Logo Search packages:      
Sourcecode: linux-fsl-imx51 version File versions  Download package

vxge-main.c

/******************************************************************************
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by reference.
* Drivers based on or derived from this code fall under the GPL and must
* retain the authorship, copyright and license notice.  This file is not
* a complete program and may only be used when the entire operating
* system is licensed under the GPL.
* See the file COPYING in this distribution for more information.
*
* vxge-main.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
*              Virtualized Server Adapter.
* Copyright(c) 2002-2009 Neterion Inc.
*
* The module loadable parameters that are supported by the driver and a brief
* explanation of all the variables:
* vlan_tag_strip:
*     Strip VLAN Tag enable/disable. Instructs the device to remove
*     the VLAN tag from all received tagged frames that are not
*     replicated at the internal L2 switch.
*           0 - Do not strip the VLAN tag.
*           1 - Strip the VLAN tag.
*
* addr_learn_en:
*     Enable learning the mac address of the guest OS interface in
*     a virtualization environment.
*           0 - DISABLE
*           1 - ENABLE
*
* max_config_port:
*     Maximum number of port to be supported.
*           MIN -1 and MAX - 2
*
* max_config_vpath:
*     This configures the maximum no of VPATH configures for each
*     device function.
*           MIN - 1 and MAX - 17
*
* max_config_dev:
*     This configures maximum no of Device function to be enabled.
*           MIN - 1 and MAX - 17
*
******************************************************************************/

#include <linux/if_vlan.h>
#include <linux/pci.h>
#include <linux/tcp.h>
#include <net/ip.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include "vxge-main.h"
#include "vxge-reg.h"

MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Neterion's X3100 Series 10GbE PCIe I/O"
      "Virtualized Server Adapter");

static struct pci_device_id vxge_id_table[] __devinitdata = {
      {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_TITAN_WIN, PCI_ANY_ID,
      PCI_ANY_ID},
      {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_TITAN_UNI, PCI_ANY_ID,
      PCI_ANY_ID},
      {0}
};

MODULE_DEVICE_TABLE(pci, vxge_id_table);

VXGE_MODULE_PARAM_INT(vlan_tag_strip, VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE);
VXGE_MODULE_PARAM_INT(addr_learn_en, VXGE_HW_MAC_ADDR_LEARN_DEFAULT);
VXGE_MODULE_PARAM_INT(max_config_port, VXGE_MAX_CONFIG_PORT);
VXGE_MODULE_PARAM_INT(max_config_vpath, VXGE_USE_DEFAULT);
VXGE_MODULE_PARAM_INT(max_mac_vpath, VXGE_MAX_MAC_ADDR_COUNT);
VXGE_MODULE_PARAM_INT(max_config_dev, VXGE_MAX_CONFIG_DEV);

static u16 vpath_selector[VXGE_HW_MAX_VIRTUAL_PATHS] =
            {0, 1, 3, 3, 7, 7, 7, 7, 15, 15, 15, 15, 15, 15, 15, 15, 31};
static unsigned int bw_percentage[VXGE_HW_MAX_VIRTUAL_PATHS] =
      {[0 ...(VXGE_HW_MAX_VIRTUAL_PATHS - 1)] = 0xFF};
module_param_array(bw_percentage, uint, NULL, 0);

static struct vxge_drv_config *driver_config;

static inline int is_vxge_card_up(struct vxgedev *vdev)
{
      return test_bit(__VXGE_STATE_CARD_UP, &vdev->state);
}

static inline void VXGE_COMPLETE_VPATH_TX(struct vxge_fifo *fifo)
{
      unsigned long flags = 0;
      struct sk_buff *skb_ptr = NULL;
      struct sk_buff **temp, *head, *skb;

      if (spin_trylock_irqsave(&fifo->tx_lock, flags)) {
            vxge_hw_vpath_poll_tx(fifo->handle, (void **)&skb_ptr);
            spin_unlock_irqrestore(&fifo->tx_lock, flags);
      }
      /* free SKBs */
      head = skb_ptr;
      while (head) {
            skb = head;
            temp = (struct sk_buff **)&skb->cb;
            head = *temp;
            *temp = NULL;
            dev_kfree_skb_irq(skb);
      }
}

static inline void VXGE_COMPLETE_ALL_TX(struct vxgedev *vdev)
{
      int i;

      /* Complete all transmits */
      for (i = 0; i < vdev->no_of_vpath; i++)
            VXGE_COMPLETE_VPATH_TX(&vdev->vpaths[i].fifo);
}

static inline void VXGE_COMPLETE_ALL_RX(struct vxgedev *vdev)
{
      int i;
      struct vxge_ring *ring;

      /* Complete all receives*/
      for (i = 0; i < vdev->no_of_vpath; i++) {
            ring = &vdev->vpaths[i].ring;
            vxge_hw_vpath_poll_rx(ring->handle);
      }
}

/*
 * MultiQ manipulation helper functions
 */
void vxge_stop_all_tx_queue(struct vxgedev *vdev)
{
      int i;
      struct net_device *dev = vdev->ndev;

      if (vdev->config.tx_steering_type != TX_MULTIQ_STEERING) {
            for (i = 0; i < vdev->no_of_vpath; i++)
                  vdev->vpaths[i].fifo.queue_state = VPATH_QUEUE_STOP;
      }
      netif_tx_stop_all_queues(dev);
}

void vxge_stop_tx_queue(struct vxge_fifo *fifo)
{
      struct net_device *dev = fifo->ndev;

      struct netdev_queue *txq = NULL;
      if (fifo->tx_steering_type == TX_MULTIQ_STEERING)
            txq = netdev_get_tx_queue(dev, fifo->driver_id);
      else {
            txq = netdev_get_tx_queue(dev, 0);
            fifo->queue_state = VPATH_QUEUE_STOP;
      }

      netif_tx_stop_queue(txq);
}

void vxge_start_all_tx_queue(struct vxgedev *vdev)
{
      int i;
      struct net_device *dev = vdev->ndev;

      if (vdev->config.tx_steering_type != TX_MULTIQ_STEERING) {
            for (i = 0; i < vdev->no_of_vpath; i++)
                  vdev->vpaths[i].fifo.queue_state = VPATH_QUEUE_START;
      }
      netif_tx_start_all_queues(dev);
}

static void vxge_wake_all_tx_queue(struct vxgedev *vdev)
{
      int i;
      struct net_device *dev = vdev->ndev;

      if (vdev->config.tx_steering_type != TX_MULTIQ_STEERING) {
            for (i = 0; i < vdev->no_of_vpath; i++)
                  vdev->vpaths[i].fifo.queue_state = VPATH_QUEUE_START;
      }
      netif_tx_wake_all_queues(dev);
}

void vxge_wake_tx_queue(struct vxge_fifo *fifo, struct sk_buff *skb)
{
      struct net_device *dev = fifo->ndev;

      int vpath_no = fifo->driver_id;
      struct netdev_queue *txq = NULL;
      if (fifo->tx_steering_type == TX_MULTIQ_STEERING) {
            txq = netdev_get_tx_queue(dev, vpath_no);
            if (netif_tx_queue_stopped(txq))
                  netif_tx_wake_queue(txq);
      } else {
            txq = netdev_get_tx_queue(dev, 0);
            if (fifo->queue_state == VPATH_QUEUE_STOP)
                  if (netif_tx_queue_stopped(txq)) {
                        fifo->queue_state = VPATH_QUEUE_START;
                        netif_tx_wake_queue(txq);
                  }
      }
}

/*
 * vxge_callback_link_up
 *
 * This function is called during interrupt context to notify link up state
 * change.
 */
void
vxge_callback_link_up(struct __vxge_hw_device *hldev)
{
      struct net_device *dev = hldev->ndev;
      struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev);

      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
            vdev->ndev->name, __func__, __LINE__);
      printk(KERN_NOTICE "%s: Link Up\n", vdev->ndev->name);
      vdev->stats.link_up++;

      netif_carrier_on(vdev->ndev);
      vxge_wake_all_tx_queue(vdev);

      vxge_debug_entryexit(VXGE_TRACE,
            "%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__);
}

/*
 * vxge_callback_link_down
 *
 * This function is called during interrupt context to notify link down state
 * change.
 */
void
vxge_callback_link_down(struct __vxge_hw_device *hldev)
{
      struct net_device *dev = hldev->ndev;
      struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev);

      vxge_debug_entryexit(VXGE_TRACE,
            "%s: %s:%d", vdev->ndev->name, __func__, __LINE__);
      printk(KERN_NOTICE "%s: Link Down\n", vdev->ndev->name);

      vdev->stats.link_down++;
      netif_carrier_off(vdev->ndev);
      vxge_stop_all_tx_queue(vdev);

      vxge_debug_entryexit(VXGE_TRACE,
            "%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__);
}

/*
 * vxge_rx_alloc
 *
 * Allocate SKB.
 */
static struct sk_buff*
vxge_rx_alloc(void *dtrh, struct vxge_ring *ring, const int skb_size)
{
      struct net_device    *dev;
      struct sk_buff       *skb;
      struct vxge_rx_priv *rx_priv;

      dev = ring->ndev;
      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
            ring->ndev->name, __func__, __LINE__);

      rx_priv = vxge_hw_ring_rxd_private_get(dtrh);

      /* try to allocate skb first. this one may fail */
      skb = netdev_alloc_skb(dev, skb_size +
      VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
      if (skb == NULL) {
            vxge_debug_mem(VXGE_ERR,
                  "%s: out of memory to allocate SKB", dev->name);
            ring->stats.skb_alloc_fail++;
            return NULL;
      }

      vxge_debug_mem(VXGE_TRACE,
            "%s: %s:%d  Skb : 0x%p", ring->ndev->name,
            __func__, __LINE__, skb);

      skb_reserve(skb, VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);

      rx_priv->skb = skb;
      rx_priv->data_size = skb_size;
      vxge_debug_entryexit(VXGE_TRACE,
            "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);

      return skb;
}

/*
 * vxge_rx_map
 */
static int vxge_rx_map(void *dtrh, struct vxge_ring *ring)
{
      struct vxge_rx_priv *rx_priv;
      dma_addr_t dma_addr;

      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
            ring->ndev->name, __func__, __LINE__);
      rx_priv = vxge_hw_ring_rxd_private_get(dtrh);

      dma_addr = pci_map_single(ring->pdev, rx_priv->skb->data,
                        rx_priv->data_size, PCI_DMA_FROMDEVICE);

      if (dma_addr == 0) {
            ring->stats.pci_map_fail++;
            return -EIO;
      }
      vxge_debug_mem(VXGE_TRACE,
            "%s: %s:%d  1 buffer mode dma_addr = 0x%llx",
            ring->ndev->name, __func__, __LINE__,
            (unsigned long long)dma_addr);
      vxge_hw_ring_rxd_1b_set(dtrh, dma_addr, rx_priv->data_size);

      rx_priv->data_dma = dma_addr;
      vxge_debug_entryexit(VXGE_TRACE,
            "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);

      return 0;
}

/*
 * vxge_rx_initial_replenish
 * Allocation of RxD as an initial replenish procedure.
 */
static enum vxge_hw_status
vxge_rx_initial_replenish(void *dtrh, void *userdata)
{
      struct vxge_ring *ring = (struct vxge_ring *)userdata;
      struct vxge_rx_priv *rx_priv;

      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
            ring->ndev->name, __func__, __LINE__);
      if (vxge_rx_alloc(dtrh, ring,
                    VXGE_LL_MAX_FRAME_SIZE(ring->ndev)) == NULL)
            return VXGE_HW_FAIL;

      if (vxge_rx_map(dtrh, ring)) {
            rx_priv = vxge_hw_ring_rxd_private_get(dtrh);
            dev_kfree_skb(rx_priv->skb);

            return VXGE_HW_FAIL;
      }
      vxge_debug_entryexit(VXGE_TRACE,
            "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);

      return VXGE_HW_OK;
}

static inline void
vxge_rx_complete(struct vxge_ring *ring, struct sk_buff *skb, u16 vlan,
             int pkt_length, struct vxge_hw_ring_rxd_info *ext_info)
{

      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
                  ring->ndev->name, __func__, __LINE__);
      skb_record_rx_queue(skb, ring->driver_id);
      skb->protocol = eth_type_trans(skb, ring->ndev);

      ring->stats.rx_frms++;
      ring->stats.rx_bytes += pkt_length;

      if (skb->pkt_type == PACKET_MULTICAST)
            ring->stats.rx_mcast++;

      vxge_debug_rx(VXGE_TRACE,
            "%s: %s:%d  skb protocol = %d",
            ring->ndev->name, __func__, __LINE__, skb->protocol);

      if (ring->gro_enable) {
            if (ring->vlgrp && ext_info->vlan &&
                  (ring->vlan_tag_strip ==
                        VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE))
                  vlan_gro_receive(&ring->napi, ring->vlgrp,
                              ext_info->vlan, skb);
            else
                  napi_gro_receive(&ring->napi, skb);
      } else {
            if (ring->vlgrp && vlan &&
                  (ring->vlan_tag_strip ==
                        VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE))
                  vlan_hwaccel_receive_skb(skb, ring->vlgrp, vlan);
            else
                  netif_receive_skb(skb);
      }
      vxge_debug_entryexit(VXGE_TRACE,
            "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
}

static inline void vxge_re_pre_post(void *dtr, struct vxge_ring *ring,
                            struct vxge_rx_priv *rx_priv)
{
      pci_dma_sync_single_for_device(ring->pdev,
            rx_priv->data_dma, rx_priv->data_size, PCI_DMA_FROMDEVICE);

      vxge_hw_ring_rxd_1b_set(dtr, rx_priv->data_dma, rx_priv->data_size);
      vxge_hw_ring_rxd_pre_post(ring->handle, dtr);
}

static inline void vxge_post(int *dtr_cnt, void **first_dtr,
                       void *post_dtr, struct __vxge_hw_ring *ringh)
{
      int dtr_count = *dtr_cnt;
      if ((*dtr_cnt % VXGE_HW_RXSYNC_FREQ_CNT) == 0) {
            if (*first_dtr)
                  vxge_hw_ring_rxd_post_post_wmb(ringh, *first_dtr);
            *first_dtr = post_dtr;
      } else
            vxge_hw_ring_rxd_post_post(ringh, post_dtr);
      dtr_count++;
      *dtr_cnt = dtr_count;
}

/*
 * vxge_rx_1b_compl
 *
 * If the interrupt is because of a received frame or if the receive ring
 * contains fresh as yet un-processed frames, this function is called.
 */
enum vxge_hw_status
vxge_rx_1b_compl(struct __vxge_hw_ring *ringh, void *dtr,
             u8 t_code, void *userdata)
{
      struct vxge_ring *ring = (struct vxge_ring *)userdata;
      struct  net_device *dev = ring->ndev;
      unsigned int dma_sizes;
      void *first_dtr = NULL;
      int dtr_cnt = 0;
      int data_size;
      dma_addr_t data_dma;
      int pkt_length;
      struct sk_buff *skb;
      struct vxge_rx_priv *rx_priv;
      struct vxge_hw_ring_rxd_info ext_info;
      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
            ring->ndev->name, __func__, __LINE__);
      ring->pkts_processed = 0;

      vxge_hw_ring_replenish(ringh, 0);

      do {
            rx_priv = vxge_hw_ring_rxd_private_get(dtr);
            skb = rx_priv->skb;
            data_size = rx_priv->data_size;
            data_dma = rx_priv->data_dma;

            vxge_debug_rx(VXGE_TRACE,
                  "%s: %s:%d  skb = 0x%p",
                  ring->ndev->name, __func__, __LINE__, skb);

            vxge_hw_ring_rxd_1b_get(ringh, dtr, &dma_sizes);
            pkt_length = dma_sizes;

            vxge_debug_rx(VXGE_TRACE,
                  "%s: %s:%d  Packet Length = %d",
                  ring->ndev->name, __func__, __LINE__, pkt_length);

            vxge_hw_ring_rxd_1b_info_get(ringh, dtr, &ext_info);

            /* check skb validity */
            vxge_assert(skb);

            prefetch((char *)skb + L1_CACHE_BYTES);
            if (unlikely(t_code)) {

                  if (vxge_hw_ring_handle_tcode(ringh, dtr, t_code) !=
                        VXGE_HW_OK) {

                        ring->stats.rx_errors++;
                        vxge_debug_rx(VXGE_TRACE,
                              "%s: %s :%d Rx T_code is %d",
                              ring->ndev->name, __func__,
                              __LINE__, t_code);

                        /* If the t_code is not supported and if the
                         * t_code is other than 0x5 (unparseable packet
                         * such as unknown UPV6 header), Drop it !!!
                         */
                        vxge_re_pre_post(dtr, ring, rx_priv);

                        vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
                        ring->stats.rx_dropped++;
                        continue;
                  }
            }

            if (pkt_length > VXGE_LL_RX_COPY_THRESHOLD) {

                  if (vxge_rx_alloc(dtr, ring, data_size) != NULL) {

                        if (!vxge_rx_map(dtr, ring)) {
                              skb_put(skb, pkt_length);

                              pci_unmap_single(ring->pdev, data_dma,
                                    data_size, PCI_DMA_FROMDEVICE);

                              vxge_hw_ring_rxd_pre_post(ringh, dtr);
                              vxge_post(&dtr_cnt, &first_dtr, dtr,
                                    ringh);
                        } else {
                              dev_kfree_skb(rx_priv->skb);
                              rx_priv->skb = skb;
                              rx_priv->data_size = data_size;
                              vxge_re_pre_post(dtr, ring, rx_priv);

                              vxge_post(&dtr_cnt, &first_dtr, dtr,
                                    ringh);
                              ring->stats.rx_dropped++;
                              break;
                        }
                  } else {
                        vxge_re_pre_post(dtr, ring, rx_priv);

                        vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
                        ring->stats.rx_dropped++;
                        break;
                  }
            } else {
                  struct sk_buff *skb_up;

                  skb_up = netdev_alloc_skb(dev, pkt_length +
                        VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
                  if (skb_up != NULL) {
                        skb_reserve(skb_up,
                            VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);

                        pci_dma_sync_single_for_cpu(ring->pdev,
                              data_dma, data_size,
                              PCI_DMA_FROMDEVICE);

                        vxge_debug_mem(VXGE_TRACE,
                              "%s: %s:%d  skb_up = %p",
                              ring->ndev->name, __func__,
                              __LINE__, skb);
                        memcpy(skb_up->data, skb->data, pkt_length);

                        vxge_re_pre_post(dtr, ring, rx_priv);

                        vxge_post(&dtr_cnt, &first_dtr, dtr,
                              ringh);
                        /* will netif_rx small SKB instead */
                        skb = skb_up;
                        skb_put(skb, pkt_length);
                  } else {
                        vxge_re_pre_post(dtr, ring, rx_priv);

                        vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
                        vxge_debug_rx(VXGE_ERR,
                              "%s: vxge_rx_1b_compl: out of "
                              "memory", dev->name);
                        ring->stats.skb_alloc_fail++;
                        break;
                  }
            }

            if ((ext_info.proto & VXGE_HW_FRAME_PROTO_TCP_OR_UDP) &&
                !(ext_info.proto & VXGE_HW_FRAME_PROTO_IP_FRAG) &&
                ring->rx_csum && /* Offload Rx side CSUM */
                ext_info.l3_cksum == VXGE_HW_L3_CKSUM_OK &&
                ext_info.l4_cksum == VXGE_HW_L4_CKSUM_OK)
                  skb->ip_summed = CHECKSUM_UNNECESSARY;
            else
                  skb->ip_summed = CHECKSUM_NONE;

            vxge_rx_complete(ring, skb, ext_info.vlan,
                  pkt_length, &ext_info);

            ring->budget--;
            ring->pkts_processed++;
            if (!ring->budget)
                  break;

