CARDS_WITH_FAULTY_LINK_INDICATORS(
                              nic->device_type, subid)) {
                              val64 = readq(&bar0->gpio_control);
                              val64 |= GPIO_CTRL_GPIO_0;
                              writeq(val64, &bar0->gpio_control);
                              val64 = readq(&bar0->gpio_control);
                        } else {
                              val64 |= ADAPTER_LED_ON;
                              writeq(val64, &bar0->adapter_control);
                        }
                        nic->device_enabled_once = true;
                  } else {
                        DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
                        DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
                        s2io_stop_all_tx_queue(nic);
                  }
            }
            val64 = readq(&bar0->adapter_control);
            val64 |= ADAPTER_LED_ON;
            writeq(val64, &bar0->adapter_control);
            s2io_link(nic, LINK_UP);
      } else {
            if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
                                          subid)) {
                  val64 = readq(&bar0->gpio_control);
                  val64 &= ~GPIO_CTRL_GPIO_0;
                  writeq(val64, &bar0->gpio_control);
                  val64 = readq(&bar0->gpio_control);
            }
            /* turn off LED */
            val64 = readq(&bar0->adapter_control);
            val64 = val64 &(~ADAPTER_LED_ON);
            writeq(val64, &bar0->adapter_control);
            s2io_link(nic, LINK_DOWN);
      }
      clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));

out_unlock:
      rtnl_unlock();
}

static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
                        struct buffAdd *ba,
                        struct sk_buff **skb, u64 *temp0, u64 *temp1,
                        u64 *temp2, int size)
{
      struct net_device *dev = sp->dev;
      struct swStat *stats = &sp->mac_control.stats_info->sw_stat;

      if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
            struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
            /* allocate skb */
            if (*skb) {
                  DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
                  /*
                   * As Rx frame are not going to be processed,
                   * using same mapped address for the Rxd
                   * buffer pointer
                   */
                  rxdp1->Buffer0_ptr = *temp0;
            } else {
                  *skb = dev_alloc_skb(size);
                  if (!(*skb)) {
                        DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
                        DBG_PRINT(INFO_DBG, "memory to allocate ");
                        DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
                        sp->mac_control.stats_info->sw_stat. \
                              mem_alloc_fail_cnt++;
                        return -ENOMEM ;
                  }
                  sp->mac_control.stats_info->sw_stat.mem_allocated
                        += (*skb)->truesize;
                  /* storing the mapped addr in a temp variable
                   * such it will be used for next rxd whose
                   * Host Control is NULL
                   */
                  rxdp1->Buffer0_ptr = *temp0 =
                        pci_map_single( sp->pdev, (*skb)->data,
                              size - NET_IP_ALIGN,
                              PCI_DMA_FROMDEVICE);
                  if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
                        goto memalloc_failed;
                  rxdp->Host_Control = (unsigned long) (*skb);
            }
      } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
            struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
            /* Two buffer Mode */
            if (*skb) {
                  rxdp3->Buffer2_ptr = *temp2;
                  rxdp3->Buffer0_ptr = *temp0;
                  rxdp3->Buffer1_ptr = *temp1;
            } else {
                  *skb = dev_alloc_skb(size);
                  if (!(*skb)) {
                        DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
                        DBG_PRINT(INFO_DBG, "memory to allocate ");
                        DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
                        sp->mac_control.stats_info->sw_stat. \
                              mem_alloc_fail_cnt++;
                        return -ENOMEM;
                  }
                  sp->mac_control.stats_info->sw_stat.mem_allocated
                        += (*skb)->truesize;
                  rxdp3->Buffer2_ptr = *temp2 =
                        pci_map_single(sp->pdev, (*skb)->data,
                                     dev->mtu + 4,
                                     PCI_DMA_FROMDEVICE);
                  if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
                        goto memalloc_failed;
                  rxdp3->Buffer0_ptr = *temp0 =
                        pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
                                    PCI_DMA_FROMDEVICE);
                  if (pci_dma_mapping_error(sp->pdev,
                                    rxdp3->Buffer0_ptr)) {
                        pci_unmap_single (sp->pdev,
                              (dma_addr_t)rxdp3->Buffer2_ptr,
                              dev->mtu + 4, PCI_DMA_FROMDEVICE);
                        goto memalloc_failed;
                  }
                  rxdp->Host_Control = (unsigned long) (*skb);

                  /* Buffer-1 will be dummy buffer not used */
                  rxdp3->Buffer1_ptr = *temp1 =
                        pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
                                    PCI_DMA_FROMDEVICE);
                  if (pci_dma_mapping_error(sp->pdev,
                                    rxdp3->Buffer1_ptr)) {
                        pci_unmap_single (sp->pdev,
                              (dma_addr_t)rxdp3->Buffer0_ptr,
                              BUF0_LEN, PCI_DMA_FROMDEVICE);
                        pci_unmap_single (sp->pdev,
                              (dma_addr_t)rxdp3->Buffer2_ptr,
                              dev->mtu + 4, PCI_DMA_FROMDEVICE);
                        goto memalloc_failed;
                  }
            }
      }
      return 0;
      memalloc_failed:
            stats->pci_map_fail_cnt++;
            stats->mem_freed += (*skb)->truesize;
            dev_kfree_skb(*skb);
            return -ENOMEM;
}

static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
                        int size)
{
      struct net_device *dev = sp->dev;
      if (sp->rxd_mode == RXD_MODE_1) {
            rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
      } else if (sp->rxd_mode == RXD_MODE_3B) {
            rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
            rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
            rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
      }
}

static  int rxd_owner_bit_reset(struct s2io_nic *sp)
{
      int i, j, k, blk_cnt = 0, size;
      struct mac_info * mac_control = &sp->mac_control;
      struct config_param *config = &sp->config;
      struct net_device *dev = sp->dev;
      struct RxD_t *rxdp = NULL;
      struct sk_buff *skb = NULL;
      struct buffAdd *ba = NULL;
      u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;

      /* Calculate the size based on ring mode */
      size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
            HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
      if (sp->rxd_mode == RXD_MODE_1)
            size += NET_IP_ALIGN;
      else if (sp->rxd_mode == RXD_MODE_3B)
            size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;

      for (i = 0; i < config->rx_ring_num; i++) {
            blk_cnt = config->rx_cfg[i].num_rxd /
                  (rxd_count[sp->rxd_mode] +1);

            for (j = 0; j < blk_cnt; j++) {
                  for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
                        rxdp = mac_control->rings[i].
                              rx_blocks[j].rxds[k].virt_addr;
                        if(sp->rxd_mode == RXD_MODE_3B)
                              ba = &mac_control->rings[i].ba[j][k];
                        if (set_rxd_buffer_pointer(sp, rxdp, ba,
                                           &skb,(u64 *)&temp0_64,
                                           (u64 *)&temp1_64,
                                           (u64 *)&temp2_64,
                                          size) == -ENOMEM) {
                              return 0;
                        }