      } while (vxge_hw_ring_rxd_next_completed(ringh, &dtr,
            &t_code) == VXGE_HW_OK);

      if (first_dtr)
            vxge_hw_ring_rxd_post_post_wmb(ringh, first_dtr);

      dev->last_rx = jiffies;

      vxge_debug_entryexit(VXGE_TRACE,
                        "%s:%d  Exiting...",
                        __func__, __LINE__);
      return VXGE_HW_OK;
}

/*
 * vxge_xmit_compl
 *
 * If an interrupt was raised to indicate DMA complete of the Tx packet,
 * this function is called. It identifies the last TxD whose buffer was
 * freed and frees all skbs whose data have already DMA'ed into the NICs
 * internal memory.
 */
enum vxge_hw_status
vxge_xmit_compl(struct __vxge_hw_fifo *fifo_hw, void *dtr,
            enum vxge_hw_fifo_tcode t_code, void *userdata,
            void **skb_ptr)
{
      struct vxge_fifo *fifo = (struct vxge_fifo *)userdata;
      struct sk_buff *skb, *head = NULL;
      struct sk_buff **temp;
      int pkt_cnt = 0;

      vxge_debug_entryexit(VXGE_TRACE,
            "%s:%d Entered....", __func__, __LINE__);

      do {
            int frg_cnt;
            skb_frag_t *frag;
            int i = 0, j;
            struct vxge_tx_priv *txd_priv =
                  vxge_hw_fifo_txdl_private_get(dtr);

            skb = txd_priv->skb;
            frg_cnt = skb_shinfo(skb)->nr_frags;
            frag = &skb_shinfo(skb)->frags[0];

            vxge_debug_tx(VXGE_TRACE,
                        "%s: %s:%d fifo_hw = %p dtr = %p "
                        "tcode = 0x%x", fifo->ndev->name, __func__,
                        __LINE__, fifo_hw, dtr, t_code);
            /* check skb validity */
            vxge_assert(skb);
            vxge_debug_tx(VXGE_TRACE,
                  "%s: %s:%d skb = %p itxd_priv = %p frg_cnt = %d",
                  fifo->ndev->name, __func__, __LINE__,
                  skb, txd_priv, frg_cnt);
            if (unlikely(t_code)) {
                  fifo->stats.tx_errors++;
                  vxge_debug_tx(VXGE_ERR,
                        "%s: tx: dtr %p completed due to "
                        "error t_code %01x", fifo->ndev->name,
                        dtr, t_code);
                  vxge_hw_fifo_handle_tcode(fifo_hw, dtr, t_code);
            }

            /*  for unfragmented skb */
            pci_unmap_single(fifo->pdev, txd_priv->dma_buffers[i++],
                        skb_headlen(skb), PCI_DMA_TODEVICE);

            for (j = 0; j < frg_cnt; j++) {
                  pci_unmap_page(fifo->pdev,
                              txd_priv->dma_buffers[i++],
                              frag->size, PCI_DMA_TODEVICE);
                  frag += 1;
            }

            vxge_hw_fifo_txdl_free(fifo_hw, dtr);

            /* Updating the statistics block */
            fifo->stats.tx_frms++;
            fifo->stats.tx_bytes += skb->len;

            temp = (struct sk_buff **)&skb->cb;
            *temp = head;
            head = skb;

            pkt_cnt++;
            if (pkt_cnt > fifo->indicate_max_pkts)
                  break;

      } while (vxge_hw_fifo_txdl_next_completed(fifo_hw,
                        &dtr, &t_code) == VXGE_HW_OK);

      vxge_wake_tx_queue(fifo, skb);

      if (skb_ptr)
            *skb_ptr = (void *) head;

      vxge_debug_entryexit(VXGE_TRACE,
                        "%s: %s:%d  Exiting...",
                        fifo->ndev->name, __func__, __LINE__);
      return VXGE_HW_OK;
}

/* select a vpath to transmit the packet */
static u32 vxge_get_vpath_no(struct vxgedev *vdev, struct sk_buff *skb,
      int *do_lock)
{
      u16 queue_len, counter = 0;
      if (skb->protocol == htons(ETH_P_IP)) {
            struct iphdr *ip;
            struct tcphdr *th;

            ip = ip_hdr(skb);

            if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
                  th = (struct tcphdr *)(((unsigned char *)ip) +
                              ip->ihl*4);

                  queue_len = vdev->no_of_vpath;
                  counter = (ntohs(th->source) +
                        ntohs(th->dest)) &
                        vdev->vpath_selector[queue_len - 1];
                  if (counter >= queue_len)
                        counter = queue_len - 1;

                  if (ip->protocol == IPPROTO_UDP) {
#ifdef NETIF_F_LLTX
                        *do_lock = 0;
#endif
                  }
            }
      }
      return counter;
}

static enum vxge_hw_status vxge_search_mac_addr_in_list(
      struct vxge_vpath *vpath, u64 del_mac)
{
      struct list_head *entry, *next;
      list_for_each_safe(entry, next, &vpath->mac_addr_list) {
            if (((struct vxge_mac_addrs *)entry)->macaddr == del_mac)
                  return TRUE;
      }
      return FALSE;
}

static int vxge_learn_mac(struct vxgedev *vdev, u8 *mac_header)
{
      struct macInfo mac_info;
      u8 *mac_address = NULL;
      u64 mac_addr = 0, vpath_vector = 0;
      int vpath_idx = 0;
      enum vxge_hw_status status = VXGE_HW_OK;
      struct vxge_vpath *vpath = NULL;
      struct __vxge_hw_device *hldev;

      hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);

      mac_address = (u8 *)&mac_addr;
      memcpy(mac_address, mac_header, ETH_ALEN);

      /* Is this mac address already in the list? */
      for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
            vpath = &vdev->vpaths[vpath_idx];
            if (vxge_search_mac_addr_in_list(vpath, mac_addr))
                  return vpath_idx;
      }

      memset(&mac_info, 0, sizeof(struct macInfo));
      memcpy(mac_info.macaddr, mac_header, ETH_ALEN);

      /* Any vpath has room to add mac address to its da table? */
      for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
            vpath = &vdev->vpaths[vpath_idx];
            if (vpath->mac_addr_cnt < vpath->max_mac_addr_cnt) {
                  /* Add this mac address to this vpath */
                  mac_info.vpath_no = vpath_idx;
                  mac_info.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
                  status = vxge_add_mac_addr(vdev, &mac_info);
                  if (status != VXGE_HW_OK)
                        return -EPERM;
                  return vpath_idx;
            }
      }

      mac_info.state = VXGE_LL_MAC_ADDR_IN_LIST;
      vpath_idx = 0;
      mac_info.vpath_no = vpath_idx;
      /* Is the first vpath already selected as catch-basin ? */
      vpath = &vdev->vpaths[vpath_idx];
      if (vpath->mac_addr_cnt > vpath->max_mac_addr_cnt) {
            /* Add this mac address to this vpath */
            if (FALSE == vxge_mac_list_add(vpath, &mac_info))
                  return -EPERM;
            return vpath_idx;
      }

      /* Select first vpath as catch-basin */
      vpath_vector = vxge_mBIT(vpath->device_id);
      status = vxge_hw_mgmt_reg_write(vpath->vdev->devh,
                        vxge_hw_mgmt_reg_type_mrpcim,
                        0,
                        (ulong)offsetof(
                              struct vxge_hw_mrpcim_reg,
                              rts_mgr_cbasin_cfg),
                        vpath_vector);
      if (status != VXGE_HW_OK) {
            vxge_debug_tx(VXGE_ERR,
                  "%s: Unable to set the vpath-%d in catch-basin mode",
                  VXGE_DRIVER_NAME, vpath->device_id);
            return -EPERM;
      }

      if (FALSE == vxge_mac_list_add(vpath, &mac_info))
            return -EPERM;

      return vpath_idx;
}

/**
 * vxge_xmit
 * @skb : the socket buffer containing the Tx data.
 * @dev : device pointer.
 *
 * This function is the Tx entry point of the driver. Neterion NIC supports
 * certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
 * NOTE: when device cant queue the pkt, just the trans_start variable will
 * not be upadted.
*/
static int
vxge_xmit(struct sk_buff *skb, struct net_device *dev)
{
      struct vxge_fifo *fifo = NULL;
      void *dtr_priv;
      void *dtr = NULL;
      struct vxgedev *vdev = NULL;
      enum vxge_hw_status status;
      int frg_cnt, first_frg_len;
      skb_frag_t *frag;
      int i = 0, j = 0, avail;
      u64 dma_pointer;
      struct vxge_tx_priv *txdl_priv = NULL;
      struct __vxge_hw_fifo *fifo_hw;
      u32 max_mss = 0x0;
      int offload_type;
      unsigned long flags = 0;
      int vpath_no = 0;
      int do_spin_tx_lock = 1;

      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
                  dev->name, __func__, __LINE__);

      /* A buffer with no data will be dropped */
      if (unlikely(skb->len <= 0)) {
            vxge_debug_tx(VXGE_ERR,
                  "%s: Buffer has no data..", dev->name);
            dev_kfree_skb(skb);
            return NETDEV_TX_OK;
      }

      vdev = (struct vxgedev *)netdev_priv(dev);

      if (unlikely(!is_vxge_card_up(vdev))) {
            vxge_debug_tx(VXGE_ERR,
                  "%s: vdev not initialized", dev->name);
            dev_kfree_skb(skb);
            return NETDEV_TX_OK;
      }

      if (vdev->config.addr_learn_en) {
            vpath_no = vxge_learn_mac(vdev, skb->data + ETH_ALEN);
            if (vpath_no == -EPERM) {
                  vxge_debug_tx(VXGE_ERR,
                        "%s: Failed to store the mac address",
                        dev->name);
                  dev_kfree_skb(skb);
                  return NETDEV_TX_OK;
            }
      }

      if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING)
            vpath_no = skb_get_queue_mapping(skb);
      else if (vdev->config.tx_steering_type == TX_PORT_STEERING)
            vpath_no = vxge_get_vpath_no(vdev, skb, &do_spin_tx_lock);

      vxge_debug_tx(VXGE_TRACE, "%s: vpath_no= %d", dev->name, vpath_no);

      if (vpath_no >= vdev->no_of_vpath)
            vpath_no = 0;

      fifo = &vdev->vpaths[vpath_no].fifo;
      fifo_hw = fifo->handle;

      if (do_spin_tx_lock)
            spin_lock_irqsave(&fifo->tx_lock, flags);
      else {
            if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
                  return NETDEV_TX_LOCKED;
      }

      if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING) {
            if (netif_subqueue_stopped(dev, skb)) {
                  spin_unlock_irqrestore(&fifo->tx_lock, flags);
                  return NETDEV_TX_BUSY;
            }
      } else if (unlikely(fifo->queue_state == VPATH_QUEUE_STOP)) {
            if (netif_queue_stopped(dev)) {
                  spin_unlock_irqrestore(&fifo->tx_lock, flags);
                  return NETDEV_TX_BUSY;
            }
      }
      avail = vxge_hw_fifo_free_txdl_count_get(fifo_hw);
      if (avail == 0) {
            vxge_debug_tx(VXGE_ERR,
                  "%s: No free TXDs available", dev->name);
            fifo->stats.txd_not_free++;
            vxge_stop_tx_queue(fifo);
            goto _exit2;
      }

      status = vxge_hw_fifo_txdl_reserve(fifo_hw, &dtr, &dtr_priv);
      if (unlikely(status != VXGE_HW_OK)) {
            vxge_debug_tx(VXGE_ERR,
               "%s: Out of descriptors .", dev->name);
            fifo->stats.txd_out_of_desc++;
            vxge_stop_tx_queue(fifo);
            goto _exit2;
      }

      vxge_debug_tx(VXGE_TRACE,
            "%s: %s:%d fifo_hw = %p dtr = %p dtr_priv = %p",
            dev->name, __func__, __LINE__,
            fifo_hw, dtr, dtr_priv);

      if (vdev->vlgrp && vlan_tx_tag_present(skb)) {
            u16 vlan_tag = vlan_tx_tag_get(skb);
            vxge_hw_fifo_txdl_vlan_set(dtr, vlan_tag);
      }

      first_frg_len = skb_headlen(skb);

      dma_pointer = pci_map_single(fifo->pdev, skb->data, first_frg_len,
                        PCI_DMA_TODEVICE);

      if (unlikely(pci_dma_mapping_error(fifo->pdev, dma_pointer))) {
            vxge_hw_fifo_txdl_free(fifo_hw, dtr);
            vxge_stop_tx_queue(fifo);
            fifo->stats.pci_map_fail++;
            goto _exit2;
      }

      txdl_priv = vxge_hw_fifo_txdl_private_get(dtr);
      txdl_priv->skb = skb;
      txdl_priv->dma_buffers[j] = dma_pointer;

      frg_cnt = skb_shinfo(skb)->nr_frags;
      vxge_debug_tx(VXGE_TRACE,
                  "%s: %s:%d skb = %p txdl_priv = %p "
                  "frag_cnt = %d dma_pointer = 0x%llx", dev->name,
                  __func__, __LINE__, skb, txdl_priv,
                  frg_cnt, (unsigned long long)dma_pointer);

      vxge_hw_fifo_txdl_buffer_set(fifo_hw, dtr, j++, dma_pointer,
            first_frg_len);

      frag = &skb_shinfo(skb)->frags[0];
      for (i = 0; i < frg_cnt; i++) {
            /* ignore 0 length fragment */
            if (!frag->size)
                  continue;

            dma_pointer =
                  (u64)pci_map_page(fifo->pdev, frag->page,
                        frag->page_offset, frag->size,
                        PCI_DMA_TODEVICE);

            if (unlikely(pci_dma_mapping_error(fifo->pdev, dma_pointer)))
                  goto _exit0;
            vxge_debug_tx(VXGE_TRACE,
                  "%s: %s:%d frag = %d dma_pointer = 0x%llx",
                        dev->name, __func__, __LINE__, i,
                        (unsigned long long)dma_pointer);

            txdl_priv->dma_buffers[j] = dma_pointer;
            vxge_hw_fifo_txdl_buffer_set(fifo_hw, dtr, j++, dma_pointer,
                              frag->size);
            frag += 1;
      }

      offload_type = vxge_offload_type(skb);

      if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {

            int mss = vxge_tcp_mss(skb);
            if (mss) {
                  max_mss = dev->mtu + ETH_HLEN -
                        VXGE_HW_TCPIP_HEADER_MAX_SIZE;
                  if (mss > max_mss)
                        mss = max_mss;
                  vxge_debug_tx(VXGE_TRACE,
                        "%s: %s:%d mss = %d",
                        dev->name, __func__, __LINE__, mss);
                  vxge_hw_fifo_txdl_mss_set(dtr, mss);
            } else {
                  vxge_assert(skb->len <=
                        dev->mtu + VXGE_HW_MAC_HEADER_MAX_SIZE);
                  vxge_assert(0);
                  goto _exit1;
            }
      }

      if (skb->ip_summed == CHECKSUM_PARTIAL)
            vxge_hw_fifo_txdl_cksum_set_bits(dtr,
                              VXGE_HW_FIFO_TXD_TX_CKO_IPV4_EN |
                              VXGE_HW_FIFO_TXD_TX_CKO_TCP_EN |
                              VXGE_HW_FIFO_TXD_TX_CKO_UDP_EN);

      vxge_hw_fifo_txdl_post(fifo_hw, dtr);
#ifdef NETIF_F_LLTX
      dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
#endif
      spin_unlock_irqrestore(&fifo->tx_lock, flags);

      VXGE_COMPLETE_VPATH_TX(fifo);
      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d  Exiting...",
            dev->name, __func__, __LINE__);
      return 0;

_exit0:
      vxge_debug_tx(VXGE_TRACE, "%s: pci_map_page failed", dev->name);

_exit1:
      j = 0;
      frag = &skb_shinfo(skb)->frags[0];

      pci_unmap_single(fifo->pdev, txdl_priv->dma_buffers[j++],
                  skb_headlen(skb), PCI_DMA_TODEVICE);

      for (; j < i; j++) {
            pci_unmap_page(fifo->pdev, txdl_priv->dma_buffers[j],
                  frag->size, PCI_DMA_TODEVICE);
            frag += 1;
      }

      vxge_hw_fifo_txdl_free(fifo_hw, dtr);
_exit2:
      dev_kfree_skb(skb);
      spin_unlock_irqrestore(&fifo->tx_lock, flags);
      VXGE_COMPLETE_VPATH_TX(fifo);

      return 0;
}

/*
 * vxge_rx_term
 *
 * Function will be called by hw function to abort all outstanding receive
 * descriptors.
 */
static void
vxge_rx_term(void *dtrh, enum vxge_hw_rxd_state state, void *userdata)
{
      struct vxge_ring *ring = (struct vxge_ring *)userdata;
      struct vxge_rx_priv *rx_priv =
            vxge_hw_ring_rxd_private_get(dtrh);

      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
                  ring->ndev->name, __func__, __LINE__);
      if (state != VXGE_HW_RXD_STATE_POSTED)
            return;

      pci_unmap_single(ring->pdev, rx_priv->data_dma,
            rx_priv->data_size, PCI_DMA_FROMDEVICE);

      dev_kfree_skb(rx_priv->skb);

      vxge_debug_entryexit(VXGE_TRACE,
            "%s: %s:%d  Exiting...",
            ring->ndev->name, __func__, __LINE__);
}

/*
 * vxge_tx_term
 *
 * Function will be called to abort all outstanding tx descriptors
 */
static void
vxge_tx_term(void *dtrh, enum vxge_hw_txdl_state state, void *userdata)
{
      struct vxge_fifo *fifo = (struct vxge_fifo *)userdata;
      skb_frag_t *frag;
      int i = 0, j, frg_cnt;
      struct vxge_tx_priv *txd_priv = vxge_hw_fifo_txdl_private_get(dtrh);
      struct sk_buff *skb = txd_priv->skb;

      vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);

      if (state != VXGE_HW_TXDL_STATE_POSTED)
            return;

      /* check skb validity */
      vxge_assert(skb);
      frg_cnt = skb_shinfo(skb)->nr_frags;
      frag = &skb_shinfo(skb)->frags[0];

      /*  for unfragmented skb */
      pci_unmap_single(fifo->pdev, txd_priv->dma_buffers[i++],
            skb_headlen(skb), PCI_DMA_TODEVICE);

      for (j = 0; j < frg_cnt; j++) {
            pci_unmap_page(fifo->pdev, txd_priv->dma_buffers[i++],
                         frag->size, PCI_DMA_TODEVICE);
            frag += 1;
      }

      dev_kfree_skb(skb);

      vxge_debug_entryexit(VXGE_TRACE,
            "%s:%d  Exiting...", __func__, __LINE__);
}