                        set_rxd_buffer_size(sp, rxdp, size);
                        wmb();
                        /* flip the Ownership bit to Hardware */
                        rxdp->Control_1 |= RXD_OWN_XENA;
                  }
            }
      }
      return 0;

}

static int s2io_add_isr(struct s2io_nic * sp)
{
      int ret = 0;
      struct net_device *dev = sp->dev;
      int err = 0;

      if (sp->config.intr_type == MSI_X)
            ret = s2io_enable_msi_x(sp);
      if (ret) {
            DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
            sp->config.intr_type = INTA;
      }

      /* Store the values of the MSIX table in the struct s2io_nic structure */
      store_xmsi_data(sp);

      /* After proper initialization of H/W, register ISR */
      if (sp->config.intr_type == MSI_X) {
            int i, msix_rx_cnt = 0;

            for (i = 0; i < sp->num_entries; i++) {
                  if (sp->s2io_entries[i].in_use == MSIX_FLG) {
                        if (sp->s2io_entries[i].type ==
                              MSIX_RING_TYPE) {
                              sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
                                    dev->name, i);
                              err = request_irq(sp->entries[i].vector,
                                    s2io_msix_ring_handle, 0,
                                    sp->desc[i],
                                    sp->s2io_entries[i].arg);
                        } else if (sp->s2io_entries[i].type ==
                              MSIX_ALARM_TYPE) {
                              sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
                              dev->name, i);
                              err = request_irq(sp->entries[i].vector,
                                    s2io_msix_fifo_handle, 0,
                                    sp->desc[i],
                                    sp->s2io_entries[i].arg);

                        }
                        /* if either data or addr is zero print it. */
                        if (!(sp->msix_info[i].addr &&
                              sp->msix_info[i].data)) {
                              DBG_PRINT(ERR_DBG,
                                    "%s @Addr:0x%llx Data:0x%llx\n",
                                    sp->desc[i],
                                    (unsigned long long)
                                    sp->msix_info[i].addr,
                                    (unsigned long long)
                                    ntohl(sp->msix_info[i].data));
                        } else
                              msix_rx_cnt++;
                        if (err) {
                              remove_msix_isr(sp);

                              DBG_PRINT(ERR_DBG,
                                    "%s:MSI-X-%d registration "
                                    "failed\n", dev->name, i);

                              DBG_PRINT(ERR_DBG,
                                    "%s: Defaulting to INTA\n",
                                    dev->name);
                              sp->config.intr_type = INTA;
                              break;
                        }
                        sp->s2io_entries[i].in_use =
                              MSIX_REGISTERED_SUCCESS;
                  }
            }
            if (!err) {
                  printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
                        --msix_rx_cnt);
                  DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
                                    " through alarm vector\n");
            }
      }
      if (sp->config.intr_type == INTA) {
            err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
                        sp->name, dev);
            if (err) {
                  DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
                          dev->name);
                  return -1;
            }
      }
      return 0;
}
static void s2io_rem_isr(struct s2io_nic * sp)
{
      if (sp->config.intr_type == MSI_X)
            remove_msix_isr(sp);
      else
            remove_inta_isr(sp);
}

static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
{
      int cnt = 0;
      struct XENA_dev_config __iomem *bar0 = sp->bar0;
      register u64 val64 = 0;
      struct config_param *config;
      config = &sp->config;

      if (!is_s2io_card_up(sp))
            return;

      del_timer_sync(&sp->alarm_timer);
      /* If s2io_set_link task is executing, wait till it completes. */
      while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
            msleep(50);
      }
      clear_bit(__S2IO_STATE_CARD_UP, &sp->state);

      /* Disable napi */
      if (sp->config.napi) {
            int off = 0;
            if (config->intr_type ==  MSI_X) {
                  for (; off < sp->config.rx_ring_num; off++)
                        napi_disable(&sp->mac_control.rings[off].napi);
                  }
            else
                  napi_disable(&sp->napi);
      }

      /* disable Tx and Rx traffic on the NIC */
      if (do_io)
            stop_nic(sp);

      s2io_rem_isr(sp);

      /* stop the tx queue, indicate link down */
      s2io_link(sp, LINK_DOWN);

      /* Check if the device is Quiescent and then Reset the NIC */
      while(do_io) {
            /* As per the HW requirement we need to replenish the
             * receive buffer to avoid the ring bump. Since there is
             * no intention of processing the Rx frame at this pointwe are
             * just settting the ownership bit of rxd in Each Rx
             * ring to HW and set the appropriate buffer size
             * based on the ring mode
             */
            rxd_owner_bit_reset(sp);

            val64 = readq(&bar0->adapter_status);
            if (verify_xena_quiescence(sp)) {
                  if(verify_pcc_quiescent(sp, sp->device_enabled_once))
                  break;
            }

            msleep(50);
            cnt++;
            if (cnt == 10) {
                  DBG_PRINT(ERR_DBG,
                          "s2io_close:Device not Quiescent ");
                  DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
                          (unsigned long long) val64);
                  break;
            }
      }
      if (do_io)
            s2io_reset(sp);

      /* Free all Tx buffers */
      free_tx_buffers(sp);

      /* Free all Rx buffers */
      free_rx_buffers(sp);

      clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
}

static void s2io_card_down(struct s2io_nic * sp)
{
      do_s2io_card_down(sp, 1);
}

static int s2io_card_up(struct s2io_nic * sp)
{
      int i, ret = 0;
      struct mac_info *mac_control;
      struct config_param *config;
      struct net_device *dev = (struct net_device *) sp->dev;
      u16 interruptible;

      /* Initialize the H/W I/O registers */
      ret = init_nic(sp);
      if (ret != 0) {
            DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
                    dev->name);
            if (ret != -EIO)
                  s2io_reset(sp);
            return ret;
      }

      /*
       * Initializing the Rx buffers. For now we are considering only 1
       * Rx ring and initializing buffers into 30 Rx blocks
       */
      mac_control = &sp->mac_control;
      config = &sp->config;

      for (i = 0; i < config->rx_ring_num; i++) {
            mac_control->rings[i].mtu = dev->mtu;
            ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
            if (ret) {
                  DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
                          dev->name);
                  s2io_reset(sp);
                  free_rx_buffers(sp);
                  return -ENOMEM;
            }
            DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
                    mac_control->rings[i].rx_bufs_left);
      }

      /* Initialise napi */
      if (config->napi) {
            if (config->intr_type ==  MSI_X) {
                  for (i = 0; i < sp->config.rx_ring_num; i++)
                        napi_enable(&sp->mac_control.rings[i].napi);
            } else {
                  napi_enable(&sp->napi);
            }
      }

      /* Maintain the state prior to the open */
      if (sp->promisc_flg)
            sp->promisc_flg = 0;
      if (sp->m_cast_flg) {
            sp->m_cast_flg = 0;
            sp->all_multi_pos= 0;
      }

      /* Setting its receive mode */
      s2io_set_multicast(dev);

      if (sp->lro) {
            /* Initialize max aggregatable pkts per session based on MTU */
            sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
            /* Check if we can use(if specified) user provided value */
            if (lro_max_pkts < sp->lro_max_aggr_per_sess)
                  sp->lro_max_aggr_per_sess = lro_max_pkts;
      }

      /* Enable Rx Traffic and interrupts on the NIC */
      if (start_nic(sp)) {
            DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
            s2io_reset(sp);
            free_rx_buffers(sp);
            return -ENODEV;
      }

      /* Add interrupt service routine */
      if (s2io_add_isr(sp) != 0) {
            if (sp->config.intr_type == MSI_X)
                  s2io_rem_isr(sp);
            s2io_reset(sp);
            free_rx_buffers(sp);
            return -ENODEV;
      }

      S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));

      set_bit(__S2IO_STATE_CARD_UP, &sp->state);

      /*  Enable select interrupts */
      en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
      if (sp->config.intr_type != INTA) {
            interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
            en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
      } else {
            interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
            interruptible |= TX_PIC_INTR;
            en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
      }

      return 0;
}

/**
 * s2io_restart_nic - Resets the NIC.
 * @data : long pointer to the device private structure
 * Description:
 * This function is scheduled to be run by the s2io_tx_watchdog
 * function after 0.5 secs to reset the NIC. The idea is to reduce
 * the run time of the watch dog routine which is run holding a
 * spin lock.
 */

static void s2io_restart_nic(struct work_struct *work)
{
      struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
      struct net_device *dev = sp->dev;

      rtnl_lock();

      if (!netif_running(dev))
            goto out_unlock;

      s2io_card_down(sp);
      if (s2io_card_up(sp)) {
            DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
                    dev->name);
      }
      s2io_wake_all_tx_queue(sp);
      DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
              dev->name);
out_unlock:
      rtnl_unlock();
}

/**
 *  s2io_tx_watchdog - Watchdog for transmit side.
 *  @dev : Pointer to net device structure
 *  Description:
 *  This function is triggered if the Tx Queue is stopped
 *  for a pre-defined amount of time when the Interface is still up.
 *  If the Interface is jammed in such a situation, the hardware is
 *  reset (by s2io_close) and restarted again (by s2io_open) to
 *  overcome any problem that might have been caused in the hardware.
 *  Return value:
 *  void
 */

static void s2io_tx_watchdog(struct net_device *dev)
{
      struct s2io_nic *sp = netdev_priv(dev);

      if (netif_carrier_ok(dev)) {
            sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
            schedule_work(&sp->rst_timer_task);
            sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
      }
}

/**
 *   rx_osm_handler - To perform some OS related operations on SKB.
 *   @sp: private member of the device structure,pointer to s2io_nic structure.
 *   @skb : the socket buffer pointer.
 *   @len : length of the packet
 *   @cksum : FCS checksum of the frame.
 *   @ring_no : the ring from which this RxD was extracted.
 *   Description:
 *   This function is called by the Rx interrupt serivce routine to perform
 *   some OS related operations on the SKB before passing it to the upper
 *   layers. It mainly checks if the checksum is OK, if so adds it to the
 *   SKBs cksum variable, increments the Rx packet count and passes the SKB
 *   to the upper layer. If the checksum is wrong, it increments the Rx
 *   packet error count, frees the SKB and returns error.
 *   Return value:
 *   SUCCESS on success and -1 on failure.
 */
static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
{
      struct s2io_nic *sp = ring_data->nic;
      struct net_device *dev = (struct net_device *) ring_data->dev;
      struct sk_buff *skb = (struct sk_buff *)
            ((unsigned long) rxdp->Host_Control);
      int ring_no = ring_data->ring_no;
      u16 l3_csum, l4_csum;
      unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
      struct lro *uninitialized_var(lro);
      u8 err_mask;

      skb->dev = dev;

      if (err) {
            /* Check for parity error */
            if (err & 0x1) {
                  sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
            }
            err_mask = err >> 48;
            switch(err_mask) {
                  case 1:
                        sp->mac_control.stats_info->sw_stat.
                        rx_parity_err_cnt++;
                  break;

                  case 2:
                        sp->mac_control.stats_info->sw_stat.
                        rx_abort_cnt++;
                  break;

                  case 3:
                        sp->mac_control.stats_info->sw_stat.
                        rx_parity_abort_cnt++;
                  break;

                  case 4:
                        sp->mac_control.stats_info->sw_stat.
                        rx_rda_fail_cnt++;
                  break;

                  case 5:
                        sp->mac_control.stats_info->sw_stat.
                        rx_unkn_prot_cnt++;
                  break;

                  case 6:
                        sp->mac_control.stats_info->sw_stat.
                        rx_fcs_err_cnt++;
                  break;

                  case 7:
                        sp->mac_control.stats_info->sw_stat.
                        rx_buf_size_err_cnt++;
                  break;

                  case 8:
                        sp->mac_control.stats_info->sw_stat.
                        rx_rxd_corrupt_cnt++;
                  break;

                  case 15:
                        sp->mac_control.stats_info->sw_stat.
                        rx_unkn_err_cnt++;
                  break;
            }
            /*
            * Drop the packet if bad transfer code. Exception being
            * 0x5, which could be due to unsupported IPv6 extension header.
            * In this case, we let stack handle the packet.
            * Note that in this case, since checksum will be incorrect,
            * stack will validate the same.
            */
            if (err_mask != 0x5) {
                  DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
                        dev->name, err_mask);
                  dev->stats.rx_crc_errors++;
                  sp->mac_control.stats_info->sw_stat.mem_freed
                        += skb->truesize;
                  dev_kfree_skb(skb);
                  ring_data->rx_bufs_left -= 1;
                  rxdp->Host_Control = 0;
                  return 0;
            }
      }

      /* Updating statistics */
      ring_data->rx_packets++;
      rxdp->Host_Control = 0;
      if (sp->rxd_mode == RXD_MODE_1) {
            int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);

            ring_data->rx_bytes += len;
            skb_put(skb, len);