/**
 * vxge_set_multicast
 * @dev: pointer to the device structure
 *
 * Entry point for multicast address enable/disable
 * This function is a driver entry point which gets called by the kernel
 * whenever multicast addresses must be enabled/disabled. This also gets
 * called to set/reset promiscuous mode. Depending on the deivce flag, we
 * determine, if multicast address must be enabled or if promiscuous mode
 * is to be disabled etc.
 */
static void vxge_set_multicast(struct net_device *dev)
{
      struct dev_mc_list *mclist;
      struct vxgedev *vdev;
      int i, mcast_cnt = 0;
      struct __vxge_hw_device  *hldev;
      enum vxge_hw_status status = VXGE_HW_OK;
      struct macInfo mac_info;
      int vpath_idx = 0;
      struct vxge_mac_addrs *mac_entry;
      struct list_head *list_head;
      struct list_head *entry, *next;
      u8 *mac_address = NULL;

      vxge_debug_entryexit(VXGE_TRACE,
            "%s:%d", __func__, __LINE__);

      vdev = (struct vxgedev *)netdev_priv(dev);
      hldev = (struct __vxge_hw_device  *)vdev->devh;

      if (unlikely(!is_vxge_card_up(vdev)))
            return;

      if ((dev->flags & IFF_ALLMULTI) && (!vdev->all_multi_flg)) {
            for (i = 0; i < vdev->no_of_vpath; i++) {
                  vxge_assert(vdev->vpaths[i].is_open);
                  status = vxge_hw_vpath_mcast_enable(
                                    vdev->vpaths[i].handle);
                  vdev->all_multi_flg = 1;
            }
      } else if ((dev->flags & IFF_ALLMULTI) && (vdev->all_multi_flg)) {
            for (i = 0; i < vdev->no_of_vpath; i++) {
                  vxge_assert(vdev->vpaths[i].is_open);
                  status = vxge_hw_vpath_mcast_disable(
                                    vdev->vpaths[i].handle);
                  vdev->all_multi_flg = 1;
            }
      }

      if (status != VXGE_HW_OK)
            vxge_debug_init(VXGE_ERR,
                  "failed to %s multicast, status %d",
                  dev->flags & IFF_ALLMULTI ?
                  "enable" : "disable", status);

      if (!vdev->config.addr_learn_en) {
            if (dev->flags & IFF_PROMISC) {
                  for (i = 0; i < vdev->no_of_vpath; i++) {
                        vxge_assert(vdev->vpaths[i].is_open);
                        status = vxge_hw_vpath_promisc_enable(
                                    vdev->vpaths[i].handle);
                  }
            } else {
                  for (i = 0; i < vdev->no_of_vpath; i++) {
                        vxge_assert(vdev->vpaths[i].is_open);
                        status = vxge_hw_vpath_promisc_disable(
                                    vdev->vpaths[i].handle);
                  }
            }
      }

      memset(&mac_info, 0, sizeof(struct macInfo));
      /* Update individual M_CAST address list */
      if ((!vdev->all_multi_flg) && dev->mc_count) {

            mcast_cnt = vdev->vpaths[0].mcast_addr_cnt;
            list_head = &vdev->vpaths[0].mac_addr_list;
            if ((dev->mc_count +
                  (vdev->vpaths[0].mac_addr_cnt - mcast_cnt)) >
                        vdev->vpaths[0].max_mac_addr_cnt)
                  goto _set_all_mcast;

            /* Delete previous MC's */
            for (i = 0; i < mcast_cnt; i++) {
                  if (!list_empty(list_head))
                        mac_entry = (struct vxge_mac_addrs *)
                              list_first_entry(list_head,
                                    struct vxge_mac_addrs,
                                    item);

                  list_for_each_safe(entry, next, list_head) {

                        mac_entry = (struct vxge_mac_addrs *) entry;
                        /* Copy the mac address to delete */
                        mac_address = (u8 *)&mac_entry->macaddr;
                        memcpy(mac_info.macaddr, mac_address, ETH_ALEN);

                        /* Is this a multicast address */
                        if (0x01 & mac_info.macaddr[0]) {
                              for (vpath_idx = 0; vpath_idx <
                                    vdev->no_of_vpath;
                                    vpath_idx++) {
                                    mac_info.vpath_no = vpath_idx;
                                    status = vxge_del_mac_addr(
                                                vdev,
                                                &mac_info);
                              }
                        }
                  }
            }

            /* Add new ones */
            for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
                  i++, mclist = mclist->next) {

                  memcpy(mac_info.macaddr, mclist->dmi_addr, ETH_ALEN);
                  for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath;
                              vpath_idx++) {
                        mac_info.vpath_no = vpath_idx;
                        mac_info.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
                        status = vxge_add_mac_addr(vdev, &mac_info);
                        if (status != VXGE_HW_OK) {
                              vxge_debug_init(VXGE_ERR,
                                    "%s:%d Setting individual"
                                    "multicast address failed",
                                    __func__, __LINE__);
                              goto _set_all_mcast;
                        }
                  }
            }

            return;
_set_all_mcast:
            mcast_cnt = vdev->vpaths[0].mcast_addr_cnt;
            /* Delete previous MC's */
            for (i = 0; i < mcast_cnt; i++) {

                  list_for_each_safe(entry, next, list_head) {

                        mac_entry = (struct vxge_mac_addrs *) entry;
                        /* Copy the mac address to delete */
                        mac_address = (u8 *)&mac_entry->macaddr;
                        memcpy(mac_info.macaddr, mac_address, ETH_ALEN);

                        /* Is this a multicast address */
                        if (0x01 & mac_info.macaddr[0])
                              break;
                  }

                  for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath;
                              vpath_idx++) {
                        mac_info.vpath_no = vpath_idx;
                        status = vxge_del_mac_addr(vdev, &mac_info);
                  }
            }

            /* Enable all multicast */
            for (i = 0; i < vdev->no_of_vpath; i++) {
                  vxge_assert(vdev->vpaths[i].is_open);
                  status = vxge_hw_vpath_mcast_enable(
                                    vdev->vpaths[i].handle);
                  if (status != VXGE_HW_OK) {
                        vxge_debug_init(VXGE_ERR,
                              "%s:%d Enabling all multicasts failed",
                               __func__, __LINE__);
                  }
                  vdev->all_multi_flg = 1;
            }
            dev->flags |= IFF_ALLMULTI;
      }

      vxge_debug_entryexit(VXGE_TRACE,
            "%s:%d  Exiting...", __func__, __LINE__);
}

/**
 * vxge_set_mac_addr
 * @dev: pointer to the device structure
 *
 * Update entry "0" (default MAC addr)
 */
static int vxge_set_mac_addr(struct net_device *dev, void *p)
{
      struct sockaddr *addr = p;
      struct vxgedev *vdev;
      struct __vxge_hw_device  *hldev;
      enum vxge_hw_status status = VXGE_HW_OK;
      struct macInfo mac_info_new, mac_info_old;
      int vpath_idx = 0;

      vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);

      vdev = (struct vxgedev *)netdev_priv(dev);
      hldev = vdev->devh;

      if (!is_valid_ether_addr(addr->sa_data))
            return -EINVAL;

      memset(&mac_info_new, 0, sizeof(struct macInfo));
      memset(&mac_info_old, 0, sizeof(struct macInfo));

      vxge_debug_entryexit(VXGE_TRACE, "%s:%d  Exiting...",
            __func__, __LINE__);

      /* Get the old address */
      memcpy(mac_info_old.macaddr, dev->dev_addr, dev->addr_len);

      /* Copy the new address */
      memcpy(mac_info_new.macaddr, addr->sa_data, dev->addr_len);

      /* First delete the old mac address from all the vpaths
      as we can't specify the index while adding new mac address */
      for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
            struct vxge_vpath *vpath = &vdev->vpaths[vpath_idx];
            if (!vpath->is_open) {
                  /* This can happen when this interface is added/removed
                  to the bonding interface. Delete this station address
                  from the linked list */
                  vxge_mac_list_del(vpath, &mac_info_old);

                  /* Add this new address to the linked list
                  for later restoring */
                  vxge_mac_list_add(vpath, &mac_info_new);

                  continue;
            }
            /* Delete the station address */
            mac_info_old.vpath_no = vpath_idx;
            status = vxge_del_mac_addr(vdev, &mac_info_old);
      }

      if (unlikely(!is_vxge_card_up(vdev))) {
            memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
            return VXGE_HW_OK;
      }

      /* Set this mac address to all the vpaths */
      for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
            mac_info_new.vpath_no = vpath_idx;
            mac_info_new.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
            status = vxge_add_mac_addr(vdev, &mac_info_new);
            if (status != VXGE_HW_OK)
                  return -EINVAL;
      }

      memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);

      return status;
}

/*
 * vxge_vpath_intr_enable
 * @vdev: pointer to vdev
 * @vp_id: vpath for which to enable the interrupts
 *
 * Enables the interrupts for the vpath
*/
void vxge_vpath_intr_enable(struct vxgedev *vdev, int vp_id)
{
      struct vxge_vpath *vpath = &vdev->vpaths[vp_id];
      int msix_id, alarm_msix_id;
      int tim_msix_id[4] = {[0 ...3] = 0};

      vxge_hw_vpath_intr_enable(vpath->handle);

      if (vdev->config.intr_type == INTA)
            vxge_hw_vpath_inta_unmask_tx_rx(vpath->handle);
      else {
            msix_id = vp_id * VXGE_HW_VPATH_MSIX_ACTIVE;
            alarm_msix_id =
                  VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2;

            tim_msix_id[0] = msix_id;
            tim_msix_id[1] = msix_id + 1;
            vxge_hw_vpath_msix_set(vpath->handle, tim_msix_id,
                  alarm_msix_id);

            vxge_hw_vpath_msix_unmask(vpath->handle, msix_id);
            vxge_hw_vpath_msix_unmask(vpath->handle, msix_id + 1);

            /* enable the alarm vector */
            vxge_hw_vpath_msix_unmask(vpath->handle, alarm_msix_id);
      }
}

/*
 * vxge_vpath_intr_disable
 * @vdev: pointer to vdev
 * @vp_id: vpath for which to disable the interrupts
 *
 * Disables the interrupts for the vpath
*/
void vxge_vpath_intr_disable(struct vxgedev *vdev, int vp_id)
{
      struct vxge_vpath *vpath = &vdev->vpaths[vp_id];
      int msix_id;

      vxge_hw_vpath_intr_disable(vpath->handle);

      if (vdev->config.intr_type == INTA)
            vxge_hw_vpath_inta_mask_tx_rx(vpath->handle);
      else {
            msix_id = vp_id * VXGE_HW_VPATH_MSIX_ACTIVE;
            vxge_hw_vpath_msix_mask(vpath->handle, msix_id);
            vxge_hw_vpath_msix_mask(vpath->handle, msix_id + 1);

            /* disable the alarm vector */
            msix_id = VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2;
            vxge_hw_vpath_msix_mask(vpath->handle, msix_id);
      }
}

/*
 * vxge_reset_vpath
 * @vdev: pointer to vdev
 * @vp_id: vpath to reset
 *
 * Resets the vpath
*/
static int vxge_reset_vpath(struct vxgedev *vdev, int vp_id)
{
      enum vxge_hw_status status = VXGE_HW_OK;
      int ret = 0;

      /* check if device is down already */
      if (unlikely(!is_vxge_card_up(vdev)))
            return 0;

      /* is device reset already scheduled */
      if (test_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
            return 0;

      if (vdev->vpaths[vp_id].handle) {
            if (vxge_hw_vpath_reset(vdev->vpaths[vp_id].handle)
                        == VXGE_HW_OK) {
                  if (is_vxge_card_up(vdev) &&
                        vxge_hw_vpath_recover_from_reset(
                              vdev->vpaths[vp_id].handle)
                              != VXGE_HW_OK) {
                        vxge_debug_init(VXGE_ERR,
                              "vxge_hw_vpath_recover_from_reset"
                              "failed for vpath:%d", vp_id);
                        return status;
                  }
            } else {
                  vxge_debug_init(VXGE_ERR,
                        "vxge_hw_vpath_reset failed for"
                        "vpath:%d", vp_id);
                        return status;
            }
      } else
            return VXGE_HW_FAIL;

      vxge_restore_vpath_mac_addr(&vdev->vpaths[vp_id]);
      vxge_restore_vpath_vid_table(&vdev->vpaths[vp_id]);

      /* Enable all broadcast */
      vxge_hw_vpath_bcast_enable(vdev->vpaths[vp_id].handle);

      /* Enable the interrupts */
      vxge_vpath_intr_enable(vdev, vp_id);

      smp_wmb();

      /* Enable the flow of traffic through the vpath */
      vxge_hw_vpath_enable(vdev->vpaths[vp_id].handle);

      smp_wmb();
      vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[vp_id].handle);
      vdev->vpaths[vp_id].ring.last_status = VXGE_HW_OK;

      /* Vpath reset done */
      clear_bit(vp_id, &vdev->vp_reset);

      /* Start the vpath queue */
      vxge_wake_tx_queue(&vdev->vpaths[vp_id].fifo, NULL);

      return ret;
}

static int do_vxge_reset(struct vxgedev *vdev, int event)
{
      enum vxge_hw_status status;
      int ret = 0, vp_id, i;

      vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);

      if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_START_RESET)) {
            /* check if device is down already */
            if (unlikely(!is_vxge_card_up(vdev)))
                  return 0;

            /* is reset already scheduled */
            if (test_and_set_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
                  return 0;
      }

      if (event == VXGE_LL_FULL_RESET) {
            /* wait for all the vpath reset to complete */
            for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
                  while (test_bit(vp_id, &vdev->vp_reset))
                        msleep(50);
            }

            /* if execution mode is set to debug, don't reset the adapter */
            if (unlikely(vdev->exec_mode)) {
                  vxge_debug_init(VXGE_ERR,
                        "%s: execution mode is debug, returning..",
                        vdev->ndev->name);
            clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
            vxge_stop_all_tx_queue(vdev);
            return 0;
            }
      }

      if (event == VXGE_LL_FULL_RESET) {
            vxge_hw_device_intr_disable(vdev->devh);

            switch (vdev->cric_err_event) {
            case VXGE_HW_EVENT_UNKNOWN:
                  vxge_stop_all_tx_queue(vdev);
                  vxge_debug_init(VXGE_ERR,
                        "fatal: %s: Disabling device due to"
                        "unknown error",
                        vdev->ndev->name);
                  ret = -EPERM;
                  goto out;
            case VXGE_HW_EVENT_RESET_START:
                  break;
            case VXGE_HW_EVENT_RESET_COMPLETE:
            case VXGE_HW_EVENT_LINK_DOWN:
            case VXGE_HW_EVENT_LINK_UP:
            case VXGE_HW_EVENT_ALARM_CLEARED:
            case VXGE_HW_EVENT_ECCERR:
            case VXGE_HW_EVENT_MRPCIM_ECCERR:
                  ret = -EPERM;
                  goto out;
            case VXGE_HW_EVENT_FIFO_ERR:
            case VXGE_HW_EVENT_VPATH_ERR:
                  break;
            case VXGE_HW_EVENT_CRITICAL_ERR:
                  vxge_stop_all_tx_queue(vdev);
                  vxge_debug_init(VXGE_ERR,
                        "fatal: %s: Disabling device due to"
                        "serious error",
                        vdev->ndev->name);
                  /* SOP or device reset required */
                  /* This event is not currently used */
                  ret = -EPERM;
                  goto out;
            case VXGE_HW_EVENT_SERR:
                  vxge_stop_all_tx_queue(vdev);
                  vxge_debug_init(VXGE_ERR,
                        "fatal: %s: Disabling device due to"
                        "serious error",
                        vdev->ndev->name);
                  ret = -EPERM;
                  goto out;
            case VXGE_HW_EVENT_SRPCIM_SERR:
            case VXGE_HW_EVENT_MRPCIM_SERR:
                  ret = -EPERM;
                  goto out;
            case VXGE_HW_EVENT_SLOT_FREEZE:
                  vxge_stop_all_tx_queue(vdev);
                  vxge_debug_init(VXGE_ERR,
                        "fatal: %s: Disabling device due to"
                        "slot freeze",
                        vdev->ndev->name);
                  ret = -EPERM;
                  goto out;
            default:
                  break;

            }
      }

      if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_START_RESET))
            vxge_stop_all_tx_queue(vdev);

      if (event == VXGE_LL_FULL_RESET) {
            status = vxge_reset_all_vpaths(vdev);
            if (status != VXGE_HW_OK) {
                  vxge_debug_init(VXGE_ERR,
                        "fatal: %s: can not reset vpaths",
                        vdev->ndev->name);
                  ret = -EPERM;
                  goto out;
            }
      }

      if (event == VXGE_LL_COMPL_RESET) {
            for (i = 0; i < vdev->no_of_vpath; i++)
                  if (vdev->vpaths[i].handle) {
                        if (vxge_hw_vpath_recover_from_reset(
                              vdev->vpaths[i].handle)
                                    != VXGE_HW_OK) {
                              vxge_debug_init(VXGE_ERR,
                                    "vxge_hw_vpath_recover_"
                                    "from_reset failed for vpath: "
                                    "%d", i);
                              ret = -EPERM;
                              goto out;
                        }
                        } else {
                              vxge_debug_init(VXGE_ERR,
                              "vxge_hw_vpath_reset failed for "
                                    "vpath:%d", i);
                              ret = -EPERM;
                              goto out;
                        }
      }

      if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_COMPL_RESET)) {
            /* Reprogram the DA table with populated mac addresses */
            for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
                  vxge_restore_vpath_mac_addr(&vdev->vpaths[vp_id]);
                  vxge_restore_vpath_vid_table(&vdev->vpaths[vp_id]);
            }

            /* enable vpath interrupts */
            for (i = 0; i < vdev->no_of_vpath; i++)
                  vxge_vpath_intr_enable(vdev, i);

            vxge_hw_device_intr_enable(vdev->devh);

            smp_wmb();

            /* Indicate card up */
            set_bit(__VXGE_STATE_CARD_UP, &vdev->state);

            /* Get the traffic to flow through the vpaths */
            for (i = 0; i < vdev->no_of_vpath; i++) {
                  vxge_hw_vpath_enable(vdev->vpaths[i].handle);
                  smp_wmb();
                  vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[i].handle);
            }

            vxge_wake_all_tx_queue(vdev);
      }

out:
      vxge_debug_entryexit(VXGE_TRACE,
            "%s:%d  Exiting...", __func__, __LINE__);

      /* Indicate reset done */
      if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_COMPL_RESET))
            clear_bit(__VXGE_STATE_RESET_CARD, &vdev->state);
      return ret;
}

/*
 * vxge_reset
 * @vdev: pointer to ll device
 *
 * driver may reset the chip on events of serr, eccerr, etc
 */
int vxge_reset(struct vxgedev *vdev)
{
      do_vxge_reset(vdev, VXGE_LL_FULL_RESET);
      return 0;
}

/**
 * vxge_poll - Receive handler when Receive Polling is used.
 * @dev: pointer to the device structure.
 * @budget: Number of packets budgeted to be processed in this iteration.
 *
 * This function comes into picture only if Receive side is being handled
 * through polling (called NAPI in linux). It mostly does what the normal
 * Rx interrupt handler does in terms of descriptor and packet processing
 * but not in an interrupt context. Also it will process a specified number
 * of packets at most in one iteration. This value is passed down by the
 * kernel as the function argument 'budget'.
 */
static int vxge_poll_msix(struct napi_struct *napi, int budget)
{
      struct vxge_ring *ring =
            container_of(napi, struct vxge_ring, napi);
      int budget_org = budget;
      ring->budget = budget;

      vxge_hw_vpath_poll_rx(ring->handle);

      if (ring->pkts_processed < budget_org) {
            napi_complete(napi);
            /* Re enable the Rx interrupts for the vpath */
            vxge_hw_channel_msix_unmask(
                        (struct __vxge_hw_channel *)ring->handle,
                        ring->rx_vector_no);
      }

      return ring->pkts_processed;
}

static int vxge_poll_inta(struct napi_struct *napi, int budget)
{
      struct vxgedev *vdev = container_of(napi, struct vxgedev, napi);
      int pkts_processed = 0;
      int i;
      int budget_org = budget;
      struct vxge_ring *ring;

      struct __vxge_hw_device  *hldev = (struct __vxge_hw_device *)
            pci_get_drvdata(vdev->pdev);

      for (i = 0; i < vdev->no_of_vpath; i++) {
            ring = &vdev->vpaths[i].ring;
            ring->budget = budget;
            vxge_hw_vpath_poll_rx(ring->handle);
            pkts_processed += ring->pkts_processed;
            budget -= ring->pkts_processed;
            if (budget <= 0)
                  break;
      }