      } else if (sp->rxd_mode == RXD_MODE_3B) {
            int get_block = ring_data->rx_curr_get_info.block_index;
            int get_off = ring_data->rx_curr_get_info.offset;
            int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
            int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
            unsigned char *buff = skb_push(skb, buf0_len);

            struct buffAdd *ba = &ring_data->ba[get_block][get_off];
            ring_data->rx_bytes += buf0_len + buf2_len;
            memcpy(buff, ba->ba_0, buf0_len);
            skb_put(skb, buf2_len);
      }

      if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
          (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
          (sp->rx_csum)) {
            l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
            l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
            if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
                  /*
                   * NIC verifies if the Checksum of the received
                   * frame is Ok or not and accordingly returns
                   * a flag in the RxD.
                   */
                  skb->ip_summed = CHECKSUM_UNNECESSARY;
                  if (ring_data->lro) {
                        u32 tcp_len;
                        u8 *tcp;
                        int ret = 0;

                        ret = s2io_club_tcp_session(ring_data,
                              skb->data, &tcp, &tcp_len, &lro,
                              rxdp, sp);
                        switch (ret) {
                              case 3: /* Begin anew */
                                    lro->parent = skb;
                                    goto aggregate;
                              case 1: /* Aggregate */
                              {
                                    lro_append_pkt(sp, lro,
                                          skb, tcp_len);
                                    goto aggregate;
                              }
                              case 4: /* Flush session */
                              {
                                    lro_append_pkt(sp, lro,
                                          skb, tcp_len);
                                    queue_rx_frame(lro->parent,
                                          lro->vlan_tag);
                                    clear_lro_session(lro);
                                    sp->mac_control.stats_info->
                                        sw_stat.flush_max_pkts++;
                                    goto aggregate;
                              }
                              case 2: /* Flush both */
                                    lro->parent->data_len =
                                          lro->frags_len;
                                    sp->mac_control.stats_info->
                                         sw_stat.sending_both++;
                                    queue_rx_frame(lro->parent,
                                          lro->vlan_tag);
                                    clear_lro_session(lro);
                                    goto send_up;
                              case 0: /* sessions exceeded */
                              case -1: /* non-TCP or not
                                      * L2 aggregatable
                                      */
                              case 5: /*
                                     * First pkt in session not
                                     * L3/L4 aggregatable
                                     */
                                    break;
                              default:
                                    DBG_PRINT(ERR_DBG,
                                          "%s: Samadhana!!\n",
                                           __func__);
                                    BUG();
                        }
                  }
            } else {
                  /*
                   * Packet with erroneous checksum, let the
                   * upper layers deal with it.
                   */
                  skb->ip_summed = CHECKSUM_NONE;
            }
      } else
            skb->ip_summed = CHECKSUM_NONE;

      sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
send_up:
      skb_record_rx_queue(skb, ring_no);
      queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
aggregate:
      sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
      return SUCCESS;
}

/**
 *  s2io_link - stops/starts the Tx queue.
 *  @sp : private member of the device structure, which is a pointer to the
 *  s2io_nic structure.
 *  @link : inidicates whether link is UP/DOWN.
 *  Description:
 *  This function stops/starts the Tx queue depending on whether the link
 *  status of the NIC is is down or up. This is called by the Alarm
 *  interrupt handler whenever a link change interrupt comes up.
 *  Return value:
 *  void.
 */

static void s2io_link(struct s2io_nic * sp, int link)
{
      struct net_device *dev = (struct net_device *) sp->dev;

      if (link != sp->last_link_state) {
            init_tti(sp, link);
            if (link == LINK_DOWN) {
                  DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
                  s2io_stop_all_tx_queue(sp);
                  netif_carrier_off(dev);
                  if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
                  sp->mac_control.stats_info->sw_stat.link_up_time =
                        jiffies - sp->start_time;
                  sp->mac_control.stats_info->sw_stat.link_down_cnt++;
            } else {
                  DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
                  if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
                  sp->mac_control.stats_info->sw_stat.link_down_time =
                        jiffies - sp->start_time;
                  sp->mac_control.stats_info->sw_stat.link_up_cnt++;
                  netif_carrier_on(dev);
                  s2io_wake_all_tx_queue(sp);
            }
      }
      sp->last_link_state = link;
      sp->start_time = jiffies;
}

/**
 *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
 *  @sp : private member of the device structure, which is a pointer to the
 *  s2io_nic structure.
 *  Description:
 *  This function initializes a few of the PCI and PCI-X configuration registers
 *  with recommended values.
 *  Return value:
 *  void
 */

static void s2io_init_pci(struct s2io_nic * sp)
{
      u16 pci_cmd = 0, pcix_cmd = 0;

      /* Enable Data Parity Error Recovery in PCI-X command register. */
      pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
                       &(pcix_cmd));
      pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
                        (pcix_cmd | 1));
      pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
                       &(pcix_cmd));

      /* Set the PErr Response bit in PCI command register. */
      pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
      pci_write_config_word(sp->pdev, PCI_COMMAND,
                        (pci_cmd | PCI_COMMAND_PARITY));
      pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
}

static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
      u8 *dev_multiq)
{
      if ((tx_fifo_num > MAX_TX_FIFOS) ||
            (tx_fifo_num < 1)) {
            DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
                  "(%d) not supported\n", tx_fifo_num);

            if (tx_fifo_num < 1)
                  tx_fifo_num = 1;
            else
                  tx_fifo_num = MAX_TX_FIFOS;

            DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
            DBG_PRINT(ERR_DBG, "tx fifos\n");
      }

      if (multiq)
            *dev_multiq = multiq;

      if (tx_steering_type && (1 == tx_fifo_num)) {
            if (tx_steering_type != TX_DEFAULT_STEERING)
                  DBG_PRINT(ERR_DBG,
                        "s2io: Tx steering is not supported with "
                        "one fifo. Disabling Tx steering.\n");
            tx_steering_type = NO_STEERING;
      }

      if ((tx_steering_type < NO_STEERING) ||
            (tx_steering_type > TX_DEFAULT_STEERING)) {
            DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
                   "supported\n");
            DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
            tx_steering_type = NO_STEERING;
      }

      if (rx_ring_num > MAX_RX_RINGS) {
            DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
                   "supported\n");
            DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
                  MAX_RX_RINGS);
            rx_ring_num = MAX_RX_RINGS;
      }

      if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
            DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
                    "Defaulting to INTA\n");
            *dev_intr_type = INTA;
      }

      if ((*dev_intr_type == MSI_X) &&
                  ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
                  (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
            DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
                              "Defaulting to INTA\n");
            *dev_intr_type = INTA;
      }

      if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
            DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
            DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
            rx_ring_mode = 1;
      }
      return SUCCESS;
}

/**
 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
 * or Traffic class respectively.
 * @nic: device private variable
 * Description: The function configures the receive steering to
 * desired receive ring.
 * Return Value:  SUCCESS on success and
 * '-1' on failure (endian settings incorrect).
 */
static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
{
      struct XENA_dev_config __iomem *bar0 = nic->bar0;
      register u64 val64 = 0;

      if (ds_codepoint > 63)
            return FAILURE;

      val64 = RTS_DS_MEM_DATA(ring);
      writeq(val64, &bar0->rts_ds_mem_data);

      val64 = RTS_DS_MEM_CTRL_WE |
            RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
            RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);

      writeq(val64, &bar0->rts_ds_mem_ctrl);

      return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
                        RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
                        S2IO_BIT_RESET);
}

static const struct net_device_ops s2io_netdev_ops = {
      .ndo_open           = s2io_open,
      .ndo_stop           = s2io_close,
      .ndo_get_stats            = s2io_get_stats,
      .ndo_start_xmit         = s2io_xmit,
      .ndo_validate_addr      = eth_validate_addr,
      .ndo_set_multicast_list = s2io_set_multicast,
      .ndo_do_ioctl           = s2io_ioctl,
      .ndo_set_mac_address    = s2io_set_mac_addr,
      .ndo_change_mtu         = s2io_change_mtu,
      .ndo_vlan_rx_register   = s2io_vlan_rx_register,
      .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
      .ndo_tx_timeout         = s2io_tx_watchdog,
#ifdef CONFIG_NET_POLL_CONTROLLER
      .ndo_poll_controller    = s2io_netpoll,
#endif
};

/**
 *  s2io_init_nic - Initialization of the adapter .
 *  @pdev : structure containing the PCI related information of the device.
 *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
 *  Description:
 *  The function initializes an adapter identified by the pci_dec structure.
 *  All OS related initialization including memory and device structure and
 *  initlaization of the device private variable is done. Also the swapper
 *  control register is initialized to enable read and write into the I/O
 *  registers of the device.
 *  Return value:
 *  returns 0 on success and negative on failure.
 */

static int __devinit
s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
{
      struct s2io_nic *sp;
      struct net_device *dev;
      int i, j, ret;
      int dma_flag = false;
      u32 mac_up, mac_down;
      u64 val64 = 0, tmp64 = 0;
      struct XENA_dev_config __iomem *bar0 = NULL;
      u16 subid;
      struct mac_info *mac_control;
      struct config_param *config;
      int mode;
      u8 dev_intr_type = intr_type;
      u8 dev_multiq = 0;

      ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
      if (ret)
            return ret;

      if ((ret = pci_enable_device(pdev))) {
            DBG_PRINT(ERR_DBG,
                    "s2io_init_nic: pci_enable_device failed\n");
            return ret;
      }

      if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
            DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
            dma_flag = true;
            if (pci_set_consistent_dma_mask
                (pdev, DMA_BIT_MASK(64))) {
                  DBG_PRINT(ERR_DBG,
                          "Unable to obtain 64bit DMA for \
                              consistent allocations\n");
                  pci_disable_device(pdev);
                  return -ENOMEM;
            }
      } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
            DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
      } else {
            pci_disable_device(pdev);
            return -ENOMEM;
      }
      if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
            DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
            pci_disable_device(pdev);
            return -ENODEV;
      }
      if (dev_multiq)
            dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
      else
            dev = alloc_etherdev(sizeof(struct s2io_nic));
      if (dev == NULL) {
            DBG_PRINT(ERR_DBG, "Device allocation failed\n");
            pci_disable_device(pdev);
            pci_release_regions(pdev);
            return -ENODEV;
      }

      pci_set_master(pdev);
      pci_set_drvdata(pdev, dev);
      SET_NETDEV_DEV(dev, &pdev->dev);

      /*  Private member variable initialized to s2io NIC structure */
      sp = netdev_priv(dev);
      memset(sp, 0, sizeof(struct s2io_nic));
      sp->dev = dev;
      sp->pdev = pdev;
      sp->high_dma_flag = dma_flag;
      sp->device_enabled_once = false;
      if (rx_ring_mode == 1)
            sp->rxd_mode = RXD_MODE_1;
      if (rx_ring_mode == 2)
            sp->rxd_mode = RXD_MODE_3B;

      sp->config.intr_type = dev_intr_type;

      if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
            (pdev->device == PCI_DEVICE_ID_HERC_UNI))
            sp->device_type = XFRAME_II_DEVICE;
      else
            sp->device_type = XFRAME_I_DEVICE;

      sp->lro = lro_enable;

      /* Initialize some PCI/PCI-X fields of the NIC. */
      s2io_init_pci(sp);

      /*
       * Setting the device configuration parameters.
       * Most of these parameters can be specified by the user during
       * module insertion as they are module loadable parameters. If
       * these parameters are not not specified during load time, they
       * are initialized with default values.
       */
      mac_control = &sp->mac_control;
      config = &sp->config;

      config->napi = napi;
      config->tx_steering_type = tx_steering_type;

      /* Tx side parameters. */
      if (config->tx_steering_type == TX_PRIORITY_STEERING)
            config->tx_fifo_num = MAX_TX_FIFOS;
      else
            config->tx_fifo_num = tx_fifo_num;

      /* Initialize the fifos used for tx steering */
      if (config->tx_fifo_num < 5) {
                  if (config->tx_fifo_num  == 1)
                        sp->total_tcp_fifos = 1;
                  else
                        sp->total_tcp_fifos = config->tx_fifo_num - 1;
                  sp->udp_fifo_idx = config->tx_fifo_num - 1;
                  sp->total_udp_fifos = 1;
                  sp->other_fifo_idx = sp->total_tcp_fifos - 1;
      } else {
            sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
                                    FIFO_OTHER_MAX_NUM);
            sp->udp_fifo_idx = sp->total_tcp_fifos;
            sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
            sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
      }

      config->multiq = dev_multiq;
      for (i = 0; i < config->tx_fifo_num; i++) {
            config->tx_cfg[i].fifo_len = tx_fifo_len[i];
            config->tx_cfg[i].fifo_priority = i;
      }

      /* mapping the QoS priority to the configured fifos */
      for (i = 0; i < MAX_TX_FIFOS; i++)
            config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];

      /* map the hashing selector table to the configured fifos */
      for (i = 0; i < config->tx_fifo_num; i++)
            sp->fifo_selector[i] = fifo_selector[i];


      config->tx_intr_type = TXD_INT_TYPE_UTILZ;
      for (i = 0; i < config->tx_fifo_num; i++) {
            config->tx_cfg[i].f_no_snoop =
                (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
            if (config->tx_cfg[i].fifo_len < 65) {
                  config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
                  break;
            }
      }
      /* + 2 because one Txd for skb->data and one Txd for UFO */
      config->max_txds = MAX_SKB_FRAGS + 2;