      VXGE_COMPLETE_ALL_TX(vdev);

      if (pkts_processed < budget_org) {
            napi_complete(napi);
            /* Re enable the Rx interrupts for the ring */
            vxge_hw_device_unmask_all(hldev);
            vxge_hw_device_flush_io(hldev);
      }

      return pkts_processed;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/**
 * vxge_netpoll - netpoll event handler entry point
 * @dev : pointer to the device structure.
 * Description:
 *      This function will be called by upper layer to check for events on the
 * interface in situations where interrupts are disabled. It is used for
 * specific in-kernel networking tasks, such as remote consoles and kernel
 * debugging over the network (example netdump in RedHat).
 */
static void vxge_netpoll(struct net_device *dev)
{
      struct __vxge_hw_device  *hldev;
      struct vxgedev *vdev;

      vdev = (struct vxgedev *)netdev_priv(dev);
      hldev = (struct __vxge_hw_device  *)pci_get_drvdata(vdev->pdev);

      vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);

      if (pci_channel_offline(vdev->pdev))
            return;

      disable_irq(dev->irq);
      vxge_hw_device_clear_tx_rx(hldev);

      vxge_hw_device_clear_tx_rx(hldev);
      VXGE_COMPLETE_ALL_RX(vdev);
      VXGE_COMPLETE_ALL_TX(vdev);

      enable_irq(dev->irq);

      vxge_debug_entryexit(VXGE_TRACE,
            "%s:%d  Exiting...", __func__, __LINE__);
      return;
}
#endif

/* RTH configuration */
static enum vxge_hw_status vxge_rth_configure(struct vxgedev *vdev)
{
      enum vxge_hw_status status = VXGE_HW_OK;
      struct vxge_hw_rth_hash_types hash_types;
      u8 itable[256] = {0}; /* indirection table */
      u8 mtable[256] = {0}; /* CPU to vpath mapping  */
      int index;

      /*
       * Filling
       *    - itable with bucket numbers
       *    - mtable with bucket-to-vpath mapping
       */
      for (index = 0; index < (1 << vdev->config.rth_bkt_sz); index++) {
            itable[index] = index;
            mtable[index] = index % vdev->no_of_vpath;
      }

      /* Fill RTH hash types */
      hash_types.hash_type_tcpipv4_en   = vdev->config.rth_hash_type_tcpipv4;
      hash_types.hash_type_ipv4_en      = vdev->config.rth_hash_type_ipv4;
      hash_types.hash_type_tcpipv6_en   = vdev->config.rth_hash_type_tcpipv6;
      hash_types.hash_type_ipv6_en      = vdev->config.rth_hash_type_ipv6;
      hash_types.hash_type_tcpipv6ex_en =
                              vdev->config.rth_hash_type_tcpipv6ex;
      hash_types.hash_type_ipv6ex_en    = vdev->config.rth_hash_type_ipv6ex;

      /* set indirection table, bucket-to-vpath mapping */
      status = vxge_hw_vpath_rts_rth_itable_set(vdev->vp_handles,
                                    vdev->no_of_vpath,
                                    mtable, itable,
                                    vdev->config.rth_bkt_sz);
      if (status != VXGE_HW_OK) {
            vxge_debug_init(VXGE_ERR,
                  "RTH indirection table configuration failed "
                  "for vpath:%d", vdev->vpaths[0].device_id);
            return status;
      }

      /*
      * Because the itable_set() method uses the active_table field
      * for the target virtual path the RTH config should be updated
      * for all VPATHs. The h/w only uses the lowest numbered VPATH
      * when steering frames.
      */
       for (index = 0; index < vdev->no_of_vpath; index++) {
            status = vxge_hw_vpath_rts_rth_set(
                        vdev->vpaths[index].handle,
                        vdev->config.rth_algorithm,
                        &hash_types,
                        vdev->config.rth_bkt_sz);

             if (status != VXGE_HW_OK) {
                  vxge_debug_init(VXGE_ERR,
                        "RTH configuration failed for vpath:%d",
                        vdev->vpaths[index].device_id);
                  return status;
             }
       }

      return status;
}

int vxge_mac_list_add(struct vxge_vpath *vpath, struct macInfo *mac)
{
      struct vxge_mac_addrs *new_mac_entry;
      u8 *mac_address = NULL;

      if (vpath->mac_addr_cnt >= VXGE_MAX_LEARN_MAC_ADDR_CNT)
            return TRUE;

      new_mac_entry = kzalloc(sizeof(struct vxge_mac_addrs), GFP_ATOMIC);
      if (!new_mac_entry) {
            vxge_debug_mem(VXGE_ERR,
                  "%s: memory allocation failed",
                  VXGE_DRIVER_NAME);
            return FALSE;
      }

      list_add(&new_mac_entry->item, &vpath->mac_addr_list);

      /* Copy the new mac address to the list */
      mac_address = (u8 *)&new_mac_entry->macaddr;
      memcpy(mac_address, mac->macaddr, ETH_ALEN);

      new_mac_entry->state = mac->state;
      vpath->mac_addr_cnt++;

      /* Is this a multicast address */
      if (0x01 & mac->macaddr[0])
            vpath->mcast_addr_cnt++;

      return TRUE;
}

/* Add a mac address to DA table */
enum vxge_hw_status vxge_add_mac_addr(struct vxgedev *vdev, struct macInfo *mac)
{
      enum vxge_hw_status status = VXGE_HW_OK;
      struct vxge_vpath *vpath;
      enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode;

      if (0x01 & mac->macaddr[0]) /* multicast address */
            duplicate_mode = VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE;
      else
            duplicate_mode = VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE;

      vpath = &vdev->vpaths[mac->vpath_no];
      status = vxge_hw_vpath_mac_addr_add(vpath->handle, mac->macaddr,
                                    mac->macmask, duplicate_mode);
      if (status != VXGE_HW_OK) {
            vxge_debug_init(VXGE_ERR,
                  "DA config add entry failed for vpath:%d",
                  vpath->device_id);
      } else
            if (FALSE == vxge_mac_list_add(vpath, mac))
                  status = -EPERM;

      return status;
}

int vxge_mac_list_del(struct vxge_vpath *vpath, struct macInfo *mac)
{
      struct list_head *entry, *next;
      u64 del_mac = 0;
      u8 *mac_address = (u8 *) (&del_mac);

      /* Copy the mac address to delete from the list */
      memcpy(mac_address, mac->macaddr, ETH_ALEN);

      list_for_each_safe(entry, next, &vpath->mac_addr_list) {
            if (((struct vxge_mac_addrs *)entry)->macaddr == del_mac) {
                  list_del(entry);
                  kfree((struct vxge_mac_addrs *)entry);
                  vpath->mac_addr_cnt--;

                  /* Is this a multicast address */
                  if (0x01 & mac->macaddr[0])
                        vpath->mcast_addr_cnt--;
                  return TRUE;
            }
      }

      return FALSE;
}
/* delete a mac address from DA table */
enum vxge_hw_status vxge_del_mac_addr(struct vxgedev *vdev, struct macInfo *mac)
{
      enum vxge_hw_status status = VXGE_HW_OK;
      struct vxge_vpath *vpath;

      vpath = &vdev->vpaths[mac->vpath_no];
      status = vxge_hw_vpath_mac_addr_delete(vpath->handle, mac->macaddr,
                                    mac->macmask);
      if (status != VXGE_HW_OK) {
            vxge_debug_init(VXGE_ERR,
                  "DA config delete entry failed for vpath:%d",
                  vpath->device_id);
      } else
            vxge_mac_list_del(vpath, mac);
      return status;
}

/* list all mac addresses from DA table */
enum vxge_hw_status
static vxge_search_mac_addr_in_da_table(struct vxge_vpath *vpath,
                              struct macInfo *mac)
{
      enum vxge_hw_status status = VXGE_HW_OK;
      unsigned char macmask[ETH_ALEN];
      unsigned char macaddr[ETH_ALEN];

      status = vxge_hw_vpath_mac_addr_get(vpath->handle,
                        macaddr, macmask);
      if (status != VXGE_HW_OK) {
            vxge_debug_init(VXGE_ERR,
                  "DA config list entry failed for vpath:%d",
                  vpath->device_id);
            return status;
      }

      while (memcmp(mac->macaddr, macaddr, ETH_ALEN)) {

            status = vxge_hw_vpath_mac_addr_get_next(vpath->handle,
                        macaddr, macmask);
            if (status != VXGE_HW_OK)
                  break;
      }

      return status;
}

/* Store all vlan ids from the list to the vid table */
enum vxge_hw_status vxge_restore_vpath_vid_table(struct vxge_vpath *vpath)
{
      enum vxge_hw_status status = VXGE_HW_OK;
      struct vxgedev *vdev = vpath->vdev;
      u16 vid;

      if (vdev->vlgrp && vpath->is_open) {

            for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
                  if (!vlan_group_get_device(vdev->vlgrp, vid))
                        continue;
                  /* Add these vlan to the vid table */
                  status = vxge_hw_vpath_vid_add(vpath->handle, vid);
            }
      }

      return status;
}

/* Store all mac addresses from the list to the DA table */
enum vxge_hw_status vxge_restore_vpath_mac_addr(struct vxge_vpath *vpath)
{
      enum vxge_hw_status status = VXGE_HW_OK;
      struct macInfo mac_info;
      u8 *mac_address = NULL;
      struct list_head *entry, *next;

      memset(&mac_info, 0, sizeof(struct macInfo));

      if (vpath->is_open) {

            list_for_each_safe(entry, next, &vpath->mac_addr_list) {
                  mac_address =
                        (u8 *)&
                        ((struct vxge_mac_addrs *)entry)->macaddr;
                  memcpy(mac_info.macaddr, mac_address, ETH_ALEN);
                  ((struct vxge_mac_addrs *)entry)->state =
                        VXGE_LL_MAC_ADDR_IN_DA_TABLE;
                  /* does this mac address already exist in da table? */
                  status = vxge_search_mac_addr_in_da_table(vpath,
                        &mac_info);
                  if (status != VXGE_HW_OK) {
                        /* Add this mac address to the DA table */
                        status = vxge_hw_vpath_mac_addr_add(
                              vpath->handle, mac_info.macaddr,
                              mac_info.macmask,
                            VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE);
                        if (status != VXGE_HW_OK) {
                              vxge_debug_init(VXGE_ERR,
                                  "DA add entry failed for vpath:%d",
                                  vpath->device_id);
                              ((struct vxge_mac_addrs *)entry)->state
                                    = VXGE_LL_MAC_ADDR_IN_LIST;
                        }
                  }
            }
      }

      return status;
}

/* reset vpaths */
enum vxge_hw_status vxge_reset_all_vpaths(struct vxgedev *vdev)
{
      int i;
      enum vxge_hw_status status = VXGE_HW_OK;

      for (i = 0; i < vdev->no_of_vpath; i++)
            if (vdev->vpaths[i].handle) {
                  if (vxge_hw_vpath_reset(vdev->vpaths[i].handle)
                              == VXGE_HW_OK) {
                        if (is_vxge_card_up(vdev) &&
                              vxge_hw_vpath_recover_from_reset(
                                    vdev->vpaths[i].handle)
                                    != VXGE_HW_OK) {
                              vxge_debug_init(VXGE_ERR,
                                    "vxge_hw_vpath_recover_"
                                    "from_reset failed for vpath: "
                                    "%d", i);
                              return status;
                        }
                  } else {
                        vxge_debug_init(VXGE_ERR,
                              "vxge_hw_vpath_reset failed for "
                              "vpath:%d", i);
                              return status;
                  }
            }
      return status;
}

/* close vpaths */
void vxge_close_vpaths(struct vxgedev *vdev, int index)
{
      int i;
      for (i = index; i < vdev->no_of_vpath; i++) {
            if (vdev->vpaths[i].handle && vdev->vpaths[i].is_open) {
                  vxge_hw_vpath_close(vdev->vpaths[i].handle);
                  vdev->stats.vpaths_open--;
            }
            vdev->vpaths[i].is_open = 0;
            vdev->vpaths[i].handle  = NULL;
      }
}

/* open vpaths */
int vxge_open_vpaths(struct vxgedev *vdev)
{
      enum vxge_hw_status status;
      int i;
      u32 vp_id = 0;
      struct vxge_hw_vpath_attr attr;

      for (i = 0; i < vdev->no_of_vpath; i++) {
            vxge_assert(vdev->vpaths[i].is_configured);
            attr.vp_id = vdev->vpaths[i].device_id;
            attr.fifo_attr.callback = vxge_xmit_compl;
            attr.fifo_attr.txdl_term = vxge_tx_term;
            attr.fifo_attr.per_txdl_space = sizeof(struct vxge_tx_priv);
            attr.fifo_attr.userdata = (void *)&vdev->vpaths[i].fifo;

            attr.ring_attr.callback = vxge_rx_1b_compl;
            attr.ring_attr.rxd_init = vxge_rx_initial_replenish;
            attr.ring_attr.rxd_term = vxge_rx_term;
            attr.ring_attr.per_rxd_space = sizeof(struct vxge_rx_priv);
            attr.ring_attr.userdata = (void *)&vdev->vpaths[i].ring;

            vdev->vpaths[i].ring.ndev = vdev->ndev;
            vdev->vpaths[i].ring.pdev = vdev->pdev;
            status = vxge_hw_vpath_open(vdev->devh, &attr,
                        &(vdev->vpaths[i].handle));
            if (status == VXGE_HW_OK) {
                  vdev->vpaths[i].fifo.handle =
                      (struct __vxge_hw_fifo *)attr.fifo_attr.userdata;
                  vdev->vpaths[i].ring.handle =
                      (struct __vxge_hw_ring *)attr.ring_attr.userdata;
                  vdev->vpaths[i].fifo.tx_steering_type =
                        vdev->config.tx_steering_type;
                  vdev->vpaths[i].fifo.ndev = vdev->ndev;
                  vdev->vpaths[i].fifo.pdev = vdev->pdev;
                  vdev->vpaths[i].fifo.indicate_max_pkts =
                        vdev->config.fifo_indicate_max_pkts;
                  vdev->vpaths[i].ring.rx_vector_no = 0;
                  vdev->vpaths[i].ring.rx_csum = vdev->rx_csum;
                  vdev->vpaths[i].is_open = 1;
                  vdev->vp_handles[i] = vdev->vpaths[i].handle;
                  vdev->vpaths[i].ring.gro_enable =
                                    vdev->config.gro_enable;
                  vdev->vpaths[i].ring.vlan_tag_strip =
                                    vdev->vlan_tag_strip;
                  vdev->stats.vpaths_open++;
            } else {
                  vdev->stats.vpath_open_fail++;
                  vxge_debug_init(VXGE_ERR,
                        "%s: vpath: %d failed to open "
                        "with status: %d",
                      vdev->ndev->name, vdev->vpaths[i].device_id,
                        status);
                  vxge_close_vpaths(vdev, 0);
                  return -EPERM;
            }

            vp_id =
              ((struct __vxge_hw_vpath_handle *)vdev->vpaths[i].handle)->
              vpath->vp_id;
            vdev->vpaths_deployed |= vxge_mBIT(vp_id);
      }
      return VXGE_HW_OK;
}

/*
 *  vxge_isr_napi
 *  @irq: the irq of the device.
 *  @dev_id: a void pointer to the hldev structure of the Titan device
 *  @ptregs: pointer to the registers pushed on the stack.
 *
 *  This function is the ISR handler of the device when napi is enabled. It
 *  identifies the reason for the interrupt and calls the relevant service
 *  routines.
 */
static irqreturn_t vxge_isr_napi(int irq, void *dev_id)
{
      struct __vxge_hw_device  *hldev = (struct __vxge_hw_device  *)dev_id;
      struct vxgedev *vdev;
      struct net_device *dev;
      u64 reason;
      enum vxge_hw_status status;

      vxge_debug_intr(VXGE_TRACE, "%s:%d", __func__, __LINE__);

      dev = hldev->ndev;
      vdev = netdev_priv(dev);

      if (pci_channel_offline(vdev->pdev))
            return IRQ_NONE;

      if (unlikely(!is_vxge_card_up(vdev)))
            return IRQ_NONE;

      status = vxge_hw_device_begin_irq(hldev, vdev->exec_mode,
                  &reason);
      if (status == VXGE_HW_OK) {
            vxge_hw_device_mask_all(hldev);

            if (reason &
                  VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(
                  vdev->vpaths_deployed >>
                  (64 - VXGE_HW_MAX_VIRTUAL_PATHS))) {

                  vxge_hw_device_clear_tx_rx(hldev);
                  napi_schedule(&vdev->napi);
                  vxge_debug_intr(VXGE_TRACE,
                        "%s:%d  Exiting...", __func__, __LINE__);
                  return IRQ_HANDLED;
            } else
                  vxge_hw_device_unmask_all(hldev);
      } else if (unlikely((status == VXGE_HW_ERR_VPATH) ||
            (status == VXGE_HW_ERR_CRITICAL) ||
            (status == VXGE_HW_ERR_FIFO))) {
            vxge_hw_device_mask_all(hldev);
            vxge_hw_device_flush_io(hldev);
            return IRQ_HANDLED;
      } else if (unlikely(status == VXGE_HW_ERR_SLOT_FREEZE))
            return IRQ_HANDLED;

      vxge_debug_intr(VXGE_TRACE, "%s:%d  Exiting...", __func__, __LINE__);
      return IRQ_NONE;
}

#ifdef CONFIG_PCI_MSI

static irqreturn_t
vxge_tx_msix_handle(int irq, void *dev_id)
{
      struct vxge_fifo *fifo = (struct vxge_fifo *)dev_id;

      VXGE_COMPLETE_VPATH_TX(fifo);

      return IRQ_HANDLED;
}

static irqreturn_t
vxge_rx_msix_napi_handle(int irq, void *dev_id)
{
      struct vxge_ring *ring = (struct vxge_ring *)dev_id;

      /* MSIX_IDX for Rx is 1 */
      vxge_hw_channel_msix_mask((struct __vxge_hw_channel *)ring->handle,
                              ring->rx_vector_no);

      napi_schedule(&ring->napi);
      return IRQ_HANDLED;
}

static irqreturn_t
vxge_alarm_msix_handle(int irq, void *dev_id)
{
      int i;
      enum vxge_hw_status status;
      struct vxge_vpath *vpath = (struct vxge_vpath *)dev_id;
      struct vxgedev *vdev = vpath->vdev;
      int alarm_msix_id =
            VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2;

      for (i = 0; i < vdev->no_of_vpath; i++) {
            vxge_hw_vpath_msix_mask(vdev->vpaths[i].handle,
                  alarm_msix_id);

            status = vxge_hw_vpath_alarm_process(vdev->vpaths[i].handle,
                  vdev->exec_mode);
            if (status == VXGE_HW_OK) {

                  vxge_hw_vpath_msix_unmask(vdev->vpaths[i].handle,
                        alarm_msix_id);
                  continue;
            }
            vxge_debug_intr(VXGE_ERR,
                  "%s: vxge_hw_vpath_alarm_process failed %x ",
                  VXGE_DRIVER_NAME, status);
      }
      return IRQ_HANDLED;
}

static int vxge_alloc_msix(struct vxgedev *vdev)
{
      int j, i, ret = 0;
      int intr_cnt = 0;
      int alarm_msix_id = 0, msix_intr_vect = 0;
      vdev->intr_cnt = 0;

      /* Tx/Rx MSIX Vectors count */
      vdev->intr_cnt = vdev->no_of_vpath * 2;