      /* Rx side parameters. */
      config->rx_ring_num = rx_ring_num;
      for (i = 0; i < config->rx_ring_num; i++) {
            config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
                (rxd_count[sp->rxd_mode] + 1);
            config->rx_cfg[i].ring_priority = i;
            mac_control->rings[i].rx_bufs_left = 0;
            mac_control->rings[i].rxd_mode = sp->rxd_mode;
            mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
            mac_control->rings[i].pdev = sp->pdev;
            mac_control->rings[i].dev = sp->dev;
      }

      for (i = 0; i < rx_ring_num; i++) {
            config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
            config->rx_cfg[i].f_no_snoop =
                (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
      }

      /*  Setting Mac Control parameters */
      mac_control->rmac_pause_time = rmac_pause_time;
      mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
      mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;


      /*  initialize the shared memory used by the NIC and the host */
      if (init_shared_mem(sp)) {
            DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
                    dev->name);
            ret = -ENOMEM;
            goto mem_alloc_failed;
      }

      sp->bar0 = pci_ioremap_bar(pdev, 0);
      if (!sp->bar0) {
            DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
                    dev->name);
            ret = -ENOMEM;
            goto bar0_remap_failed;
      }

      sp->bar1 = pci_ioremap_bar(pdev, 2);
      if (!sp->bar1) {
            DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
                    dev->name);
            ret = -ENOMEM;
            goto bar1_remap_failed;
      }

      dev->irq = pdev->irq;
      dev->base_addr = (unsigned long) sp->bar0;

      /* Initializing the BAR1 address as the start of the FIFO pointer. */
      for (j = 0; j < MAX_TX_FIFOS; j++) {
            mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
                (sp->bar1 + (j * 0x00020000));
      }

      /*  Driver entry points */
      dev->netdev_ops = &s2io_netdev_ops;
      SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
      dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;

      dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
      if (sp->high_dma_flag == true)
            dev->features |= NETIF_F_HIGHDMA;
      dev->features |= NETIF_F_TSO;
      dev->features |= NETIF_F_TSO6;
      if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
            dev->features |= NETIF_F_UFO;
            dev->features |= NETIF_F_HW_CSUM;
      }
      dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
      INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
      INIT_WORK(&sp->set_link_task, s2io_set_link);

      pci_save_state(sp->pdev);

      /* Setting swapper control on the NIC, for proper reset operation */
      if (s2io_set_swapper(sp)) {
            DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
                    dev->name);
            ret = -EAGAIN;
            goto set_swap_failed;
      }

      /* Verify if the Herc works on the slot its placed into */
      if (sp->device_type & XFRAME_II_DEVICE) {
            mode = s2io_verify_pci_mode(sp);
            if (mode < 0) {
                  DBG_PRINT(ERR_DBG, "%s: ", __func__);
                  DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
                  ret = -EBADSLT;
                  goto set_swap_failed;
            }
      }

      if (sp->config.intr_type == MSI_X) {
            sp->num_entries = config->rx_ring_num + 1;
            ret = s2io_enable_msi_x(sp);

            if (!ret) {
                  ret = s2io_test_msi(sp);
                  /* rollback MSI-X, will re-enable during add_isr() */
                  remove_msix_isr(sp);
            }
            if (ret) {

                  DBG_PRINT(ERR_DBG,
                    "s2io: MSI-X requested but failed to enable\n");
                  sp->config.intr_type = INTA;
            }
      }

      if (config->intr_type ==  MSI_X) {
            for (i = 0; i < config->rx_ring_num ; i++)
                  netif_napi_add(dev, &mac_control->rings[i].napi,
                        s2io_poll_msix, 64);
      } else {
            netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
      }

      /* Not needed for Herc */
      if (sp->device_type & XFRAME_I_DEVICE) {
            /*
             * Fix for all "FFs" MAC address problems observed on
             * Alpha platforms
             */
            fix_mac_address(sp);
            s2io_reset(sp);
      }

      /*
       * MAC address initialization.
       * For now only one mac address will be read and used.
       */
      bar0 = sp->bar0;
      val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
          RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
      writeq(val64, &bar0->rmac_addr_cmd_mem);
      wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
                  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
      tmp64 = readq(&bar0->rmac_addr_data0_mem);
      mac_down = (u32) tmp64;
      mac_up = (u32) (tmp64 >> 32);

      sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
      sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
      sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
      sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
      sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
      sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);

      /*  Set the factory defined MAC address initially   */
      dev->addr_len = ETH_ALEN;
      memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
      memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);

      /* initialize number of multicast & unicast MAC entries variables */
      if (sp->device_type == XFRAME_I_DEVICE) {
            config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
            config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
            config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
      } else if (sp->device_type == XFRAME_II_DEVICE) {
            config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
            config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
            config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
      }

      /* store mac addresses from CAM to s2io_nic structure */
      do_s2io_store_unicast_mc(sp);

      /* Configure MSIX vector for number of rings configured plus one */
      if ((sp->device_type == XFRAME_II_DEVICE) &&
            (config->intr_type == MSI_X))
            sp->num_entries = config->rx_ring_num + 1;

       /* Store the values of the MSIX table in the s2io_nic structure */
      store_xmsi_data(sp);
      /* reset Nic and bring it to known state */
      s2io_reset(sp);

      /*
       * Initialize link state flags
       * and the card state parameter
       */
      sp->state = 0;

      /* Initialize spinlocks */
      for (i = 0; i < sp->config.tx_fifo_num; i++)
            spin_lock_init(&mac_control->fifos[i].tx_lock);

      /*
       * SXE-002: Configure link and activity LED to init state
       * on driver load.
       */
      subid = sp->pdev->subsystem_device;
      if ((subid & 0xFF) >= 0x07) {
            val64 = readq(&bar0->gpio_control);
            val64 |= 0x0000800000000000ULL;
            writeq(val64, &bar0->gpio_control);
            val64 = 0x0411040400000000ULL;
            writeq(val64, (void __iomem *) bar0 + 0x2700);
            val64 = readq(&bar0->gpio_control);
      }

      sp->rx_csum = 1;  /* Rx chksum verify enabled by default */

      if (register_netdev(dev)) {
            DBG_PRINT(ERR_DBG, "Device registration failed\n");
            ret = -ENODEV;
            goto register_failed;
      }
      s2io_vpd_read(sp);
      DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
      DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
              sp->product_name, pdev->revision);
      DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
              s2io_driver_version);
      DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
      DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
      if (sp->device_type & XFRAME_II_DEVICE) {
            mode = s2io_print_pci_mode(sp);
            if (mode < 0) {
                  DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
                  ret = -EBADSLT;
                  unregister_netdev(dev);
                  goto set_swap_failed;
            }
      }
      switch(sp->rxd_mode) {
            case RXD_MODE_1:
                DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
                                    dev->name);
                break;
            case RXD_MODE_3B:
                DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
                                    dev->name);
                break;
      }

      switch (sp->config.napi) {
      case 0:
            DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
            break;
      case 1:
            DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
            break;
      }

      DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
            sp->config.tx_fifo_num);

      DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
              sp->config.rx_ring_num);

      switch(sp->config.intr_type) {
            case INTA:
                DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
                break;
            case MSI_X:
                DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
                break;
      }
      if (sp->config.multiq) {
            for (i = 0; i < sp->config.tx_fifo_num; i++)
                  mac_control->fifos[i].multiq = config->multiq;
            DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
                  dev->name);
      } else
            DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
                  dev->name);

      switch (sp->config.tx_steering_type) {
      case NO_STEERING:
            DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
                  " transmit\n", dev->name);
                  break;
      case TX_PRIORITY_STEERING:
            DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
                  " transmit\n", dev->name);
            break;
      case TX_DEFAULT_STEERING:
            DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
                  " transmit\n", dev->name);
      }

      if (sp->lro)
            DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
                    dev->name);
      if (ufo)
            DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
                              " enabled\n", dev->name);
      /* Initialize device name */
      sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);

      if (vlan_tag_strip)
            sp->vlan_strip_flag = 1;
      else
            sp->vlan_strip_flag = 0;

      /*
       * Make Link state as off at this point, when the Link change
       * interrupt comes the state will be automatically changed to
       * the right state.
       */
      netif_carrier_off(dev);

      return 0;

      register_failed:
      set_swap_failed:
      iounmap(sp->bar1);
      bar1_remap_failed:
      iounmap(sp->bar0);
      bar0_remap_failed:
      mem_alloc_failed:
      free_shared_mem(sp);
      pci_disable_device(pdev);
      pci_release_regions(pdev);
      pci_set_drvdata(pdev, NULL);
      free_netdev(dev);

      return ret;
}

/**
 * s2io_rem_nic - Free the PCI device
 * @pdev: structure containing the PCI related information of the device.
 * Description: This function is called by the Pci subsystem to release a
 * PCI device and free up all resource held up by the device. This could
 * be in response to a Hot plug event or when the driver is to be removed
 * from memory.
 */

static void __devexit s2io_rem_nic(struct pci_dev *pdev)
{
      struct net_device *dev =
          (struct net_device *) pci_get_drvdata(pdev);
      struct s2io_nic *sp;

      if (dev == NULL) {
            DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
            return;
      }

      flush_scheduled_work();

      sp = netdev_priv(dev);
      unregister_netdev(dev);

      free_shared_mem(sp);
      iounmap(sp->bar0);
      iounmap(sp->bar1);
      pci_release_regions(pdev);
      pci_set_drvdata(pdev, NULL);
      free_netdev(dev);
      pci_disable_device(pdev);
}

/**
 * s2io_starter - Entry point for the driver
 * Description: This function is the entry point for the driver. It verifies
 * the module loadable parameters and initializes PCI configuration space.
 */

static int __init s2io_starter(void)
{
      return pci_register_driver(&s2io_driver);
}

/**
 * s2io_closer - Cleanup routine for the driver
 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
 */

static __exit void s2io_closer(void)
{
      pci_unregister_driver(&s2io_driver);
      DBG_PRINT(INIT_DBG, "cleanup done\n");
}

module_init(s2io_starter);
module_exit(s2io_closer);

static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
            struct tcphdr **tcp, struct RxD_t *rxdp,
            struct s2io_nic *sp)
{
      int ip_off;
      u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;

      if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
            DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
                    __func__);
            return -1;
      }

      /* Checking for DIX type or DIX type with VLAN */
      if ((l2_type == 0)
            || (l2_type == 4)) {
            ip_off = HEADER_ETHERNET_II_802_3_SIZE;
            /*
             * If vlan stripping is disabled and the frame is VLAN tagged,
             * shift the offset by the VLAN header size bytes.
             */
            if ((!sp->vlan_strip_flag) &&
                  (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
                  ip_off += HEADER_VLAN_SIZE;
      } else {
            /* LLC, SNAP etc are considered non-mergeable */
            return -1;
      }

      *ip = (struct iphdr *)((u8 *)buffer + ip_off);
      ip_len = (u8)((*ip)->ihl);
      ip_len <<= 2;
      *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);

      return 0;
}

static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
                          struct tcphdr *tcp)
{
      DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
      if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
         (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
            return -1;
      return 0;
}

static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
{
      return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
}

static void initiate_new_session(struct lro *lro, u8 *l2h,
      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
{
      DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
      lro->l2h = l2h;
      lro->iph = ip;
      lro->tcph = tcp;
      lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
      lro->tcp_ack = tcp->ack_seq;
      lro->sg_num = 1;
      lro->total_len = ntohs(ip->tot_len);
      lro->frags_len = 0;
      lro->vlan_tag = vlan_tag;
      /*
       * check if we saw TCP timestamp. Other consistency checks have
       * already been done.
       */
      if (tcp->doff == 8) {
            __be32 *ptr;
            ptr = (__be32 *)(tcp+1);
            lro->saw_ts = 1;
            lro->cur_tsval = ntohl(*(ptr+1));
            lro->cur_tsecr = *(ptr+2);
      }
      lro->in_use = 1;
}

static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
{
      struct iphdr *ip = lro->iph;
      struct tcphdr *tcp = lro->tcph;
      __sum16 nchk;
      struct stat_block *statinfo = sp->mac_control.stats_info;
      DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);

      /* Update L3 header */
      ip->tot_len = htons(lro->total_len);
      ip->check = 0;
      nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
      ip->check = nchk;

      /* Update L4 header */
      tcp->ack_seq = lro->tcp_ack;
      tcp->window = lro->window;

      /* Update tsecr field if this session has timestamps enabled */
      if (lro->saw_ts) {
            __be32 *ptr = (__be32 *)(tcp + 1);
            *(ptr+2) = lro->cur_tsecr;
      }

      /* Update counters required for calculation of
       * average no. of packets aggregated.
       */
      statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
      statinfo->sw_stat.num_aggregations++;
}

static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
            struct tcphdr *tcp, u32 l4_pyld)
{
      DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
      lro->total_len += l4_pyld;
      lro->frags_len += l4_pyld;
      lro->tcp_next_seq += l4_pyld;
      lro->sg_num++;