      /* Alarm MSIX Vectors count */
      vdev->intr_cnt++;

      intr_cnt = (vdev->max_vpath_supported * 2) + 1;
      vdev->entries = kzalloc(intr_cnt * sizeof(struct msix_entry),
                                    GFP_KERNEL);
      if (!vdev->entries) {
            vxge_debug_init(VXGE_ERR,
                  "%s: memory allocation failed",
                  VXGE_DRIVER_NAME);
            return  -ENOMEM;
      }

      vdev->vxge_entries = kzalloc(intr_cnt * sizeof(struct vxge_msix_entry),
                                          GFP_KERNEL);
      if (!vdev->vxge_entries) {
            vxge_debug_init(VXGE_ERR, "%s: memory allocation failed",
                  VXGE_DRIVER_NAME);
            kfree(vdev->entries);
            return -ENOMEM;
      }

      /* Last vector in the list is used for alarm */
      alarm_msix_id = VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2;
      for (i = 0, j = 0; i < vdev->max_vpath_supported; i++) {

            msix_intr_vect = i * VXGE_HW_VPATH_MSIX_ACTIVE;

            /* Initialize the fifo vector */
            vdev->entries[j].entry = msix_intr_vect;
            vdev->vxge_entries[j].entry = msix_intr_vect;
            vdev->vxge_entries[j].in_use = 0;
            j++;

            /* Initialize the ring vector */
            vdev->entries[j].entry = msix_intr_vect + 1;
            vdev->vxge_entries[j].entry = msix_intr_vect + 1;
            vdev->vxge_entries[j].in_use = 0;
            j++;
      }

      /* Initialize the alarm vector */
      vdev->entries[j].entry = alarm_msix_id;
      vdev->vxge_entries[j].entry = alarm_msix_id;
      vdev->vxge_entries[j].in_use = 0;

      ret = pci_enable_msix(vdev->pdev, vdev->entries, intr_cnt);
      /* if driver request exceeeds available irq's, request with a small
       * number.
      */
      if (ret > 0) {
            vxge_debug_init(VXGE_ERR,
                  "%s: MSI-X enable failed for %d vectors, available: %d",
                  VXGE_DRIVER_NAME, intr_cnt, ret);
            vdev->max_vpath_supported = vdev->no_of_vpath;
            intr_cnt = (vdev->max_vpath_supported * 2) + 1;

            /* Reset the alarm vector setting */
            vdev->entries[j].entry = 0;
            vdev->vxge_entries[j].entry = 0;

            /* Initialize the alarm vector with new setting */
            vdev->entries[intr_cnt - 1].entry = alarm_msix_id;
            vdev->vxge_entries[intr_cnt - 1].entry = alarm_msix_id;
            vdev->vxge_entries[intr_cnt - 1].in_use = 0;

            ret = pci_enable_msix(vdev->pdev, vdev->entries, intr_cnt);
            if (!ret)
                  vxge_debug_init(VXGE_ERR,
                        "%s: MSI-X enabled for %d vectors",
                        VXGE_DRIVER_NAME, intr_cnt);
      }

      if (ret) {
            vxge_debug_init(VXGE_ERR,
                  "%s: MSI-X enable failed for %d vectors, ret: %d",
                  VXGE_DRIVER_NAME, intr_cnt, ret);
            kfree(vdev->entries);
            kfree(vdev->vxge_entries);
            vdev->entries = NULL;
            vdev->vxge_entries = NULL;
            return -ENODEV;
      }
      return 0;
}

static int vxge_enable_msix(struct vxgedev *vdev)
{

      int i, ret = 0;
      enum vxge_hw_status status;
      /* 0 - Tx, 1 - Rx  */
      int tim_msix_id[4];
      int alarm_msix_id = 0, msix_intr_vect = 0;;
      vdev->intr_cnt = 0;

      /* allocate msix vectors */
      ret = vxge_alloc_msix(vdev);
      if (!ret) {
            /* Last vector in the list is used for alarm */
            alarm_msix_id =
                  VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2;
            for (i = 0; i < vdev->no_of_vpath; i++) {

                  /* If fifo or ring are not enabled
                     the MSIX vector for that should be set to 0
                     Hence initializeing this array to all 0s.
                  */
                  memset(tim_msix_id, 0, sizeof(tim_msix_id));
                  msix_intr_vect = i * VXGE_HW_VPATH_MSIX_ACTIVE;
                  tim_msix_id[0] = msix_intr_vect;

                  tim_msix_id[1] = msix_intr_vect + 1;
                  vdev->vpaths[i].ring.rx_vector_no = tim_msix_id[1];

                  status = vxge_hw_vpath_msix_set(
                                    vdev->vpaths[i].handle,
                                    tim_msix_id, alarm_msix_id);
                  if (status != VXGE_HW_OK) {
                        vxge_debug_init(VXGE_ERR,
                              "vxge_hw_vpath_msix_set "
                              "failed with status : %x", status);
                        kfree(vdev->entries);
                        kfree(vdev->vxge_entries);
                        pci_disable_msix(vdev->pdev);
                        return -ENODEV;
                  }
            }
      }

      return ret;
}

static void vxge_rem_msix_isr(struct vxgedev *vdev)
{
      int intr_cnt;

      for (intr_cnt = 0; intr_cnt < (vdev->max_vpath_supported * 2 + 1);
            intr_cnt++) {
            if (vdev->vxge_entries[intr_cnt].in_use) {
                  synchronize_irq(vdev->entries[intr_cnt].vector);
                  free_irq(vdev->entries[intr_cnt].vector,
                        vdev->vxge_entries[intr_cnt].arg);
                  vdev->vxge_entries[intr_cnt].in_use = 0;
            }
      }

      kfree(vdev->entries);
      kfree(vdev->vxge_entries);
      vdev->entries = NULL;
      vdev->vxge_entries = NULL;

      if (vdev->config.intr_type == MSI_X)
            pci_disable_msix(vdev->pdev);
}
#endif

static void vxge_rem_isr(struct vxgedev *vdev)
{
      struct __vxge_hw_device  *hldev;
      hldev = (struct __vxge_hw_device  *) pci_get_drvdata(vdev->pdev);

#ifdef CONFIG_PCI_MSI
      if (vdev->config.intr_type == MSI_X) {
            vxge_rem_msix_isr(vdev);
      } else
#endif
      if (vdev->config.intr_type == INTA) {
                  synchronize_irq(vdev->pdev->irq);
                  free_irq(vdev->pdev->irq, hldev);
      }
}

static int vxge_add_isr(struct vxgedev *vdev)
{
      int ret = 0;
      struct __vxge_hw_device  *hldev =
            (struct __vxge_hw_device  *) pci_get_drvdata(vdev->pdev);
#ifdef CONFIG_PCI_MSI
      int vp_idx = 0, intr_idx = 0, intr_cnt = 0, msix_idx = 0, irq_req = 0;
      u64 function_mode = vdev->config.device_hw_info.function_mode;
      int pci_fun = PCI_FUNC(vdev->pdev->devfn);

      if (vdev->config.intr_type == MSI_X)
            ret = vxge_enable_msix(vdev);

      if (ret) {
            vxge_debug_init(VXGE_ERR,
                  "%s: Enabling MSI-X Failed", VXGE_DRIVER_NAME);
            if ((function_mode == VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION) &&
                  test_and_set_bit(__VXGE_STATE_CARD_UP,
                        &driver_config->inta_dev_open))
                  return VXGE_HW_FAIL;
            else {
                  vxge_debug_init(VXGE_ERR,
                        "%s: Defaulting to INTA", VXGE_DRIVER_NAME);
                  vdev->config.intr_type = INTA;
                  vxge_hw_device_set_intr_type(vdev->devh,
                        VXGE_HW_INTR_MODE_IRQLINE);
                  vxge_close_vpaths(vdev, 1);
                  vdev->no_of_vpath = 1;
                  vdev->stats.vpaths_open = 1;
            }
      }

      if (vdev->config.intr_type == MSI_X) {
            for (intr_idx = 0;
                 intr_idx < (vdev->no_of_vpath *
                  VXGE_HW_VPATH_MSIX_ACTIVE); intr_idx++) {

                  msix_idx = intr_idx % VXGE_HW_VPATH_MSIX_ACTIVE;
                  irq_req = 0;

                  switch (msix_idx) {
                  case 0:
                        snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
                              "%s:vxge fn: %d vpath: %d Tx MSI-X: %d",
                              vdev->ndev->name, pci_fun, vp_idx,
                              vdev->entries[intr_cnt].entry);
                        ret = request_irq(
                            vdev->entries[intr_cnt].vector,
                              vxge_tx_msix_handle, 0,
                              vdev->desc[intr_cnt],
                              &vdev->vpaths[vp_idx].fifo);
                              vdev->vxge_entries[intr_cnt].arg =
                                    &vdev->vpaths[vp_idx].fifo;
                        irq_req = 1;
                        break;
                  case 1:
                        snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
                              "%s:vxge fn: %d vpath: %d Rx MSI-X: %d",
                              vdev->ndev->name, pci_fun, vp_idx,
                              vdev->entries[intr_cnt].entry);
                        ret = request_irq(
                            vdev->entries[intr_cnt].vector,
                              vxge_rx_msix_napi_handle,
                              0,
                              vdev->desc[intr_cnt],
                              &vdev->vpaths[vp_idx].ring);
                              vdev->vxge_entries[intr_cnt].arg =
                                    &vdev->vpaths[vp_idx].ring;
                        irq_req = 1;
                        break;
                  }

                  if (ret) {
                        vxge_debug_init(VXGE_ERR,
                              "%s: MSIX - %d  Registration failed",
                              vdev->ndev->name, intr_cnt);
                        vxge_rem_msix_isr(vdev);
                        if ((function_mode ==
                              VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION) &&
                              test_and_set_bit(__VXGE_STATE_CARD_UP,
                                    &driver_config->inta_dev_open))
                              return VXGE_HW_FAIL;
                        else {
                              vxge_hw_device_set_intr_type(
                                    vdev->devh,
                                    VXGE_HW_INTR_MODE_IRQLINE);
                                    vdev->config.intr_type = INTA;
                              vxge_debug_init(VXGE_ERR,
                                    "%s: Defaulting to INTA"
                                    , vdev->ndev->name);
                              vxge_close_vpaths(vdev, 1);
                              vdev->no_of_vpath = 1;
                              vdev->stats.vpaths_open = 1;
                              goto INTA_MODE;
                        }
                  }

                  if (irq_req) {
                        /* We requested for this msix interrupt */
                        vdev->vxge_entries[intr_cnt].in_use = 1;
                        vxge_hw_vpath_msix_unmask(
                              vdev->vpaths[vp_idx].handle,
                              intr_idx);
                        intr_cnt++;
                  }

                  /* Point to next vpath handler */
                  if (((intr_idx + 1) % VXGE_HW_VPATH_MSIX_ACTIVE == 0)
                        && (vp_idx < (vdev->no_of_vpath - 1)))
                              vp_idx++;
            }

            intr_cnt = vdev->max_vpath_supported * 2;
            snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
                  "%s:vxge Alarm fn: %d MSI-X: %d",
                  vdev->ndev->name, pci_fun,
                  vdev->entries[intr_cnt].entry);
            /* For Alarm interrupts */
            ret = request_irq(vdev->entries[intr_cnt].vector,
                              vxge_alarm_msix_handle, 0,
                              vdev->desc[intr_cnt],
                              &vdev->vpaths[vp_idx]);
            if (ret) {
                  vxge_debug_init(VXGE_ERR,
                        "%s: MSIX - %d Registration failed",
                        vdev->ndev->name, intr_cnt);
                  vxge_rem_msix_isr(vdev);
                  if ((function_mode ==
                        VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION) &&
                        test_and_set_bit(__VXGE_STATE_CARD_UP,
                                    &driver_config->inta_dev_open))
                        return VXGE_HW_FAIL;
                  else {
                        vxge_hw_device_set_intr_type(vdev->devh,
                                    VXGE_HW_INTR_MODE_IRQLINE);
                        vdev->config.intr_type = INTA;
                        vxge_debug_init(VXGE_ERR,
                              "%s: Defaulting to INTA",
                              vdev->ndev->name);
                        vxge_close_vpaths(vdev, 1);
                        vdev->no_of_vpath = 1;
                        vdev->stats.vpaths_open = 1;
                        goto INTA_MODE;
                  }
            }

            vxge_hw_vpath_msix_unmask(vdev->vpaths[vp_idx].handle,
                              intr_idx - 2);
            vdev->vxge_entries[intr_cnt].in_use = 1;
            vdev->vxge_entries[intr_cnt].arg = &vdev->vpaths[vp_idx];
      }
INTA_MODE:
#endif
      snprintf(vdev->desc[0], VXGE_INTR_STRLEN, "%s:vxge", vdev->ndev->name);

      if (vdev->config.intr_type == INTA) {
            ret = request_irq((int) vdev->pdev->irq,
                  vxge_isr_napi,
                  IRQF_SHARED, vdev->desc[0], hldev);
            if (ret) {
                  vxge_debug_init(VXGE_ERR,
                        "%s %s-%d: ISR registration failed",
                        VXGE_DRIVER_NAME, "IRQ", vdev->pdev->irq);
                  return -ENODEV;
            }
            vxge_debug_init(VXGE_TRACE,
                  "new %s-%d line allocated",
                  "IRQ", vdev->pdev->irq);
      }

      return VXGE_HW_OK;
}

static void vxge_poll_vp_reset(unsigned long data)
{
      struct vxgedev *vdev = (struct vxgedev *)data;
      int i, j = 0;

      for (i = 0; i < vdev->no_of_vpath; i++) {
            if (test_bit(i, &vdev->vp_reset)) {
                  vxge_reset_vpath(vdev, i);
                  j++;
            }
      }
      if (j && (vdev->config.intr_type != MSI_X)) {
            vxge_hw_device_unmask_all(vdev->devh);
            vxge_hw_device_flush_io(vdev->devh);
      }

      mod_timer(&vdev->vp_reset_timer, jiffies + HZ / 2);
}

static void vxge_poll_vp_lockup(unsigned long data)
{
      struct vxgedev *vdev = (struct vxgedev *)data;
      int i;
      struct vxge_ring *ring;
      enum vxge_hw_status status = VXGE_HW_OK;

      for (i = 0; i < vdev->no_of_vpath; i++) {
            ring = &vdev->vpaths[i].ring;
            /* Did this vpath received any packets */
            if (ring->stats.prev_rx_frms == ring->stats.rx_frms) {
                  status = vxge_hw_vpath_check_leak(ring->handle);

                  /* Did it received any packets last time */
                  if ((VXGE_HW_FAIL == status) &&
                        (VXGE_HW_FAIL == ring->last_status)) {

                        /* schedule vpath reset */
                        if (!test_and_set_bit(i, &vdev->vp_reset)) {

                              /* disable interrupts for this vpath */
                              vxge_vpath_intr_disable(vdev, i);

                              /* stop the queue for this vpath */
                              vxge_stop_tx_queue(&vdev->vpaths[i].
                                                fifo);
                              continue;
                        }
                  }
            }
            ring->stats.prev_rx_frms = ring->stats.rx_frms;
            ring->last_status = status;
      }

      /* Check every 1 milli second */
      mod_timer(&vdev->vp_lockup_timer, jiffies + HZ / 1000);
}

/**
 * vxge_open
 * @dev: pointer to the device structure.
 *
 * This function is the open entry point of the driver. It mainly calls a
 * function to allocate Rx buffers and inserts them into the buffer
 * descriptors and then enables the Rx part of the NIC.
 * Return value: '0' on success and an appropriate (-)ve integer as
 * defined in errno.h file on failure.
 */
int
vxge_open(struct net_device *dev)
{
      enum vxge_hw_status status;
      struct vxgedev *vdev;
      struct __vxge_hw_device *hldev;
      int ret = 0;
      int i;
      u64 val64, function_mode;
      vxge_debug_entryexit(VXGE_TRACE,
            "%s: %s:%d", dev->name, __func__, __LINE__);

      vdev = (struct vxgedev *)netdev_priv(dev);
      hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);
      function_mode = vdev->config.device_hw_info.function_mode;

      /* make sure you have link off by default every time Nic is
       * initialized */
      netif_carrier_off(dev);

      /* Check for another device already opn with INTA */
      if ((function_mode == VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION) &&
            test_bit(__VXGE_STATE_CARD_UP, &driver_config->inta_dev_open)) {
            ret = -EPERM;
            goto out0;
      }

      /* Open VPATHs */
      status = vxge_open_vpaths(vdev);
      if (status != VXGE_HW_OK) {
            vxge_debug_init(VXGE_ERR,
                  "%s: fatal: Vpath open failed", vdev->ndev->name);
            ret = -EPERM;
            goto out0;
      }

      vdev->mtu = dev->mtu;

      status = vxge_add_isr(vdev);
      if (status != VXGE_HW_OK) {
            vxge_debug_init(VXGE_ERR,
                  "%s: fatal: ISR add failed", dev->name);
            ret = -EPERM;
            goto out1;
      }


      if (vdev->config.intr_type != MSI_X) {
            netif_napi_add(dev, &vdev->napi, vxge_poll_inta,
                  vdev->config.napi_weight);
            napi_enable(&vdev->napi);
      } else {
            for (i = 0; i < vdev->no_of_vpath; i++) {
                  netif_napi_add(dev, &vdev->vpaths[i].ring.napi,
                      vxge_poll_msix, vdev->config.napi_weight);
                  napi_enable(&vdev->vpaths[i].ring.napi);
            }
      }

      /* configure RTH */
      if (vdev->config.rth_steering) {
            status = vxge_rth_configure(vdev);
            if (status != VXGE_HW_OK) {
                  vxge_debug_init(VXGE_ERR,
                        "%s: fatal: RTH configuration failed",
                        dev->name);
                  ret = -EPERM;
                  goto out2;
            }
      }

      for (i = 0; i < vdev->no_of_vpath; i++) {
            /* set initial mtu before enabling the device */
            status = vxge_hw_vpath_mtu_set(vdev->vpaths[i].handle,
                                    vdev->mtu);
            if (status != VXGE_HW_OK) {
                  vxge_debug_init(VXGE_ERR,
                        "%s: fatal: can not set new MTU", dev->name);
                  ret = -EPERM;
                  goto out2;
            }
      }

      VXGE_DEVICE_DEBUG_LEVEL_SET(VXGE_TRACE, VXGE_COMPONENT_LL, vdev);
      vxge_debug_init(vdev->level_trace,
            "%s: MTU is %d", vdev->ndev->name, vdev->mtu);
      VXGE_DEVICE_DEBUG_LEVEL_SET(VXGE_ERR, VXGE_COMPONENT_LL, vdev);

      /* Reprogram the DA table with populated mac addresses */
      for (i = 0; i < vdev->no_of_vpath; i++) {
            vxge_restore_vpath_mac_addr(&vdev->vpaths[i]);
            vxge_restore_vpath_vid_table(&vdev->vpaths[i]);
      }

      /* Enable vpath to sniff all unicast/multicast traffic that not
       * addressed to them. We allow promiscous mode for PF only
       */

      val64 = 0;
      for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
            val64 |= VXGE_HW_RXMAC_AUTHORIZE_ALL_ADDR_VP(i);

      vxge_hw_mgmt_reg_write(vdev->devh,
            vxge_hw_mgmt_reg_type_mrpcim,
            0,
            (ulong)offsetof(struct vxge_hw_mrpcim_reg,
                  rxmac_authorize_all_addr),
            val64);

      vxge_hw_mgmt_reg_write(vdev->devh,
            vxge_hw_mgmt_reg_type_mrpcim,
            0,
            (ulong)offsetof(struct vxge_hw_mrpcim_reg,
                  rxmac_authorize_all_vid),
            val64);

      vxge_set_multicast(dev);

      /* Enabling Bcast and mcast for all vpath */
      for (i = 0; i < vdev->no_of_vpath; i++) {
            status = vxge_hw_vpath_bcast_enable(vdev->vpaths[i].handle);
            if (status != VXGE_HW_OK)
                  vxge_debug_init(VXGE_ERR,
                        "%s : Can not enable bcast for vpath "
                        "id %d", dev->name, i);
            if (vdev->config.addr_learn_en) {
                  status =
                      vxge_hw_vpath_mcast_enable(vdev->vpaths[i].handle);
                  if (status != VXGE_HW_OK)
                        vxge_debug_init(VXGE_ERR,
                              "%s : Can not enable mcast for vpath "
                              "id %d", dev->name, i);
            }
      }

      vxge_hw_device_setpause_data(vdev->devh, 0,
            vdev->config.tx_pause_enable,
            vdev->config.rx_pause_enable);

      if (vdev->vp_reset_timer.function == NULL)
            vxge_os_timer(vdev->vp_reset_timer,
                  vxge_poll_vp_reset, vdev, (HZ/2));

      if (vdev->vp_lockup_timer.function == NULL)
            vxge_os_timer(vdev->vp_lockup_timer,
                  vxge_poll_vp_lockup, vdev, (HZ/2));

      set_bit(__VXGE_STATE_CARD_UP, &vdev->state);

      smp_wmb();

      if (vxge_hw_device_link_state_get(vdev->devh) == VXGE_HW_LINK_UP) {
            netif_carrier_on(vdev->ndev);
            printk(KERN_NOTICE "%s: Link Up\n", vdev->ndev->name);
            vdev->stats.link_up++;
      }

      vxge_hw_device_intr_enable(vdev->devh);

      smp_wmb();

      for (i = 0; i < vdev->no_of_vpath; i++) {
            vxge_hw_vpath_enable(vdev->vpaths[i].handle);
            smp_wmb();
            vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[i].handle);
      }

      vxge_start_all_tx_queue(vdev);
      goto out0;

out2:
      vxge_rem_isr(vdev);

      /* Disable napi */
      if (vdev->config.intr_type != MSI_X)
            napi_disable(&vdev->napi);
      else {
            for (i = 0; i < vdev->no_of_vpath; i++)
                  napi_disable(&vdev->vpaths[i].ring.napi);
      }

out1:
      vxge_close_vpaths(vdev, 0);
out0:
      vxge_debug_entryexit(VXGE_TRACE,
                        "%s: %s:%d  Exiting...",
                        dev->name, __func__, __LINE__);
      return ret;
}

/* Loop throught the mac address list and delete all the entries */
void vxge_free_mac_add_list(struct vxge_vpath *vpath)
{

      struct list_head *entry, *next;
      if (list_empty(&vpath->mac_addr_list))
            return;

      list_for_each_safe(entry, next, &vpath->mac_addr_list) {
            list_del(entry);
            kfree((struct vxge_mac_addrs *)entry);
      }
}

static void vxge_napi_del_all(struct vxgedev *vdev)
{
      int i;
      if (vdev->config.intr_type != MSI_X)
            netif_napi_del(&vdev->napi);
      else {
            for (i = 0; i < vdev->no_of_vpath; i++)
                  netif_napi_del(&vdev->vpaths[i].ring.napi);
      }
      return;
}

int do_vxge_close(struct net_device *dev, int do_io)
{
      enum vxge_hw_status status;
      struct vxgedev *vdev;
      struct __vxge_hw_device *hldev;
      int i;
      u64 val64, vpath_vector;
      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
            dev->name, __func__, __LINE__);

      vdev = (struct vxgedev *)netdev_priv(dev);
      hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);

      /* If vxge_handle_crit_err task is executing,
       * wait till it completes. */
      while (test_and_set_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
            msleep(50);

      clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
      if (do_io) {
            /* Put the vpath back in normal mode */
            vpath_vector = vxge_mBIT(vdev->vpaths[0].device_id);
            status = vxge_hw_mgmt_reg_read(vdev->devh,
                        vxge_hw_mgmt_reg_type_mrpcim,
                        0,
                        (ulong)offsetof(
                              struct vxge_hw_mrpcim_reg,
                              rts_mgr_cbasin_cfg),
                        &val64);

            if (status == VXGE_HW_OK) {
                  val64 &= ~vpath_vector;
                  status = vxge_hw_mgmt_reg_write(vdev->devh,
                              vxge_hw_mgmt_reg_type_mrpcim,
                              0,
                              (ulong)offsetof(
                                    struct vxge_hw_mrpcim_reg,
                                    rts_mgr_cbasin_cfg),
                              val64);
            }

            /* Remove the function 0 from promiscous mode */
            vxge_hw_mgmt_reg_write(vdev->devh,
                  vxge_hw_mgmt_reg_type_mrpcim,
                  0,
                  (ulong)offsetof(struct vxge_hw_mrpcim_reg,
                        rxmac_authorize_all_addr),
                  0);

            vxge_hw_mgmt_reg_write(vdev->devh,
                  vxge_hw_mgmt_reg_type_mrpcim,
                  0,
                  (ulong)offsetof(struct vxge_hw_mrpcim_reg,
                        rxmac_authorize_all_vid),
                  0);

            smp_wmb();
      }
      del_timer_sync(&vdev->vp_lockup_timer);

      del_timer_sync(&vdev->vp_reset_timer);

      /* Disable napi */
      if (vdev->config.intr_type != MSI_X)
            napi_disable(&vdev->napi);
      else {
            for (i = 0; i < vdev->no_of_vpath; i++)
                  napi_disable(&vdev->vpaths[i].ring.napi);
      }

      netif_carrier_off(vdev->ndev);
      printk(KERN_NOTICE "%s: Link Down\n", vdev->ndev->name);
      vxge_stop_all_tx_queue(vdev);

      /* Note that at this point xmit() is stopped by upper layer */
      if (do_io)
            vxge_hw_device_intr_disable(vdev->devh);

      mdelay(1000);

      vxge_rem_isr(vdev);

      vxge_napi_del_all(vdev);

      if (do_io)
            vxge_reset_all_vpaths(vdev);

      vxge_close_vpaths(vdev, 0);

      vxge_debug_entryexit(VXGE_TRACE,
            "%s: %s:%d  Exiting...", dev->name, __func__, __LINE__);

      clear_bit(__VXGE_STATE_CARD_UP, &driver_config->inta_dev_open);
      clear_bit(__VXGE_STATE_RESET_CARD, &vdev->state);

      return 0;
}

/**
 * vxge_close
 * @dev: device pointer.
 *
 * This is the stop entry point of the driver. It needs to undo exactly
 * whatever was done by the open entry point, thus it's usually referred to
 * as the close function.Among other things this function mainly stops the
 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
 * Return value: '0' on success and an appropriate (-)ve integer as
 * defined in errno.h file on failure.
 */
int
vxge_close(struct net_device *dev)
{
      do_vxge_close(dev, 1);
      return 0;
}

/**
 * vxge_change_mtu
 * @dev: net device pointer.
 * @new_mtu :the new MTU size for the device.
 *
 * A driver entry point to change MTU size for the device. Before changing
 * the MTU the device must be stopped.
 */
static int vxge_change_mtu(struct net_device *dev, int new_mtu)
{
      struct vxgedev *vdev = netdev_priv(dev);

      vxge_debug_entryexit(vdev->level_trace,
            "%s:%d", __func__, __LINE__);
      if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > VXGE_HW_MAX_MTU)) {
            vxge_debug_init(vdev->level_err,
                  "%s: mtu size is invalid", dev->name);
            return -EPERM;
      }

      /* check if device is down already */
      if (unlikely(!is_vxge_card_up(vdev))) {
            /* just store new value, will use later on open() */
            dev->mtu = new_mtu;
            vxge_debug_init(vdev->level_err,
                  "%s", "device is down on MTU change");
            return 0;
      }

      vxge_debug_init(vdev->level_trace,
            "trying to apply new MTU %d", new_mtu);

      if (vxge_close(dev))
            return -EIO;

      dev->mtu = new_mtu;
      vdev->mtu = new_mtu;

      if (vxge_open(dev))
            return -EIO;

      vxge_debug_init(vdev->level_trace,
            "%s: MTU changed to %d", vdev->ndev->name, new_mtu);

      vxge_debug_entryexit(vdev->level_trace,
            "%s:%d  Exiting...", __func__, __LINE__);

      return 0;
}

/**
 * vxge_get_stats
 * @dev: pointer to the device structure
 *
 * Updates the device statistics structure. This function updates the device
 * statistics structure in the net_device structure and returns a pointer
 * to the same.
 */
static struct net_device_stats *
vxge_get_stats(struct net_device *dev)
{
      struct vxgedev *vdev;
      struct net_device_stats *net_stats;
      int k;

      vdev = netdev_priv(dev);

      net_stats = &vdev->stats.net_stats;

      memset(net_stats, 0, sizeof(struct net_device_stats));

      for (k = 0; k < vdev->no_of_vpath; k++) {
            net_stats->rx_packets += vdev->vpaths[k].ring.stats.rx_frms;
            net_stats->rx_bytes += vdev->vpaths[k].ring.stats.rx_bytes;
            net_stats->rx_errors += vdev->vpaths[k].ring.stats.rx_errors;
            net_stats->multicast += vdev->vpaths[k].ring.stats.rx_mcast;
            net_stats->rx_dropped +=
                  vdev->vpaths[k].ring.stats.rx_dropped;

            net_stats->tx_packets += vdev->vpaths[k].fifo.stats.tx_frms;
            net_stats->tx_bytes += vdev->vpaths[k].fifo.stats.tx_bytes;
            net_stats->tx_errors += vdev->vpaths[k].fifo.stats.tx_errors;
      }

      return net_stats;
}

/**
 * vxge_ioctl
 * @dev: Device pointer.
 * @ifr: An IOCTL specific structure, that can contain a pointer to
 *       a proprietary structure used to pass information to the driver.
 * @cmd: This is used to distinguish between the different commands that
 *       can be passed to the IOCTL functions.
 *
 * Entry point for the Ioctl.
 */
static int vxge_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
      return -EOPNOTSUPP;
}

/**
 * vxge_tx_watchdog
 * @dev: pointer to net device structure
 *
 * Watchdog for transmit side.
 * This function is triggered if the Tx Queue is stopped
 * for a pre-defined amount of time when the Interface is still up.
 */
static void
vxge_tx_watchdog(struct net_device *dev)
{
      struct vxgedev *vdev;

      vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);

      vdev = (struct vxgedev *)netdev_priv(dev);

      vdev->cric_err_event = VXGE_HW_EVENT_RESET_START;

      vxge_reset(vdev);
      vxge_debug_entryexit(VXGE_TRACE,
            "%s:%d  Exiting...", __func__, __LINE__);
}

/**
 * vxge_vlan_rx_register
 * @dev: net device pointer.
 * @grp: vlan group
 *
 * Vlan group registration
 */
static void
vxge_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
      struct vxgedev *vdev;
      struct vxge_vpath *vpath;
      int vp;
      u64 vid;
      enum vxge_hw_status status;
      int i;

      vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);

      vdev = (struct vxgedev *)netdev_priv(dev);

      vpath = &vdev->vpaths[0];
      if ((NULL == grp) && (vpath->is_open)) {
            /* Get the first vlan */
            status = vxge_hw_vpath_vid_get(vpath->handle, &vid);

            while (status == VXGE_HW_OK) {

                  /* Delete this vlan from the vid table */
                  for (vp = 0; vp < vdev->no_of_vpath; vp++) {
                        vpath = &vdev->vpaths[vp];
                        if (!vpath->is_open)
                              continue;

                        vxge_hw_vpath_vid_delete(vpath->handle, vid);
                  }

                  /* Get the next vlan to be deleted */
                  vpath = &vdev->vpaths[0];
                  status = vxge_hw_vpath_vid_get(vpath->handle, &vid);
            }
      }

      vdev->vlgrp = grp;

      for (i = 0; i < vdev->no_of_vpath; i++) {
            if (vdev->vpaths[i].is_configured)
                  vdev->vpaths[i].ring.vlgrp = grp;
      }

      vxge_debug_entryexit(VXGE_TRACE,
            "%s:%d  Exiting...", __func__, __LINE__);
}

/**
 * vxge_vlan_rx_add_vid
 * @dev: net device pointer.
 * @vid: vid
 *
 * Add the vlan id to the devices vlan id table
 */
static void
vxge_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
{
      struct vxgedev *vdev;
      struct vxge_vpath *vpath;
      int vp_id;

      vdev = (struct vxgedev *)netdev_priv(dev);

      /* Add these vlan to the vid table */
      for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
            vpath = &vdev->vpaths[vp_id];
            if (!vpath->is_open)
                  continue;
            vxge_hw_vpath_vid_add(vpath->handle, vid);
      }
}

/**
 * vxge_vlan_rx_add_vid
 * @dev: net device pointer.
 * @vid: vid
 *
 * Remove the vlan id from the device's vlan id table
 */
static void
vxge_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
      struct vxgedev *vdev;
      struct vxge_vpath *vpath;
      int vp_id;

      vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);

      vdev = (struct vxgedev *)netdev_priv(dev);

      vlan_group_set_device(vdev->vlgrp, vid, NULL);

      /* Delete this vlan from the vid table */
      for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
            vpath = &vdev->vpaths[vp_id];
            if (!vpath->is_open)
                  continue;
            vxge_hw_vpath_vid_delete(vpath->handle, vid);
      }
      vxge_debug_entryexit(VXGE_TRACE,
            "%s:%d  Exiting...", __func__, __LINE__);
}

static const struct net_device_ops vxge_netdev_ops = {
      .ndo_open               = vxge_open,
      .ndo_stop               = vxge_close,
      .ndo_get_stats          = vxge_get_stats,
      .ndo_start_xmit         = vxge_xmit,
      .ndo_validate_addr      = eth_validate_addr,
      .ndo_set_multicast_list = vxge_set_multicast,

      .ndo_do_ioctl           = vxge_ioctl,

      .ndo_set_mac_address    = vxge_set_mac_addr,
      .ndo_change_mtu         = vxge_change_mtu,
      .ndo_vlan_rx_register   = vxge_vlan_rx_register,
      .ndo_vlan_rx_kill_vid   = vxge_vlan_rx_kill_vid,
      .ndo_vlan_rx_add_vid    = vxge_vlan_rx_add_vid,

      .ndo_tx_timeout         = vxge_tx_watchdog,
#ifdef CONFIG_NET_POLL_CONTROLLER
      .ndo_poll_controller    = vxge_netpoll,
#endif
};

int __devinit vxge_device_register(struct __vxge_hw_device *hldev,
                           struct vxge_config *config,
                           int high_dma, int no_of_vpath,
                           struct vxgedev **vdev_out)
{
      struct net_device *ndev;
      enum vxge_hw_status status = VXGE_HW_OK;
      struct vxgedev *vdev;
      int i, ret = 0, no_of_queue = 1;
      u64 stat;

      *vdev_out = NULL;
      if (config->tx_steering_type == TX_MULTIQ_STEERING)
            no_of_queue = no_of_vpath;

      ndev = alloc_etherdev_mq(sizeof(struct vxgedev),
                  no_of_queue);
      if (ndev == NULL) {
            vxge_debug_init(
                  vxge_hw_device_trace_level_get(hldev),
            "%s : device allocation failed", __func__);
            ret = -ENODEV;
            goto _out0;
      }

      vxge_debug_entryexit(
            vxge_hw_device_trace_level_get(hldev),
            "%s: %s:%d  Entering...",
            ndev->name, __func__, __LINE__);

      vdev = netdev_priv(ndev);
      memset(vdev, 0, sizeof(struct vxgedev));

      vdev->ndev = ndev;
      vdev->devh = hldev;
      vdev->pdev = hldev->pdev;
      memcpy(&vdev->config, config, sizeof(struct vxge_config));
      vdev->rx_csum = 1;      /* Enable Rx CSUM by default. */

      SET_NETDEV_DEV(ndev, &vdev->pdev->dev);

      ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
                        NETIF_F_HW_VLAN_FILTER;
      /*  Driver entry points */
      ndev->irq = vdev->pdev->irq;
      ndev->base_addr = (unsigned long) hldev->bar0;

      ndev->netdev_ops = &vxge_netdev_ops;

      ndev->watchdog_timeo = VXGE_LL_WATCH_DOG_TIMEOUT;

      initialize_ethtool_ops(ndev);

      /* Allocate memory for vpath */
      vdev->vpaths = kzalloc((sizeof(struct vxge_vpath)) *
                        no_of_vpath, GFP_KERNEL);
      if (!vdev->vpaths) {
            vxge_debug_init(VXGE_ERR,
                  "%s: vpath memory allocation failed",
                  vdev->ndev->name);
            ret = -ENODEV;
            goto _out1;
      }

      ndev->features |= NETIF_F_SG;

      ndev->features |= NETIF_F_HW_CSUM;
      vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
            "%s : checksuming enabled", __func__);

      if (high_dma) {
            ndev->features |= NETIF_F_HIGHDMA;
            vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
                  "%s : using High DMA", __func__);
      }

      ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;

      if (vdev->config.gro_enable)
            ndev->features |= NETIF_F_GRO;

      if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING)
            ndev->real_num_tx_queues = no_of_vpath;

#ifdef NETIF_F_LLTX
      ndev->features |= NETIF_F_LLTX;
#endif

      for (i = 0; i < no_of_vpath; i++)
            spin_lock_init(&vdev->vpaths[i].fifo.tx_lock);

      if (register_netdev(ndev)) {
            vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
                  "%s: %s : device registration failed!",
                  ndev->name, __func__);
            ret = -ENODEV;
            goto _out2;
      }

      /*  Set the factory defined MAC address initially */
      ndev->addr_len = ETH_ALEN;

      /* Make Link state as off at this point, when the Link change
       * interrupt comes the state will be automatically changed to
       * the right state.
       */
      netif_carrier_off(ndev);

      vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
            "%s: Ethernet device registered",
            ndev->name);

      *vdev_out = vdev;

      /* Resetting the Device stats */
      status = vxge_hw_mrpcim_stats_access(
                        hldev,
                        VXGE_HW_STATS_OP_CLEAR_ALL_STATS,
                        0,
                        0,
                        &stat);

      if (status == VXGE_HW_ERR_PRIVILAGED_OPEARATION)
            vxge_debug_init(
                  vxge_hw_device_trace_level_get(hldev),
                  "%s: device stats clear returns"
                  "VXGE_HW_ERR_PRIVILAGED_OPEARATION", ndev->name);

      vxge_debug_entryexit(vxge_hw_device_trace_level_get(hldev),
            "%s: %s:%d  Exiting...",
            ndev->name, __func__, __LINE__);

      return ret;
_out2:
      kfree(vdev->vpaths);
_out1:
      free_netdev(ndev);
_out0:
      return ret;
}

/*
 * vxge_device_unregister
 *
 * This function will unregister and free network device
 */
void
vxge_device_unregister(struct __vxge_hw_device *hldev)
{
      struct vxgedev *vdev;
      struct net_device *dev;
      char buf[IFNAMSIZ];
#if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
      (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
      u32 level_trace;
#endif

      dev = hldev->ndev;
      vdev = netdev_priv(dev);
#if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
      (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
      level_trace = vdev->level_trace;
#endif
      vxge_debug_entryexit(level_trace,
            "%s: %s:%d", vdev->ndev->name, __func__, __LINE__);

      memcpy(buf, vdev->ndev->name, IFNAMSIZ);

      /* in 2.6 will call stop() if device is up */
      unregister_netdev(dev);

      flush_scheduled_work();

      vxge_debug_init(level_trace, "%s: ethernet device unregistered", buf);
      vxge_debug_entryexit(level_trace,
            "%s: %s:%d  Exiting...", buf, __func__, __LINE__);
}

/*
 * vxge_callback_crit_err
 *
 * This function is called by the alarm handler in interrupt context.
 * Driver must analyze it based on the event type.
 */
static void
vxge_callback_crit_err(struct __vxge_hw_device *hldev,
                  enum vxge_hw_event type, u64 vp_id)
{
      struct net_device *dev = hldev->ndev;
      struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev);
      int vpath_idx;

      vxge_debug_entryexit(vdev->level_trace,
            "%s: %s:%d", vdev->ndev->name, __func__, __LINE__);