      /* Update ack seq no. and window ad(from this pkt) in LRO object */
      lro->tcp_ack = tcp->ack_seq;
      lro->window = tcp->window;

      if (lro->saw_ts) {
            __be32 *ptr;
            /* Update tsecr and tsval from this packet */
            ptr = (__be32 *)(tcp+1);
            lro->cur_tsval = ntohl(*(ptr+1));
            lro->cur_tsecr = *(ptr + 2);
      }
}

static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
                            struct tcphdr *tcp, u32 tcp_pyld_len)
{
      u8 *ptr;

      DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);

      if (!tcp_pyld_len) {
            /* Runt frame or a pure ack */
            return -1;
      }

      if (ip->ihl != 5) /* IP has options */
            return -1;

      /* If we see CE codepoint in IP header, packet is not mergeable */
      if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
            return -1;

      /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
      if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
                            tcp->ece || tcp->cwr || !tcp->ack) {
            /*
             * Currently recognize only the ack control word and
             * any other control field being set would result in
             * flushing the LRO session
             */
            return -1;
      }

      /*
       * Allow only one TCP timestamp option. Don't aggregate if
       * any other options are detected.
       */
      if (tcp->doff != 5 && tcp->doff != 8)
            return -1;

      if (tcp->doff == 8) {
            ptr = (u8 *)(tcp + 1);
            while (*ptr == TCPOPT_NOP)
                  ptr++;
            if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
                  return -1;

            /* Ensure timestamp value increases monotonically */
            if (l_lro)
                  if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
                        return -1;

            /* timestamp echo reply should be non-zero */
            if (*((__be32 *)(ptr+6)) == 0)
                  return -1;
      }

      return 0;
}

static int
s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
      u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
      struct s2io_nic *sp)
{
      struct iphdr *ip;
      struct tcphdr *tcph;
      int ret = 0, i;
      u16 vlan_tag = 0;

      if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
                               rxdp, sp))) {
            DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
                    ip->saddr, ip->daddr);
      } else
            return ret;

      vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
      tcph = (struct tcphdr *)*tcp;
      *tcp_len = get_l4_pyld_length(ip, tcph);
      for (i=0; i<MAX_LRO_SESSIONS; i++) {
            struct lro *l_lro = &ring_data->lro0_n[i];
            if (l_lro->in_use) {
                  if (check_for_socket_match(l_lro, ip, tcph))
                        continue;
                  /* Sock pair matched */
                  *lro = l_lro;

                  if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
                        DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
                                "0x%x, actual 0x%x\n", __func__,
                                (*lro)->tcp_next_seq,
                                ntohl(tcph->seq));

                        sp->mac_control.stats_info->
                           sw_stat.outof_sequence_pkts++;
                        ret = 2;
                        break;
                  }

                  if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
                        ret = 1; /* Aggregate */
                  else
                        ret = 2; /* Flush both */
                  break;
            }
      }

      if (ret == 0) {
            /* Before searching for available LRO objects,
             * check if the pkt is L3/L4 aggregatable. If not
             * don't create new LRO session. Just send this
             * packet up.
             */
            if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
                  return 5;
            }

            for (i=0; i<MAX_LRO_SESSIONS; i++) {
                  struct lro *l_lro = &ring_data->lro0_n[i];
                  if (!(l_lro->in_use)) {
                        *lro = l_lro;
                        ret = 3; /* Begin anew */
                        break;
                  }
            }
      }

      if (ret == 0) { /* sessions exceeded */
            DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
                    __func__);
            *lro = NULL;
            return ret;
      }

      switch (ret) {
            case 3:
                  initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
                                                vlan_tag);
                  break;
            case 2:
                  update_L3L4_header(sp, *lro);
                  break;
            case 1:
                  aggregate_new_rx(*lro, ip, tcph, *tcp_len);
                  if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
                        update_L3L4_header(sp, *lro);
                        ret = 4; /* Flush the LRO */
                  }
                  break;
            default:
                  DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
                        __func__);
                  break;
      }

      return ret;
}

static void clear_lro_session(struct lro *lro)
{
      static u16 lro_struct_size = sizeof(struct lro);

      memset(lro, 0, lro_struct_size);
}

static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
{
      struct net_device *dev = skb->dev;
      struct s2io_nic *sp = netdev_priv(dev);

      skb->protocol = eth_type_trans(skb, dev);
      if (sp->vlgrp && vlan_tag
            && (sp->vlan_strip_flag)) {
            /* Queueing the vlan frame to the upper layer */
            if (sp->config.napi)
                  vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
            else
                  vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
      } else {
            if (sp->config.napi)
                  netif_receive_skb(skb);
            else
                  netif_rx(skb);
      }
}

static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
                     struct sk_buff *skb,
                     u32 tcp_len)
{
      struct sk_buff *first = lro->parent;

      first->len += tcp_len;
      first->data_len = lro->frags_len;
      skb_pull(skb, (skb->len - tcp_len));
      if (skb_shinfo(first)->frag_list)
            lro->last_frag->next = skb;
      else
            skb_shinfo(first)->frag_list = skb;
      first->truesize += skb->truesize;
      lro->last_frag = skb;
      sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
      return;
}

/**
 * s2io_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
                                               pci_channel_state_t state)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct s2io_nic *sp = netdev_priv(netdev);

      netif_device_detach(netdev);

      if (netif_running(netdev)) {
            /* Bring down the card, while avoiding PCI I/O */
            do_s2io_card_down(sp, 0);
      }
      pci_disable_device(pdev);

      return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * s2io_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot.
 * At this point, the card has exprienced a hard reset,
 * followed by fixups by BIOS, and has its config space
 * set up identically to what it was at cold boot.
 */
static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct s2io_nic *sp = netdev_priv(netdev);

      if (pci_enable_device(pdev)) {
            printk(KERN_ERR "s2io: "
                   "Cannot re-enable PCI device after reset.\n");
            return PCI_ERS_RESULT_DISCONNECT;
      }

      pci_set_master(pdev);
      s2io_reset(sp);

      return PCI_ERS_RESULT_RECOVERED;
}

/**
 * s2io_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells
 * us that its OK to resume normal operation.
 */
static void s2io_io_resume(struct pci_dev *pdev)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct s2io_nic *sp = netdev_priv(netdev);

      if (netif_running(netdev)) {
            if (s2io_card_up(sp)) {
                  printk(KERN_ERR "s2io: "
                         "Can't bring device back up after reset.\n");
                  return;
            }

            if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
                  s2io_card_down(sp);
                  printk(KERN_ERR "s2io: "
                         "Can't resetore mac addr after reset.\n");
                  return;
            }
      }

      netif_device_attach(netdev);
      netif_tx_wake_all_queues(netdev);
}

Generated by  Doxygen 1.6.0   Back to index