      /* Note: This event type should be used for device wide
       * indications only - Serious errors, Slot freeze and critical errors
       */
      vdev->cric_err_event = type;

      for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++)
            if (vdev->vpaths[vpath_idx].device_id == vp_id)
                  break;

      if (!test_bit(__VXGE_STATE_RESET_CARD, &vdev->state)) {
            if (type == VXGE_HW_EVENT_SLOT_FREEZE) {
                  vxge_debug_init(VXGE_ERR,
                        "%s: Slot is frozen", vdev->ndev->name);
            } else if (type == VXGE_HW_EVENT_SERR) {
                  vxge_debug_init(VXGE_ERR,
                        "%s: Encountered Serious Error",
                        vdev->ndev->name);
            } else if (type == VXGE_HW_EVENT_CRITICAL_ERR)
                  vxge_debug_init(VXGE_ERR,
                        "%s: Encountered Critical Error",
                        vdev->ndev->name);
      }

      if ((type == VXGE_HW_EVENT_SERR) ||
            (type == VXGE_HW_EVENT_SLOT_FREEZE)) {
            if (unlikely(vdev->exec_mode))
                  clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
      } else if (type == VXGE_HW_EVENT_CRITICAL_ERR) {
            vxge_hw_device_mask_all(hldev);
            if (unlikely(vdev->exec_mode))
                  clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
      } else if ((type == VXGE_HW_EVENT_FIFO_ERR) ||
              (type == VXGE_HW_EVENT_VPATH_ERR)) {

            if (unlikely(vdev->exec_mode))
                  clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
            else {
                  /* check if this vpath is already set for reset */
                  if (!test_and_set_bit(vpath_idx, &vdev->vp_reset)) {

                        /* disable interrupts for this vpath */
                        vxge_vpath_intr_disable(vdev, vpath_idx);

                        /* stop the queue for this vpath */
                        vxge_stop_tx_queue(&vdev->vpaths[vpath_idx].
                                          fifo);
                  }
            }
      }

      vxge_debug_entryexit(vdev->level_trace,
            "%s: %s:%d  Exiting...",
            vdev->ndev->name, __func__, __LINE__);
}

static void verify_bandwidth(void)
{
      int i, band_width, total = 0, equal_priority = 0;

      /* 1. If user enters 0 for some fifo, give equal priority to all */
      for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
            if (bw_percentage[i] == 0) {
                  equal_priority = 1;
                  break;
            }
      }

      if (!equal_priority) {
            /* 2. If sum exceeds 100, give equal priority to all */
            for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
                  if (bw_percentage[i] == 0xFF)
                        break;

                  total += bw_percentage[i];
                  if (total > VXGE_HW_VPATH_BANDWIDTH_MAX) {
                        equal_priority = 1;
                        break;
                  }
            }
      }

      if (!equal_priority) {
            /* Is all the bandwidth consumed? */
            if (total < VXGE_HW_VPATH_BANDWIDTH_MAX) {
                  if (i < VXGE_HW_MAX_VIRTUAL_PATHS) {
                        /* Split rest of bw equally among next VPs*/
                        band_width =
                          (VXGE_HW_VPATH_BANDWIDTH_MAX  - total) /
                              (VXGE_HW_MAX_VIRTUAL_PATHS - i);
                        if (band_width < 2) /* min of 2% */
                              equal_priority = 1;
                        else {
                              for (; i < VXGE_HW_MAX_VIRTUAL_PATHS;
                                    i++)
                                    bw_percentage[i] =
                                          band_width;
                        }
                  }
            } else if (i < VXGE_HW_MAX_VIRTUAL_PATHS)
                  equal_priority = 1;
      }

      if (equal_priority) {
            vxge_debug_init(VXGE_ERR,
                  "%s: Assigning equal bandwidth to all the vpaths",
                  VXGE_DRIVER_NAME);
            bw_percentage[0] = VXGE_HW_VPATH_BANDWIDTH_MAX /
                              VXGE_HW_MAX_VIRTUAL_PATHS;
            for (i = 1; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
                  bw_percentage[i] = bw_percentage[0];
      }

      return;
}

/*
 * Vpath configuration
 */
static int __devinit vxge_config_vpaths(
                  struct vxge_hw_device_config *device_config,
                  u64 vpath_mask, struct vxge_config *config_param)
{
      int i, no_of_vpaths = 0, default_no_vpath = 0, temp;
      u32 txdl_size, txdl_per_memblock;

      temp = driver_config->vpath_per_dev;
      if ((driver_config->vpath_per_dev == VXGE_USE_DEFAULT) &&
            (max_config_dev == VXGE_MAX_CONFIG_DEV)) {
            /* No more CPU. Return vpath number as zero.*/
            if (driver_config->g_no_cpus == -1)
                  return 0;

            if (!driver_config->g_no_cpus)
                  driver_config->g_no_cpus = num_online_cpus();

            driver_config->vpath_per_dev = driver_config->g_no_cpus >> 1;
            if (!driver_config->vpath_per_dev)
                  driver_config->vpath_per_dev = 1;

            for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
                  if (!vxge_bVALn(vpath_mask, i, 1))
                        continue;
                  else
                        default_no_vpath++;
            if (default_no_vpath < driver_config->vpath_per_dev)
                  driver_config->vpath_per_dev = default_no_vpath;

            driver_config->g_no_cpus = driver_config->g_no_cpus -
                        (driver_config->vpath_per_dev * 2);
            if (driver_config->g_no_cpus <= 0)
                  driver_config->g_no_cpus = -1;
      }

      if (driver_config->vpath_per_dev == 1) {
            vxge_debug_ll_config(VXGE_TRACE,
                  "%s: Disable tx and rx steering, "
                  "as single vpath is configured", VXGE_DRIVER_NAME);
            config_param->rth_steering = NO_STEERING;
            config_param->tx_steering_type = NO_STEERING;
            device_config->rth_en = 0;
      }

      /* configure bandwidth */
      for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
            device_config->vp_config[i].min_bandwidth = bw_percentage[i];

      for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
            device_config->vp_config[i].vp_id = i;
            device_config->vp_config[i].mtu = VXGE_HW_DEFAULT_MTU;
            if (no_of_vpaths < driver_config->vpath_per_dev) {
                  if (!vxge_bVALn(vpath_mask, i, 1)) {
                        vxge_debug_ll_config(VXGE_TRACE,
                              "%s: vpath: %d is not available",
                              VXGE_DRIVER_NAME, i);
                        continue;
                  } else {
                        vxge_debug_ll_config(VXGE_TRACE,
                              "%s: vpath: %d available",
                              VXGE_DRIVER_NAME, i);
                        no_of_vpaths++;
                  }
            } else {
                  vxge_debug_ll_config(VXGE_TRACE,
                        "%s: vpath: %d is not configured, "
                        "max_config_vpath exceeded",
                        VXGE_DRIVER_NAME, i);
                  break;
            }

            /* Configure Tx fifo's */
            device_config->vp_config[i].fifo.enable =
                                    VXGE_HW_FIFO_ENABLE;
            device_config->vp_config[i].fifo.max_frags =
                        MAX_SKB_FRAGS;
            device_config->vp_config[i].fifo.memblock_size =
                  VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE;

            txdl_size = MAX_SKB_FRAGS * sizeof(struct vxge_hw_fifo_txd);
            txdl_per_memblock = VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE / txdl_size;

            device_config->vp_config[i].fifo.fifo_blocks =
                  ((VXGE_DEF_FIFO_LENGTH - 1) / txdl_per_memblock) + 1;

            device_config->vp_config[i].fifo.intr =
                        VXGE_HW_FIFO_QUEUE_INTR_DISABLE;

            /* Configure tti properties */
            device_config->vp_config[i].tti.intr_enable =
                              VXGE_HW_TIM_INTR_ENABLE;

            device_config->vp_config[i].tti.btimer_val =
                  (VXGE_TTI_BTIMER_VAL * 1000) / 272;

            device_config->vp_config[i].tti.timer_ac_en =
                        VXGE_HW_TIM_TIMER_AC_ENABLE;

            /* For msi-x with napi (each vector
            has a handler of its own) -
            Set CI to OFF for all vpaths */
            device_config->vp_config[i].tti.timer_ci_en =
                  VXGE_HW_TIM_TIMER_CI_DISABLE;

            device_config->vp_config[i].tti.timer_ri_en =
                        VXGE_HW_TIM_TIMER_RI_DISABLE;

            device_config->vp_config[i].tti.util_sel =
                  VXGE_HW_TIM_UTIL_SEL_LEGACY_TX_NET_UTIL;

            device_config->vp_config[i].tti.ltimer_val =
                  (VXGE_TTI_LTIMER_VAL * 1000) / 272;

            device_config->vp_config[i].tti.rtimer_val =
                  (VXGE_TTI_RTIMER_VAL * 1000) / 272;

            device_config->vp_config[i].tti.urange_a = TTI_TX_URANGE_A;
            device_config->vp_config[i].tti.urange_b = TTI_TX_URANGE_B;
            device_config->vp_config[i].tti.urange_c = TTI_TX_URANGE_C;
            device_config->vp_config[i].tti.uec_a = TTI_TX_UFC_A;
            device_config->vp_config[i].tti.uec_b = TTI_TX_UFC_B;
            device_config->vp_config[i].tti.uec_c = TTI_TX_UFC_C;
            device_config->vp_config[i].tti.uec_d = TTI_TX_UFC_D;

            /* Configure Rx rings */
            device_config->vp_config[i].ring.enable  =
                                    VXGE_HW_RING_ENABLE;

            device_config->vp_config[i].ring.ring_blocks  =
                                    VXGE_HW_DEF_RING_BLOCKS;
            device_config->vp_config[i].ring.buffer_mode =
                  VXGE_HW_RING_RXD_BUFFER_MODE_1;
            device_config->vp_config[i].ring.rxds_limit  =
                        VXGE_HW_DEF_RING_RXDS_LIMIT;
            device_config->vp_config[i].ring.scatter_mode =
                              VXGE_HW_RING_SCATTER_MODE_A;

            /* Configure rti properties */
            device_config->vp_config[i].rti.intr_enable =
                              VXGE_HW_TIM_INTR_ENABLE;

            device_config->vp_config[i].rti.btimer_val =
                  (VXGE_RTI_BTIMER_VAL * 1000)/272;

            device_config->vp_config[i].rti.timer_ac_en =
                                    VXGE_HW_TIM_TIMER_AC_ENABLE;

            device_config->vp_config[i].rti.timer_ci_en =
                                    VXGE_HW_TIM_TIMER_CI_DISABLE;

            device_config->vp_config[i].rti.timer_ri_en =
                                    VXGE_HW_TIM_TIMER_RI_DISABLE;

            device_config->vp_config[i].rti.util_sel =
                        VXGE_HW_TIM_UTIL_SEL_LEGACY_RX_NET_UTIL;

            device_config->vp_config[i].rti.urange_a =
                                    RTI_RX_URANGE_A;
            device_config->vp_config[i].rti.urange_b =
                                    RTI_RX_URANGE_B;
            device_config->vp_config[i].rti.urange_c =
                                    RTI_RX_URANGE_C;
            device_config->vp_config[i].rti.uec_a = RTI_RX_UFC_A;
            device_config->vp_config[i].rti.uec_b = RTI_RX_UFC_B;
            device_config->vp_config[i].rti.uec_c = RTI_RX_UFC_C;
            device_config->vp_config[i].rti.uec_d = RTI_RX_UFC_D;

            device_config->vp_config[i].rti.rtimer_val =
                  (VXGE_RTI_RTIMER_VAL * 1000) / 272;

            device_config->vp_config[i].rti.ltimer_val =
                  (VXGE_RTI_LTIMER_VAL * 1000) / 272;

            device_config->vp_config[i].rpa_strip_vlan_tag =
                  vlan_tag_strip;
      }

      driver_config->vpath_per_dev = temp;
      return no_of_vpaths;
}

/* initialize device configuratrions */
static void __devinit vxge_device_config_init(
                        struct vxge_hw_device_config *device_config,
                        int *intr_type)
{
      /* Used for CQRQ/SRQ. */
      device_config->dma_blockpool_initial =
                  VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;

      device_config->dma_blockpool_max =
                  VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;

      if (max_mac_vpath > VXGE_MAX_MAC_ADDR_COUNT)
            max_mac_vpath = VXGE_MAX_MAC_ADDR_COUNT;

#ifndef CONFIG_PCI_MSI
      vxge_debug_init(VXGE_ERR,
            "%s: This Kernel does not support "
            "MSI-X. Defaulting to INTA", VXGE_DRIVER_NAME);
      *intr_type = INTA;
#endif

      /* Configure whether MSI-X or IRQL. */
      switch (*intr_type) {
      case INTA:
            device_config->intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
            break;

      case MSI_X:
            device_config->intr_mode = VXGE_HW_INTR_MODE_MSIX;
            break;
      }
      /* Timer period between device poll */
      device_config->device_poll_millis = VXGE_TIMER_DELAY;

      /* Configure mac based steering. */
      device_config->rts_mac_en = addr_learn_en;

      /* Configure Vpaths */
      device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_MULTI_IT;

      vxge_debug_ll_config(VXGE_TRACE, "%s : Device Config Params ",
                  __func__);
      vxge_debug_ll_config(VXGE_TRACE, "dma_blockpool_initial : %d",
                  device_config->dma_blockpool_initial);
      vxge_debug_ll_config(VXGE_TRACE, "dma_blockpool_max : %d",
                  device_config->dma_blockpool_max);
      vxge_debug_ll_config(VXGE_TRACE, "intr_mode : %d",
                  device_config->intr_mode);
      vxge_debug_ll_config(VXGE_TRACE, "device_poll_millis : %d",
                  device_config->device_poll_millis);
      vxge_debug_ll_config(VXGE_TRACE, "rts_mac_en : %d",
                  device_config->rts_mac_en);
      vxge_debug_ll_config(VXGE_TRACE, "rth_en : %d",
                  device_config->rth_en);
      vxge_debug_ll_config(VXGE_TRACE, "rth_it_type : %d",
                  device_config->rth_it_type);
}

static void __devinit vxge_print_parm(struct vxgedev *vdev, u64 vpath_mask)
{
      int i;

      vxge_debug_init(VXGE_TRACE,
            "%s: %d Vpath(s) opened",
            vdev->ndev->name, vdev->no_of_vpath);

      switch (vdev->config.intr_type) {
      case INTA:
            vxge_debug_init(VXGE_TRACE,
                  "%s: Interrupt type INTA", vdev->ndev->name);
            break;

      case MSI_X:
            vxge_debug_init(VXGE_TRACE,
                  "%s: Interrupt type MSI-X", vdev->ndev->name);
            break;
      }

      if (vdev->config.rth_steering) {
            vxge_debug_init(VXGE_TRACE,
                  "%s: RTH steering enabled for TCP_IPV4",
                  vdev->ndev->name);
      } else {
            vxge_debug_init(VXGE_TRACE,
                  "%s: RTH steering disabled", vdev->ndev->name);
      }

      switch (vdev->config.tx_steering_type) {
      case NO_STEERING:
            vxge_debug_init(VXGE_TRACE,
                  "%s: Tx steering disabled", vdev->ndev->name);
            break;
      case TX_PRIORITY_STEERING:
            vxge_debug_init(VXGE_TRACE,
                  "%s: Unsupported tx steering option",
                  vdev->ndev->name);
            vxge_debug_init(VXGE_TRACE,
                  "%s: Tx steering disabled", vdev->ndev->name);
            vdev->config.tx_steering_type = 0;
            break;
      case TX_VLAN_STEERING:
            vxge_debug_init(VXGE_TRACE,
                  "%s: Unsupported tx steering option",
                  vdev->ndev->name);
            vxge_debug_init(VXGE_TRACE,
                  "%s: Tx steering disabled", vdev->ndev->name);
            vdev->config.tx_steering_type = 0;
            break;
      case TX_MULTIQ_STEERING:
            vxge_debug_init(VXGE_TRACE,
                  "%s: Tx multiqueue steering enabled",
                  vdev->ndev->name);
            break;
      case TX_PORT_STEERING:
            vxge_debug_init(VXGE_TRACE,
                  "%s: Tx port steering enabled",
                  vdev->ndev->name);
            break;
      default:
            vxge_debug_init(VXGE_ERR,
                  "%s: Unsupported tx steering type",
                  vdev->ndev->name);
            vxge_debug_init(VXGE_TRACE,
                  "%s: Tx steering disabled", vdev->ndev->name);
            vdev->config.tx_steering_type = 0;
      }

      if (vdev->config.gro_enable) {
            vxge_debug_init(VXGE_ERR,
                  "%s: Generic receive offload enabled",
                  vdev->ndev->name);
      } else
            vxge_debug_init(VXGE_TRACE,
                  "%s: Generic receive offload disabled",
                  vdev->ndev->name);

      if (vdev->config.addr_learn_en)
            vxge_debug_init(VXGE_TRACE,
                  "%s: MAC Address learning enabled", vdev->ndev->name);

      vxge_debug_init(VXGE_TRACE,
            "%s: Rx doorbell mode enabled", vdev->ndev->name);

      for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
            if (!vxge_bVALn(vpath_mask, i, 1))
                  continue;
            vxge_debug_ll_config(VXGE_TRACE,
                  "%s: MTU size - %d", vdev->ndev->name,
                  ((struct __vxge_hw_device  *)(vdev->devh))->
                        config.vp_config[i].mtu);
            vxge_debug_init(VXGE_TRACE,
                  "%s: VLAN tag stripping %s", vdev->ndev->name,
                  ((struct __vxge_hw_device  *)(vdev->devh))->
                        config.vp_config[i].rpa_strip_vlan_tag
                  ? "Enabled" : "Disabled");
            vxge_debug_init(VXGE_TRACE,
                  "%s: Ring blocks : %d", vdev->ndev->name,
                  ((struct __vxge_hw_device  *)(vdev->devh))->
                        config.vp_config[i].ring.ring_blocks);
            vxge_debug_init(VXGE_TRACE,
                  "%s: Fifo blocks : %d", vdev->ndev->name,
                  ((struct __vxge_hw_device  *)(vdev->devh))->
                        config.vp_config[i].fifo.fifo_blocks);
            vxge_debug_ll_config(VXGE_TRACE,
                  "%s: Max frags : %d", vdev->ndev->name,
                  ((struct __vxge_hw_device  *)(vdev->devh))->
                        config.vp_config[i].fifo.max_frags);
            break;
      }
}

#ifdef CONFIG_PM
/**
 * vxge_pm_suspend - vxge power management suspend entry point
 *
 */
static int vxge_pm_suspend(struct pci_dev *pdev, pm_message_t state)
{
      return -ENOSYS;
}
/**
 * vxge_pm_resume - vxge power management resume entry point
 *
 */
static int vxge_pm_resume(struct pci_dev *pdev)
{
      return -ENOSYS;
}

#endif

/**
 * vxge_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t vxge_io_error_detected(struct pci_dev *pdev,
                                    pci_channel_state_t state)
{
      struct __vxge_hw_device  *hldev =
            (struct __vxge_hw_device  *) pci_get_drvdata(pdev);
      struct net_device *netdev = hldev->ndev;

      netif_device_detach(netdev);

      if (netif_running(netdev)) {
            /* Bring down the card, while avoiding PCI I/O */
            do_vxge_close(netdev, 0);
      }

      pci_disable_device(pdev);

      return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * vxge_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot.
 * At this point, the card has exprienced a hard reset,
 * followed by fixups by BIOS, and has its config space
 * set up identically to what it was at cold boot.
 */
static pci_ers_result_t vxge_io_slot_reset(struct pci_dev *pdev)
{
      struct __vxge_hw_device  *hldev =
            (struct __vxge_hw_device  *) pci_get_drvdata(pdev);
      struct net_device *netdev = hldev->ndev;

      struct vxgedev *vdev = netdev_priv(netdev);

      if (pci_enable_device(pdev)) {
            printk(KERN_ERR "%s: "
                  "Cannot re-enable device after reset\n",
                  VXGE_DRIVER_NAME);
            return PCI_ERS_RESULT_DISCONNECT;
      }

      pci_set_master(pdev);
      vxge_reset(vdev);

      return PCI_ERS_RESULT_RECOVERED;
}

/**
 * vxge_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells
 * us that its OK to resume normal operation.
 */
static void vxge_io_resume(struct pci_dev *pdev)
{
      struct __vxge_hw_device  *hldev =
            (struct __vxge_hw_device  *) pci_get_drvdata(pdev);
      struct net_device *netdev = hldev->ndev;

      if (netif_running(netdev)) {
            if (vxge_open(netdev)) {
                  printk(KERN_ERR "%s: "
                        "Can't bring device back up after reset\n",
                        VXGE_DRIVER_NAME);
                  return;
            }
      }

      netif_device_attach(netdev);
}

/**
 * vxge_probe
 * @pdev : structure containing the PCI related information of the device.
 * @pre: List of PCI devices supported by the driver listed in vxge_id_table.
 * Description:
 * This function is called when a new PCI device gets detected and initializes
 * it.
 * Return value:
 * returns 0 on success and negative on failure.
 *
 */
static int __devinit
vxge_probe(struct pci_dev *pdev, const struct pci_device_id *pre)
{
      struct __vxge_hw_device  *hldev;
      enum vxge_hw_status status;
      int ret;
      int high_dma = 0;
      u64 vpath_mask = 0;
      struct vxgedev *vdev;
      struct vxge_config ll_config;
      struct vxge_hw_device_config *device_config = NULL;
      struct vxge_hw_device_attr attr;
      int i, j, no_of_vpath = 0, max_vpath_supported = 0;
      u8 *macaddr;
      struct vxge_mac_addrs *entry;
      static int bus = -1, device = -1;
      u8 new_device = 0;

      vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
      attr.pdev = pdev;

      if (bus != pdev->bus->number)
            new_device = 1;
      if (device != PCI_SLOT(pdev->devfn))
            new_device = 1;

      bus = pdev->bus->number;
      device = PCI_SLOT(pdev->devfn);

      if (new_device) {
            if (driver_config->config_dev_cnt &&
               (driver_config->config_dev_cnt !=
                  driver_config->total_dev_cnt))
                  vxge_debug_init(VXGE_ERR,
                        "%s: Configured %d of %d devices",
                        VXGE_DRIVER_NAME,
                        driver_config->config_dev_cnt,
                        driver_config->total_dev_cnt);
            driver_config->config_dev_cnt = 0;
            driver_config->total_dev_cnt = 0;
            driver_config->g_no_cpus = 0;
            driver_config->vpath_per_dev = max_config_vpath;
      }

      driver_config->total_dev_cnt++;
      if (++driver_config->config_dev_cnt > max_config_dev) {
            ret = 0;
            goto _exit0;
      }

      device_config = kzalloc(sizeof(struct vxge_hw_device_config),
            GFP_KERNEL);
      if (!device_config) {
            ret = -ENOMEM;
            vxge_debug_init(VXGE_ERR,
                  "device_config : malloc failed %s %d",
                  __FILE__, __LINE__);
            goto _exit0;
      }

      memset(&ll_config, 0, sizeof(struct vxge_config));
      ll_config.tx_steering_type = TX_MULTIQ_STEERING;
      ll_config.intr_type = MSI_X;
      ll_config.napi_weight = NEW_NAPI_WEIGHT;
      ll_config.rth_steering = RTH_STEERING;

      /* get the default configuration parameters */
      vxge_hw_device_config_default_get(device_config);

      /* initialize configuration parameters */
      vxge_device_config_init(device_config, &ll_config.intr_type);

      ret = pci_enable_device(pdev);
      if (ret) {
            vxge_debug_init(VXGE_ERR,
                  "%s : can not enable PCI device", __func__);
            goto _exit0;
      }

      if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) {
            vxge_debug_ll_config(VXGE_TRACE,
                  "%s : using 64bit DMA", __func__);

            high_dma = 1;

            if (pci_set_consistent_dma_mask(pdev,
                                    0xffffffffffffffffULL)) {
                  vxge_debug_init(VXGE_ERR,
                        "%s : unable to obtain 64bit DMA for "
                        "consistent allocations", __func__);
                  ret = -ENOMEM;
                  goto _exit1;
            }
      } else if (!pci_set_dma_mask(pdev, 0xffffffffUL)) {
            vxge_debug_ll_config(VXGE_TRACE,
                  "%s : using 32bit DMA", __func__);
      } else {
            ret = -ENOMEM;
            goto _exit1;
      }

      if (pci_request_regions(pdev, VXGE_DRIVER_NAME)) {
            vxge_debug_init(VXGE_ERR,
                  "%s : request regions failed", __func__);
            ret = -ENODEV;
            goto _exit1;
      }

      pci_set_master(pdev);

      attr.bar0 = pci_ioremap_bar(pdev, 0);
      if (!attr.bar0) {
            vxge_debug_init(VXGE_ERR,
                  "%s : cannot remap io memory bar0", __func__);
            ret = -ENODEV;
            goto _exit2;
      }
      vxge_debug_ll_config(VXGE_TRACE,
            "pci ioremap bar0: %p:0x%llx",
            attr.bar0,
            (unsigned long long)pci_resource_start(pdev, 0));

      attr.bar1 = pci_ioremap_bar(pdev, 2);
      if (!attr.bar1) {
            vxge_debug_init(VXGE_ERR,
                  "%s : cannot remap io memory bar2", __func__);
            ret = -ENODEV;
            goto _exit3;
      }
      vxge_debug_ll_config(VXGE_TRACE,
            "pci ioremap bar1: %p:0x%llx",
            attr.bar1,
            (unsigned long long)pci_resource_start(pdev, 2));

      status = vxge_hw_device_hw_info_get(attr.bar0,
                  &ll_config.device_hw_info);
      if (status != VXGE_HW_OK) {
            vxge_debug_init(VXGE_ERR,
                  "%s: Reading of hardware info failed."
                  "Please try upgrading the firmware.", VXGE_DRIVER_NAME);
            ret = -EINVAL;
            goto _exit4;
      }

      if (ll_config.device_hw_info.fw_version.major !=
            VXGE_DRIVER_VERSION_MAJOR) {
            vxge_debug_init(VXGE_ERR,
                  "FW Ver.(maj): %d not driver's expected version: %d",
                  ll_config.device_hw_info.fw_version.major,
                  VXGE_DRIVER_VERSION_MAJOR);
            ret = -EINVAL;
            goto _exit4;
      }

      vpath_mask = ll_config.device_hw_info.vpath_mask;
      if (vpath_mask == 0) {
            vxge_debug_ll_config(VXGE_TRACE,
                  "%s: No vpaths available in device", VXGE_DRIVER_NAME);
            ret = -EINVAL;
            goto _exit4;
      }

      vxge_debug_ll_config(VXGE_TRACE,
            "%s:%d  Vpath mask = %llx", __func__, __LINE__,
            (unsigned long long)vpath_mask);

      /* Check how many vpaths are available */
      for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
            if (!((vpath_mask) & vxge_mBIT(i)))
                  continue;
            max_vpath_supported++;
      }

      /* Enable SRIOV mode, if firmware has SRIOV support and if it is a PF */
      if ((VXGE_HW_FUNCTION_MODE_SRIOV ==
            ll_config.device_hw_info.function_mode) &&
            (max_config_dev > 1) && (pdev->is_physfn)) {
                  ret = pci_enable_sriov(pdev, max_config_dev - 1);
                  if (ret)
                        vxge_debug_ll_config(VXGE_ERR,
                              "Failed to enable SRIOV: %d \n", ret);
      }

      /*
       * Configure vpaths and get driver configured number of vpaths
       * which is less than or equal to the maximum vpaths per function.
       */
      no_of_vpath = vxge_config_vpaths(device_config, vpath_mask, &ll_config);
      if (!no_of_vpath) {
            vxge_debug_ll_config(VXGE_ERR,
                  "%s: No more vpaths to configure", VXGE_DRIVER_NAME);
            ret = 0;
            goto _exit4;
      }

      /* Setting driver callbacks */
      attr.uld_callbacks.link_up = vxge_callback_link_up;
      attr.uld_callbacks.link_down = vxge_callback_link_down;
      attr.uld_callbacks.crit_err = vxge_callback_crit_err;

      status = vxge_hw_device_initialize(&hldev, &attr, device_config);
      if (status != VXGE_HW_OK) {
            vxge_debug_init(VXGE_ERR,
                  "Failed to initialize device (%d)", status);
                  ret = -EINVAL;
                  goto _exit4;
      }

      vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_LL);

      /* set private device info */
      pci_set_drvdata(pdev, hldev);

      ll_config.gro_enable = VXGE_GRO_ALWAYS_AGGREGATE;
      ll_config.fifo_indicate_max_pkts = VXGE_FIFO_INDICATE_MAX_PKTS;
      ll_config.addr_learn_en = addr_learn_en;
      ll_config.rth_algorithm = RTH_ALG_JENKINS;
      ll_config.rth_hash_type_tcpipv4 = VXGE_HW_RING_HASH_TYPE_TCP_IPV4;
      ll_config.rth_hash_type_ipv4 = VXGE_HW_RING_HASH_TYPE_NONE;
      ll_config.rth_hash_type_tcpipv6 = VXGE_HW_RING_HASH_TYPE_NONE;
      ll_config.rth_hash_type_ipv6 = VXGE_HW_RING_HASH_TYPE_NONE;
      ll_config.rth_hash_type_tcpipv6ex = VXGE_HW_RING_HASH_TYPE_NONE;
      ll_config.rth_hash_type_ipv6ex = VXGE_HW_RING_HASH_TYPE_NONE;
      ll_config.rth_bkt_sz = RTH_BUCKET_SIZE;
      ll_config.tx_pause_enable = VXGE_PAUSE_CTRL_ENABLE;
      ll_config.rx_pause_enable = VXGE_PAUSE_CTRL_ENABLE;

      if (vxge_device_register(hldev, &ll_config, high_dma, no_of_vpath,
            &vdev)) {
            ret = -EINVAL;
            goto _exit5;
      }

      vxge_hw_device_debug_set(hldev, VXGE_TRACE, VXGE_COMPONENT_LL);
      VXGE_COPY_DEBUG_INFO_TO_LL(vdev, vxge_hw_device_error_level_get(hldev),
            vxge_hw_device_trace_level_get(hldev));

      /* set private HW device info */
      hldev->ndev = vdev->ndev;
      vdev->mtu = VXGE_HW_DEFAULT_MTU;
      vdev->bar0 = attr.bar0;
      vdev->bar1 = attr.bar1;
      vdev->max_vpath_supported = max_vpath_supported;
      vdev->no_of_vpath = no_of_vpath;

      /* Virtual Path count */
      for (i = 0, j = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
            if (!vxge_bVALn(vpath_mask, i, 1))
                  continue;
            if (j >= vdev->no_of_vpath)
                  break;

            vdev->vpaths[j].is_configured = 1;
            vdev->vpaths[j].device_id = i;
            vdev->vpaths[j].fifo.driver_id = j;
            vdev->vpaths[j].ring.driver_id = j;
            vdev->vpaths[j].vdev = vdev;
            vdev->vpaths[j].max_mac_addr_cnt = max_mac_vpath;
            memcpy((u8 *)vdev->vpaths[j].macaddr,
                        (u8 *)ll_config.device_hw_info.mac_addrs[i],
                        ETH_ALEN);

            /* Initialize the mac address list header */
            INIT_LIST_HEAD(&vdev->vpaths[j].mac_addr_list);

            vdev->vpaths[j].mac_addr_cnt = 0;
            vdev->vpaths[j].mcast_addr_cnt = 0;
            j++;
      }
      vdev->exec_mode = VXGE_EXEC_MODE_DISABLE;
      vdev->max_config_port = max_config_port;

      vdev->vlan_tag_strip = vlan_tag_strip;

      /* map the hashing selector table to the configured vpaths */
      for (i = 0; i < vdev->no_of_vpath; i++)
            vdev->vpath_selector[i] = vpath_selector[i];

      macaddr = (u8 *)vdev->vpaths[0].macaddr;

      ll_config.device_hw_info.serial_number[VXGE_HW_INFO_LEN - 1] = '\0';
      ll_config.device_hw_info.product_desc[VXGE_HW_INFO_LEN - 1] = '\0';
      ll_config.device_hw_info.part_number[VXGE_HW_INFO_LEN - 1] = '\0';

      vxge_debug_init(VXGE_TRACE, "%s: SERIAL NUMBER: %s",
            vdev->ndev->name, ll_config.device_hw_info.serial_number);

      vxge_debug_init(VXGE_TRACE, "%s: PART NUMBER: %s",
            vdev->ndev->name, ll_config.device_hw_info.part_number);

      vxge_debug_init(VXGE_TRACE, "%s: Neterion %s Server Adapter",
            vdev->ndev->name, ll_config.device_hw_info.product_desc);

      vxge_debug_init(VXGE_TRACE,
            "%s: MAC ADDR: %02X:%02X:%02X:%02X:%02X:%02X",
            vdev->ndev->name, macaddr[0], macaddr[1], macaddr[2],
            macaddr[3], macaddr[4], macaddr[5]);

      vxge_debug_init(VXGE_TRACE, "%s: Link Width x%d",
            vdev->ndev->name, vxge_hw_device_link_width_get(hldev));

      vxge_debug_init(VXGE_TRACE,
            "%s: Firmware version : %s Date : %s", vdev->ndev->name,
            ll_config.device_hw_info.fw_version.version,
            ll_config.device_hw_info.fw_date.date);

      vxge_print_parm(vdev, vpath_mask);

      /* Store the fw version for ethttool option */
      strcpy(vdev->fw_version, ll_config.device_hw_info.fw_version.version);
      memcpy(vdev->ndev->dev_addr, (u8 *)vdev->vpaths[0].macaddr, ETH_ALEN);
      memcpy(vdev->ndev->perm_addr, vdev->ndev->dev_addr, ETH_ALEN);

      /* Copy the station mac address to the list */
      for (i = 0; i < vdev->no_of_vpath; i++) {
            entry =     (struct vxge_mac_addrs *)
                        kzalloc(sizeof(struct vxge_mac_addrs),
                              GFP_KERNEL);
            if (NULL == entry) {
                  vxge_debug_init(VXGE_ERR,
                        "%s: mac_addr_list : memory allocation failed",
                        vdev->ndev->name);
                  ret = -EPERM;
                  goto _exit6;
            }
            macaddr = (u8 *)&entry->macaddr;
            memcpy(macaddr, vdev->ndev->dev_addr, ETH_ALEN);
            list_add(&entry->item, &vdev->vpaths[i].mac_addr_list);
            vdev->vpaths[i].mac_addr_cnt = 1;
      }

      vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d  Exiting...",
            vdev->ndev->name, __func__, __LINE__);

      vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_LL);
      VXGE_COPY_DEBUG_INFO_TO_LL(vdev, vxge_hw_device_error_level_get(hldev),
            vxge_hw_device_trace_level_get(hldev));

      return 0;

_exit6:
      for (i = 0; i < vdev->no_of_vpath; i++)
            vxge_free_mac_add_list(&vdev->vpaths[i]);

      vxge_device_unregister(hldev);
_exit5:
      pci_disable_sriov(pdev);
      vxge_hw_device_terminate(hldev);
_exit4:
      iounmap(attr.bar1);
_exit3:
      iounmap(attr.bar0);
_exit2:
      pci_release_regions(pdev);
_exit1:
      pci_disable_device(pdev);
_exit0:
      kfree(device_config);
      driver_config->config_dev_cnt--;
      pci_set_drvdata(pdev, NULL);
      return ret;
}

/**
 * vxge_rem_nic - Free the PCI device
 * @pdev: structure containing the PCI related information of the device.
 * Description: This function is called by the Pci subsystem to release a
 * PCI device and free up all resource held up by the device.
 */
static void __devexit
vxge_remove(struct pci_dev *pdev)
{
      struct __vxge_hw_device  *hldev;
      struct vxgedev *vdev = NULL;
      struct net_device *dev;
      int i = 0;
#if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
      (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
      u32 level_trace;
#endif

      hldev = (struct __vxge_hw_device  *) pci_get_drvdata(pdev);

      if (hldev == NULL)
            return;
      dev = hldev->ndev;
      vdev = netdev_priv(dev);

#if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
      (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
      level_trace = vdev->level_trace;
#endif
      vxge_debug_entryexit(level_trace,
            "%s:%d", __func__, __LINE__);

      vxge_debug_init(level_trace,
            "%s : removing PCI device...", __func__);
      vxge_device_unregister(hldev);

      for (i = 0; i < vdev->no_of_vpath; i++) {
            vxge_free_mac_add_list(&vdev->vpaths[i]);
            vdev->vpaths[i].mcast_addr_cnt = 0;
            vdev->vpaths[i].mac_addr_cnt = 0;
      }

      kfree(vdev->vpaths);

      iounmap(vdev->bar0);
      iounmap(vdev->bar1);

      pci_disable_sriov(pdev);

      /* we are safe to free it now */
      free_netdev(dev);

      vxge_debug_init(level_trace,
            "%s:%d  Device unregistered", __func__, __LINE__);

      vxge_hw_device_terminate(hldev);

      pci_disable_device(pdev);
      pci_release_regions(pdev);
      pci_set_drvdata(pdev, NULL);
      vxge_debug_entryexit(level_trace,
            "%s:%d  Exiting...", __func__, __LINE__);
}

static struct pci_error_handlers vxge_err_handler = {
      .error_detected = vxge_io_error_detected,
      .slot_reset = vxge_io_slot_reset,
      .resume = vxge_io_resume,
};

static struct pci_driver vxge_driver = {
      .name = VXGE_DRIVER_NAME,
      .id_table = vxge_id_table,
      .probe = vxge_probe,
      .remove = __devexit_p(vxge_remove),
#ifdef CONFIG_PM
      .suspend = vxge_pm_suspend,
      .resume = vxge_pm_resume,
#endif
      .err_handler = &vxge_err_handler,
};

static int __init
vxge_starter(void)
{
      int ret = 0;
      char version[32];
      snprintf(version, 32, "%s", DRV_VERSION);

      printk(KERN_CRIT "%s: Copyright(c) 2002-2009 Neterion Inc\n",
            VXGE_DRIVER_NAME);
      printk(KERN_CRIT "%s: Driver version: %s\n",
                  VXGE_DRIVER_NAME, version);

      verify_bandwidth();

      driver_config = kzalloc(sizeof(struct vxge_drv_config), GFP_KERNEL);
      if (!driver_config)
            return -ENOMEM;

      ret = pci_register_driver(&vxge_driver);

      if (driver_config->config_dev_cnt &&
         (driver_config->config_dev_cnt != driver_config->total_dev_cnt))
            vxge_debug_init(VXGE_ERR,
                  "%s: Configured %d of %d devices",
                  VXGE_DRIVER_NAME, driver_config->config_dev_cnt,
                  driver_config->total_dev_cnt);

      if (ret)
            kfree(driver_config);

      return ret;
}

static void __exit
vxge_closer(void)
{
      pci_unregister_driver(&vxge_driver);
      kfree(driver_config);
}
module_init(vxge_starter);
module_exit(vxge_closer);

Generated by  Doxygen 1.6.0   Back to index